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Abstract

Graph-coloring register allocation is an elegant and extremely pop-
ular optimization for modern machines. But as currently formu-
lated, it does not handle two characteristics commonly found in
commercial architectures. First, a single register name may ap-
pear in multiple register classes, where a class is a set of register
names that are interchangeable in a particular role. Second, mul-
tiple register names may be aliases for a single hardware register.
We present a generalization of graph-coloring register allocation
that handles these problematic characteristics while preserving the
elegance and practicality of traditional graph coloring. Our gen-
eralization adapts easily to a new target machine, requiring only
the sets of names in the register classes and a map of the regis-
ter aliases. It also drops easily into a well-known graph-coloring
allocator, is efficient at compile time, and produces high-quality
code.

Categories and subject descriptors
D.3.4 [Programming Languages]: Processors—code generation,
compilers, optimization, retargetable compilers; G.2.2 [Discrete
Mathematics]: Graph Theory—graph algorithms
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1 Introduction

The reduction of register allocation to a graph-coloring problem is
elegant, effective, and practical. It is warmly endorsed by mod-
ern textbooks [Muchnick 1997; Appel and Palsberg 2002; Cooper
and Torczon 2003] and widely used in modern compilers. But two
assumptions at the heart of the algorithm are invalid for most com-
mercial instruction sets: registers are expected to be interchange-
able and independent. Registers are interchangeable if they are
equally suitable in any program context. Registers are indepen-
dent if writing to one cannot change the value of another.
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This mismatch between the assumptions of the algorithm and
realities of commercial architectures forces compiler writers to
“augment” Chaitin’s [1981] original formulation each time they
implement it to handle the peculiarities of each target machine.
In this paper, we generalize the graph-coloring approach in a way
that addresses this mismatch. Using our generalization, a com-
piler writer can create a register-allocation pass that is as elegant
and practical as the original formulation while also being trivial to
target to real machines.

1.1 The need

Machines with completely interchangeable registers are unusual.
Even very regular architectures partition registers according to
function. For example, the Alpha architecture defines a set of reg-
isters for use in floating-point calculations, and these registers are
not interchangeable with those used for operating on integers and
addresses.

In response, compiler writers have developed the notion of reg-
ister classes, where a class is a set of register names that are in-
terchangeable in a particular role. When all of a target’s register
classes are disjoint, as they are in the Alpha architecture, a graph-
coloring allocator can simply run a separate Chaitin-style alloca-
tion pass for each register class. But if a target has register classes
that are not disjoint, or if optimizations force non-disjoint register
classes, then in order to generate good code, a graph-coloring allo-
cator needs to allocate the register candidates of multiple classes
simultaneously. (A register candidate may be a source-language
variable, a compiler-generated temporary, or a live range.)

Non-disjoint classes occur in machines where source-language
data types do not clearly define the target’s register classes. For
example, in the Motorola 68000 family and its Coldfire descen-
dants, the instruction for adding 32-bit integer data accepts either
an address register or a data register as its source operand. But the
instruction for multiplying integers only accepts data registers, not
address registers, as operands. A similar irregularity occurs in the
Itanium instruction set, which has add-immediate instructions that
can write only a few of the general-purpose registers.

Non-disjoint classes can also be induced by optimizations per-
formed at compile time. For example, to translate a target-
independent, memory-to-memory move, a code generator for an
Alpha needs at least one register candidate. If the only regis-
ter classes in the Alpha are the disjoint integer and floating-point
classes, the code generator will be forced to label the register can-
didate with one of those two classes. The compiler could pro-
duce better code, however, if it could postpone the decision of
whether to use an integer or floating-point register until it knew
the register pressure for each class at the point of the move. We
can achieve this postponement by defining a register class that
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is the union of the integer and floating-point register classes and
by having a register allocator that simultaneously allocates mul-
tiple non-disjoint register classes. Such a register allocator could
also take advantage of instructions in the Alpha architecture that
move values directly between the integer and floating-point regis-
ter banks [Kessler, McLellan, and Webb 1998]. In particular, the
allocator might take advantage of these inter-bank move instruc-
tions to use registers outside a candidate’s class as fast spill space.

Machines that violate the register-independence assumption are
also common. When an assignment to one architectural regis-
ter name can affect the value of another, such register names are
said to alias. A classic example is the combination of two single-
precision floating-point registers to form one double-precision reg-
ister [Briggs, Cooper, and Torczon 1992]. Early HP PA-RISC and
Sun SPARC processors used this design. Some modern embed-
ded and reconfigurable architectures carry it further. The ARM
VFP10 unit, for example, has a floating-point register file that can
be organized as

• 32 single-precision registers,

• 16 double-precision registers,

• 8 scalar registers and 6 vectors of 4 elements, or

• 8 scalar registers and 3 vectors of 8 elements.

The double-precision registers are typically aligned with respect
to the single-precision registers, which means that only a pair that
starts at an even-numbered single-precision register aliases with a
double-precision register. Architectures that use unaligned pairing
also exist. Of these, some allow for “wrap around”, where the
last single-precision register in the hardware register bank is paired
with the first. For instance, the ARM VFP coprocessor implements
floating-point pairs, quadruples and octuples, any of which may be
unaligned and wrap around.

Aliasing is not limited to floating-point registers. The Intel x86
family has byte-sized integer registers that alias with 16-bit regis-
ters, which in turn alias with 32-bit registers.

In sum, interchangeability and independence are more the ex-
ception than the rule. To be able to use graph-coloring regis-
ter allocation anyway, compiler writers continually invent new
workarounds. Michael Matz’s [2003] retrospective on what it
took to implement a graph-coloring register allocator for GCC is a
poignant example of the ad-hoc nature of such workarounds. Matz
states clearly that it was difficult to build a multi-target allocator
based on graph coloring because of machine features prevalent in
the real world but not considered by the traditional formulation.
The fact that graph coloring has become popular despite the need
for these workarounds is a testament to its appeal.

1.2 Our solution

This paper generalizes the graph-coloring approach to register
allocation in a way that eliminates the need for the kinds of
workarounds currently employed for modern commercial architec-
tures. Our generalization permits simultaneous allocation of mul-
tiple register classes, even when registers alias, while maintaining
the efficiency and general structure of the original graph-coloring
formulation.

We exploit the fact that compiler writers like to group a ma-
chine’s registers into potentially overlapping classes. We de-
fine a class simply as a set of register names. Registers within
a class must be interchangeable but need not be independent.
Aliasing (nonindependence) is made explicit by a map alias(r),
which takes each register name r to the set of register names with
which it aliases. By definition, alias(r) includes r, and for nota-
tional convenience, we extend the alias map to sets of registers:
alias(S) =

S

r∈S alias(r). The alias map and the grouping of

register names into classes are the only properties needed to target
our allocator.

The remainder of the paper is organized as follows: Section 2
presents a brief overview of traditional graph-coloring allocation
and identifies the beautiful aspects of the original formulation that
we would like to maintain in a new formulation. Section 3 explains
how we generalize the graph-coloring heuristic, while Section 4
describes an efficient implementation of that generalized heuris-
tic. Section 5 then presents the highlights of a retargetable allo-
cator that we built based on our generalization of a well-known
graph-coloring allocator. Section 6 reports on the practicality of
our implementation.

2 Identifying the beauty

A number of published algorithms rely on the traditional formu-
lation of graph-coloring allocation, and we would like these algo-
rithms to work seamlessly with our new generalization. To that
end, our generalization preserves three elegant aspects of the tra-
ditional formulation: an intuitive interpretation of the interference
graph, a simple criterion for computing when a node is trivially
colorable, and incremental computation of that criterion as nodes
enter and leave the interference graph. We put these aspects in
context through a brief review of how a traditional allocator sets
up a graph-coloring problem and searches for a solution.

The primary task of a register allocator is to find the most impor-
tant register candidates and replace them with registers. In general,
a program contains more register candidates than the hardware has
available registers. To help identify register candidates that can
share hardware registers, a graph-coloring allocator builds an in-
terference graph.

To construct an interference graph, an allocator needs to know
the register class of each candidate and at what points in the pro-
gram each candidate is live (i.e., holds a value that may be used
before it is overwritten). The candidate’s class is chosen by in-
tersecting the register-class requirements of all operand locations
occupied by the candidate [Briggs 1992]. The set of live points is
obtained by running live-variable analysis [Muchnick 1997].

With this information, the construction of an interference graph
is straightforward. Each node represents a register candidate. An
edge connects two nodes if the register classes of the candidates
represented by the nodes alias and at any point in the program the
candidates are simultaneously live. In other words, interference
graph edges identify those candidates that cannot be allocated to
registers that alias.

Here’s where the coloring metaphor comes in. If the interfer-
ence graph contains nodes of only a single register class and that
class contains k independent and interchangeable registers, then
finding a k-coloring of the interference graph solves the alloca-
tion problem. The color assigned to each candidate node maps
uniquely to an available register, and nodes that are neighbors in
the graph never receive the same assignment.

Although k-coloring is NP-complete, Chaitin developed a sim-
ple approach that does well in practice for interference graphs con-
taining nodes of a single register class [Chaitin et al. 1981; Chaitin
1982]. Chaitin’s approach is based on the observation that when
node n has fewer than k neighbors, i.e., degreen < k, it is triv-
ially colorable. No matter how colors are assigned to its neighbor
nodes, there will be a distinct color left for n. Chaitin’s heuristic
repeatedly simplifies the graph by removing and stacking trivially
colorable nodes. Each removal lowers the degrees of neighbor
nodes and may make additional nodes trivially colorable. If the
process succeeds in stacking all of the nodes, then it is easy to as-
sign colors by popping one node at a time, restoring its edges to
former neighbors already popped, and picking a color not already
assigned to one of them.
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Of course, the graph-simplification phase may block with no
trivially colorable nodes to remove and stack. In that case,
Chaitin’s method picks a node whose degree in the remaining
graph is relatively high (so that its removal liberates as many sub-
sequent nodes as possible) but whose spill cost is relatively low (so
that the run-time impact of this spill is low). It removes and stacks
that node, and then continues with the simplification phase. This
brute-force simplification means that color assignment may later
fail for some of the forcibly removed nodes.1 In that case, the al-
locator inserts spill code for the occurrences of the corresponding
register candidates and starts over on the modified program.

This method can be implemented quite efficiently. The degree
of each node is cached and updated incrementally. When the al-
locator removes a node from the graph, it sets the node’s cached
degree to zero and decrements the cached degrees of the node’s
neighbors, but it leaves the edge representation in place for use
later, when the node is reinstated in the graph and given a color.
The color-assignment algorithm just ignores edges to neighbors
whose cached degree is zero.

In summary, the traditional formulation of graph coloring regis-
ter allocation is based upon an intuitive interpretation of the inter-
ference graph, a beautifully simple criterion for computing when
a node is trivially colorable, and an incremental method for effi-
ciently computing colorability even as nodes enter and leave the
interference graph. Our goal is to provide an equally simple crite-
rion for computing when a node is trivially colorable, even when
registers are not completely interchangeable or independent. In
addition, our generalization of the colorability criterion should
not require changing the structure or interpretation of the inter-
ference graph. Finally, this generalization of the criterion must be
amenable to an efficient implementation and specifically one that
supports incremental computation.

3 Generalizing the Colorability Criterion

We now broaden the scope of the graph-coloring heuristic by de-
veloping and illustrating a drop-in replacement for the traditional
colorability criterion. Section 3.1 begins with a new formulation
of the colorability criterion that is easy to understand, is precise
for all architectures, but is expensive to compute. Sections 3.2
and 3.3 present a safe and practical approximation of this formu-
lation based on register classes. Section 3.4 presents an optimality
property and shows that our approximation is exact for many com-
mercial architectures.

3.1 Same heuristic, broader scope

Our goals are to allocate register candidates from different register
classes simultaneously and allow these classes to contain regis-
ters that may alias. From Section 2, we know that two candidates
n1 and n2 interfere if they are simultaneously live and if a color-
ing of these nodes may lead to aliasing. The possibility of aliasing
may be stated formally as:

alias(classn1
) ∩ classn2

6= ∅ ∨ classn1
∩ alias(classn2

) 6= ∅

As always, the neighbors of a node n in the interference graph
combine to constrain that node’s colorability. But our view of col-
orability is complicated by two problems. Because there may not
be a resource limit k that all of the nodes have in common, it no
longer makes sense to look for a k-coloring of the interference
graph. And the impact of a neighbor on the colorability of n may
vary from neighbor to neighbor. Figure 1 presents a simple ar-
chitecture and example interference graph that illustrate these two
problems.

1On the other hand, sometimes a node that wasn’t trivially colorable
turns out to be colorable [Briggs, Cooper, and Torczon 1994].

Architectural definition:

F = {f0, f1, f2, f3} D = {d0, d1, d2}

alias(f0) = {f0, d0} alias(d0) = {d0, d1, f0, f1}
alias(f1) = {f1, d0, d1} alias(d1) = {d0, d1, d2, f1, f2}
alias(f2) = {f2, d1, d2} alias(d2) = {d1, d2, f2, f3}
alias(f3) = {f3, d2}

� d0 -� d2 -

f0 f1 f2 f3
� d1 -

Example interference graph:

n1 :F

n2 :F n3 :D

Figure 1. An example architecture with two register classes,
F and D. Class F contains four single-precision floating-point
registers, which alias with the three unaligned double-precision
registers listed in D. Because the register file does not permit a
double-precision register to wrap around the end, the two classes
have different resource limits: four single-precision registers cre-
ate only three double-precision ones. In the interference graph,
node n3 is drawn as a larger circle because it places a greater
constraint on the colorability of n1 than does n2.

On the other hand, there are still only finitely many choices for
a node n, namely the number of members in the class of n, that
is, |classn|. Therefore, to produce a new criterion for trivial col-
orability, we must find a measure of the constraints imposed on n
by n’s neighbors, and this measure must be comparable with the
number of choices |classn|. We call this measure the squeeze.

More precisely, squeeze∗
n is the maximum number of names

from classn that could be denied to n because of an assignment
of registers to n’s current neighbors. Node n is trivially colorable
provided

squeeze
∗
n < |classn| (1)

This inequality has the same form as the traditional criterion. If
squeeze∗

n can be computed efficiently, as is done for degreen in
the traditional graph-coloring implementation, then we can use
Equation 1 as a drop-in replacement for the traditional criterion.

So how should squeeze∗
n be defined? Imagine a game in which

we want to allocate a register for node n, and an adversary wants
to stop us. The adversary gets to move first, by picking a coloring
of the neighbors of n. This coloring assigns to each neighbor a
single register chosen from that neighbor’s register class. When
it is our turn, we must choose for n a register that does not alias
with any of the registers chosen by the adversary. The adversary’s
best move is to consider all possible colorings and choose one that
eliminates as many choices for n as possible. In other words, if we
write S for the set of registers in the coloring, the adversary should
choose a coloring that maximizes |classn ∩ alias(S)|. Therefore,
the maximum number of names from classn that could be denied
to n because of an assignment of registers to n’s neighbors is

squeeze
∗
n = max

S∈colorings of n’s neighbors
|classn ∩ alias(S)| (2)

If this ideal number is at least |classn|, the adversary wins. But if
squeeze∗

n < |classn|, then node n is trivially colorable, and we
win.
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3.2 Decomposition by class

We obviously cannot afford to enumerate all colorings of n’s
neighbors every time we need to determine if it is trivially col-
orable. We instead define an approximation, squeezen, that is fast,
safe, and good. By “fast,” we mean that squeezen can be com-
puted quickly. By “safe,” we mean that squeeze∗

n ≤ squeezen

always, so if squeezen < |classn| then squeeze∗
n < |classn|,

and node n is trivially colorable. And by “good,” we mean that
squeeze∗

n = squeezen for a great many real architectures. In this
and the next subsection, we develop the key ideas behind our ap-
proximation squeezen. Section 3.4 gives the complete definition
of squeezen.

The first key idea is to consider the impact of n’s neighbors
by class, rather than individually. To motivate this idea, let us
consider the case in which all of n’s neighbors have the same
class C. Class C might be different from n’s class, classn, which
we write N . The worst-case number of elements of N that can
be blocked by an adversary’s coloring of some number m of n’s
neighbors is a constant that depends only on the properties of the
target architecture. We call this number the worst-case displace-
ment of N by C using m nodes, worstm(N, C):

worst
m(N, C) = max

S⊆C∧|S|≤m
|N ∩ alias(S)| (3)

Worst-case displacement doesn’t depend on the interference
graph being colored, which means that we can precompute it for
all pairs of classes N and C and for all values of m up to |C|.
The precomputed values can be stored in a lookup table for use
during compilation. For instance, for the example classes in Fig-
ure 1, worst1(F, D) = 2 since one double-precision register
consumes two single-precision ones, worst 1(D, F ) = 2 since
one single-precision register can block two double-precision ones,
worst1(D, D) = 3 since register d1 aliases with all of the other
double-precision registers, and also worst 2(D, D) = 3 since a
coloring cannot consume more than the number of registers in n’s
class.

The worst-case displacement of N by C is an integral compo-
nent of our approximation. Whenever node n has exactly m neigh-
bors, all of class C, worstm(N, C) = squeeze∗

n. Since m is the
number of neighbors of class C, we write it as degreen(C).

When n has neighbors of more than one class, we estimate
squeeze∗

n by summing worst-case displacements over a set of
classes C:

Wn(C) =
X

C∈C

worst
degreen(C)(N, C) (4)

If we sum over all classes Call , the sum Wn(Call ) is at least
as great as squeeze∗

n, so it is a safe approximation. To under-
stand why, think about the contradiction: if the ideal squeeze∗

n

could be greater than Wn(Call ), the contribution from at least
one class of a coloring that achieves squeeze∗

n would have to
exceed worstdegreen(C)(N, C), contradicting the definition of
worst . A formal proof of safety relies primarily on the trian-
gle inequality |A ∪ B| ≤ |A| + |B| and on the interchange rule
maxS

P

C
f(S, C) ≤

P

C
maxS f(S, C).

3.3 Saturation to avoid overcounting

Although Wn(Call ) is safe, it is not always exact. For exam-
ple, when two register classes use overlapping hardware resources,
Wn(Call ) may count the overlapping resources twice. Figure 2
shows an example in which the overlapping resources are registers
r0 and r1.

To improve on Wn(Call ), we observe that the worst the adver-
sary can do with any group of neighbors is to use all the registers
in those neighbors’ classes. In Figure 2, the worst is bounded by

Architectural definition:

A = {r0, r1} B = {r0, r1, r2} C = {r0, r1, r2, r3}

∀r ∈ A, B, C : alias(r) = {r}

C
z }| {

A
z }| {

r0 r1 r2 r3
| {z }

B

Example interference graph:

n1 :C

n2 :A

n3 :B n4 :B

n5 :B

Figure 2. This example illustrates overcounting of registers. The
machine has three register classes A, B, and C. In the interference
graph, n1 has one neighbor of class A and three of class B. The
sum Wn({A, B, C}) counts 1 for class A and 3 for class B, for
a total of 4, but the actual squeeze imposed by classes A and B
together is only 3. Node n is saturated with respect to classes
A and B. Node n is in fact trivially colorable.

the number of registers in the set of classes {A, B}. But the idea
applies to any set of classes: given a set of classes C, it follows
from Equation 2 that the contribution to squeeze∗

n from neighbors
of those classes is bounded by the alias sets of those classes. We
write this bound as bound (N, C), defined by

bound(N, C) = |N ∩ (
[

C∈C

alias(C))| (5)

For any C, if we consider terms in Wn(Call ) that depend on C,
we can replace the partial sum over those terms, Wn(C), by
min(bound (N, C),Wn(C)), and we avoid overcounting the over-
lapping resources in C. To avoid more overcounting, we can re-
order and parenthesize partial sums in Wn(Call ), then cap each
parenthesized partial sum by a bound described below. Section 3.4
explains how we structure this bounded sum to best approxi-
mate squeeze∗

n. Though there are many choices for ordering and
parenthesization, Section 3.4 shows that there is only one sensible
choice for any real machine. Thus, for the rest of this section, we
focus on a fast method for evaluating the bounded sum.

Our method for evaluating the bounded sum is motivated by the
observation that the parenthesized expression for Wn(Call ) can
be viewed as a tree. We refer to this tree as a class tree. Each
pair of parentheses in the expression corresponds to a vertex in the
tree. Each vertex v has a set of register classes, written classes(v).
Each class in classes(v) corresponds to a term in Wn(Call ) that
is inside the parentheses for v but not in those of a child of v.
The set of child vertices of v is written children(v). Every vertex
except the root has a parent vertex, written parent (v). Parents
correspond to immediately enclosing parentheses. Finally, each
class C appears in exactly one term in Wn(Call ) and thus in one
vertex in the tree, which we write vertex (C).

Recall that this class tree is meant to help us avoid overestimat-
ing the squeeze on candidate node n by its neighbors. In the simple
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case, n becomes saturated with respect to a set of classes C when
Wn(C) reaches bound(N, C).2 For any vertex v in the class tree,
the bound we use is with respect to the set of classes in the subtree
rooted at v. We write this set v⇓, formally defined as:

v⇓ = classes(v) ∪
[

v′∈children(v)

v
′⇓ (6)

And we call bound(N, v⇓) the saturation bound at vertex v.
Given a class tree containing vertex (classn), we can estimate

the total squeeze on n as the bounded sum at the root R of this
tree:

squeezen = Z(n, R) (7)

The bounded sum Z is computed using the following recursive
function:

Z(n, v) = min(bound(N, v⇓), rawZ(n, v))

rawZ(n, v) =
X

C∈classes(v)

worst
degreen(C)(N, C)

+
X

v′∈children(v)

Z(n, v′)

(8)

Without min and bound , Z(n, R) would be exactly equal to
Wn(Call ). But Z(n, R) is a better estimate because it is filtered:
our estimate of the cumulative number of colors denied by the ad-
versary at the root of any subtree in n’s class tree can never exceed
the saturation bound at v. At each vertex v of the class tree, we cal-
culate rawZ(n, v), the “raw” squeeze on node n due to neighbors
with classes in classes(v) or to the children of v. The word “raw”
is a reminder that this variant of squeeze is not yet filtered. Raw
squeeze is simply the total worst-case squeeze from n’s neighbors
whose classes are in classes(v) plus the filtered squeeze values
Z(n, v′) for each vertex v′ in children(v). For each vertex, fil-
tering recognizes that the adversary cannot consume more colors
than possible by using all registers in classes in the subtree rooted
at that vertex.

Safety. To show thatZ(n, R) safely approximates squeeze∗
n, we

begin by defining Z∗(n, v) to be the maximum amount the ad-
versary can squeeze node n by coloring neighbors of n whose
classes are in v⇓. The ideal squeeze squeeze∗

n is exactly equal
to Z∗(n, R). Our approximation is safe because for any vertex v,
Z∗(n, v) ≤ Z(n, v). We prove this fact by induction on the height
of the subtree rooted at v. The key lemma is that

Z∗(n, v) ≤
X

C∈classes(v)

worst
degreen(C)(N, C) +

X

v′∈children(v)

Z∗(n, v
′)

This lemma is proved using the triangle inequality and interchange
rule.

3.4 Alias relationships and the class tree

To get the best possible approximation, we want a class tree that
minimizes Z . Since overcounting occurs when classes overlap, a
key property of good class trees is that classes with aliases in com-
mon appear under the same saturation bound. Under constraints
that are satisfied for all machines of which we are aware, we show
how to construct class trees for which Z is as small as possible.

Consider the case in which two classes C1 and C2 alias exactly
the same registers. We say such classes are alias-equivalent, writ-
ten C1 ∼ C2:

C1 ∼ C2 ⇔ alias(C1) = alias(C2). (9)

2A node can even be saturated with respect to a set of classes without
necessarily being saturated with respect to any of the individual classes in
the set.

If C1 ∼ C2, then sets {C1}, {C2}, and {C1 ∪ C2} all provide
the same saturation bound. So to add worst degreen(C1)(N, C1) to
worstdegreen(C2)(N, C2) and then bound them together is at least
as good as to bound them separately and then add. It is there-
fore not hard to show that to get the best approximation, alias-
equivalent classes should always be in the same vertex of the class
tree. It is also not hard to show that we get a better approximation
if each vertex contains only alias-equivalent classes.

A classic example of alias-equivalent register classes is floating-
point register pairing as found in the original MIPS, SPARC,
and HP PA-RISC microprocessor families: each consecutive pair
of single-precision floating-point registers combines to form one
double-precision register. But alias equivalence is broader than
traditional pairing of registers, as illustrated by the register classes
in Figure 1.

Another case in which it is useful to apply the same bound to
two classes is one in which the alias set of class C1 is contained
within the alias set of class C2. We say that C1 is alias-contained
in C2, written C1 @ C2:

C1 @ C2 ⇔ alias(C1) ⊂ alias(C2) (10)

If the vertex containing C1 is a descendant of the vertex contain-
ing C2, we can prevent the common registers from being counted
in both C1 and C2.

Alias-contained register classes are found on such architectures
as the Motorola 68K, the Intel x86, and the Intel Itanium. The 68K
is a classic example: address registers Ca and data registers Cd

form distinct register classes, each of which is alias contained in a
third class Cad, which contains both the address and data registers
(Cad = Ca ∪ Cd).

When classes can overlap without being alias-equivalent or
alias-contained, we know of no way to construct a class tree that
always gives the best approximation. But for every real architec-
ture we have studied, classes whose alias sets overlap are always
alias-equivalent or alias-contained. For these architectures, we can
build a class tree that is guaranteed to give the best possible Z for
any interference graph. This tree has three properties:

• For every vertex v, classes(v) is not empty.

• The alias set of every child vertex is contained in the alias set
of its parent vertex, where the alias set of a vertex v is the union
of the alias sets of classes in classes(v).

• If two vertices have the same parent, their alias sets are disjoint.

Such a class tree always exists, and it is easy to show (by contra-
diction) that it is unique.

For example, the Motorola 68040, with its on-chip floating-
point unit, would have two class trees. The integer class tree would
be rooted with the alias set of Cad; this vertex would have two chil-
dren corresponding to vertices with alias sets of Ca and Cd. The
other class tree would contain a single vertex corresponding to the
aliases of the floating-point class.

Optimality. To show that the unique class tree above gives the
best possible approximation, we define a “good” vertex as one that
alias-contains each of its children, whose children are all disjoint,
and whose classes set is not empty. A “bad” vertex violates one
or more of these conditions. In the unique class tree above, all
vertices are good. Suppose there is some other class tree that pro-
vides a better approximation. Then we can find a bad vertex v
whose proper descendants are all good. No matter how v is bad,
there is a local transformation of the tree that has two properties:

1. It improves Z , or at worst leaves it unchanged.

2. Either it decreases the number of vertex pairs in which alias-
containment does not imply ancestry, or it leaves this number
unchanged and decreases the number of parent-child pairs in
which the parent does not alias-contain the child.
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By property 2, we can repeat local transformations until there are
no more bad vertices, and this repetition is guaranteed to termi-
nate. By property 1, this sequence of transformations makes Z no
worse. Therefore the “good” class tree produces an approximation
that is at least as good as any other class tree.

Exactness. We can show that our approximation is exact for a
large number of real architectures. For example, it is not difficult to
show that exactness holds when no register classes have alignment
restrictions, and the classes with overlapping alias sets are alias-
equivalent. In such a case, no overcounting of the aliased register
resources is possible in Equation 8, because each class tree has
exactly one vertex.

Our approximation remains exact even if we allow some align-
ment restrictions within a register class; an acceptable alignment
restriction simply needs to exhibit a large amount of regularity. By
regularity we mean that all “multi-registers” are a power of two
in size, when measured in units of singleton registers, and these
multi-registers all align on the appropriate power-of-two bound-
ary, as defined by the singleton numbering.

A less regular architecture which demonstrates when our ap-
proximation is not exact (though still safe) is the Intel i960. The
i960 has not only single-width and quadruple-width integer reg-
isters, but also triple-width registers, each of which aliases with
three single registers and must align on a quadruple-width bound-
ary. For this machine, our colorability criterion may overestimate
the squeeze; for example, if a single-width node has neighbors of
both triple-width and quadruple-width classes, our coloring crite-
rion cannot detect that because of alignment constraints, a register
numbered 3 modulo 4 may be available.

4 Implementing Our Colorability Criterion

This section describes how we efficiently implement our colorabil-
ity criterion and, in particular, Z(n, R), which is the measure of
the constraint (or “squeeze”) on node n by its neighbors. Just as
a traditional graph-coloring register allocator caches the degree of
each interference-graph node, we cache the value of Z(n, R). And
as in a traditional allocator, when node n gains or loses a neighbor,
we must incrementally update Z(n, R). Saturation makes this up-
date tricky, since the effect of adding or removing a neighbor of
class C depends on whether n is saturated with respect to some
set of classes containing C.

A barrier to incrementally updating Z(n, R) is that the value
of worstdegreen(C)(N, C) in Equation 8 may change in nonlinear
ways as degreen(C) changes. But as an approximation, the harm
the adversary can do with m registers is no more than m times the
harm the adversary can do with one register:

worstm(N, C) ≤ m × worst1(N, C) (11)

Even better, for the vast majority of real commercial architectures,
this approximation is exact up to bound (N, {C}). As a bonus,
using this approximation means we have to store only the table of
worst1(N, C) values, not worstm(N, C) for every m up to |C|.
We therefore use this approximation of worstm(N, C).

To update Z(n, R) incrementally, we observe that adding or
removing a neighbor of class C affects the value of rawZ(n, v)
only at vertices v on the path from vertex (C) to the root vertex R.
That’s because those are the only vertices whose rawZ values de-
pend on degreen(C).

We can minimize the amount of recalculation done when adding
or removing a neighbor if we cache not only the filtered squeeze
Z(n, R), but also the value of the rawZ(n, v) for each vertex v
in n’s class tree. Notice that it is incorrect to cache the filtered
Z(n, v) values, since filtering loses information about how many

neighbors of a class were added and this count is needed when
neighbors drop out of the graph.

Now consider the sequence of p vertices that starts at vertex (C)
and then follows parent links to the root class R: v1 = vertex (C),
vi+1 = parent(vi), vp = R. From this sequence, we can obtain
adjustments δ1, . . . , δp for the cached raw squeeze values using
the following recurrence relations:

δ1 = ±worst1(classn, C)
αi = rawZ(n, vi)
βi = bound(classn, vi⇓)
δi+1 = ∆(αi, δi, βi)

for 1 ≤ i ≤ p, where αi is the cached raw squeeze, δi is the
change in αi, and δi+1 is the change propagating along the parent
link after filtering by the bound βi. The initial change δ1 is pos-
itive when a neighbor is added and negative when a neighbor is
removed.

The function ∆(α, δ, β) is defined in terms of an initial raw
squeeze α, a change δ, and a saturation bound β:

∆(α, δ, β) =


max(0, min (δ, β − α)) if δ ≥ 0
min (0, max(δ, δ − (β − α))) if δ < 0

When rawZ(n, vi) goes from αi to αi + δi, the resulting change
in Z(n, vi) is given by ∆(αi, δi, βi). First, consider when δ1 > 0,
which corresponds to adding a neighbor. If both α and α + δ are
below the bound β, then the change in squeeze is the same as the
change in raw squeeze. If both are above the bound, then there’s
no change in squeeze. If they bracket the bound, then the change
in squeeze is limited to β − α. The logic for δ1 < 0 (removing
a neighbor) is analogous. When δi goes to 0 for some i, it means
that a bound somewhere along the path to the root kept the rest
of the nodes along the path from being affected by the addition or
removal of the neighbor.

By the definition of rawZ , the change in rawZ(n, vi+1) comes
from one term in the sum over the children of vi+1, namely
Z(n, vi). So the change in rawZ(n, vi+1) is ∆(αi, δi, βi), i.e.,
δi+1. And the net effect on node n of the neighbor change, i.e.,
the net change in Z(n, vp), is ∆(αp, δp, βp).

To update n’s cached squeeze, we compute ∆(αp, δp, βp).
Each αi is available as a cached raw squeeze value, and the im-
plementation must update each cached value that changes due to
addition or removal of n’s neighbors. Figure 3 presents C++ code
for computing ∆(αp, δp, βp) given a node n, a vertex v, and a
raw change δ1. During the computation, the code updates n’s raw-
squeeze cache as necessary. The function bound(n.class, v)

returns bound (N, v⇓). The computation terminates either when it
reaches the root vertex vp = R or when filteredChange becomes
zero. When filteredChange becomes zero, it means that the ad-
dition or removal of n’s neighbor has no immediate effect on n’s
squeeze value, and hence, on the colorability of n. Note that ad-
dition or removal of a neighbor will always change at least one
cached raw squeeze value, even when the final filteredChange
value is zero, so that the effect of the change is not lost to the
system.

To reflect removal of a neighbor t of node n, a register allocator
might use the function squeezeChange as follows:

n.squeeze += squeezeChange(n, vertex(t.class),
-worst1(n.class, t.class));

5 Generalizing a Representative Allocator

The iterated-coalescing algorithm is a textbook example of graph-
coloring register allocation [George and Appel 1996; Appel and
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int squeezeChange(IgNode n, Vertex v, int delta)
{

int alpha = n.rawSqueeze[v];

n.rawSqueeze[v] += delta;

int filteredChange = Delta(alpha, delta,
bound(n.class, v));

if (filteredChange == 0 || parent(v) == noVertex)
return filteredChange;

return squeezeChange(n, parent(v), filteredChange);
}

Figure 3. To compute the change in squeezen due to adding or
removing a neighbor of class C, we start with node n, vertex (C),
and δ1, which is positive to add and negative to remove. Auxiliary
function Delta is ∆. Function call parent(v) produces the distin-
guished value noVertex when v is the root R of n’s class tree. The
value finally returned is the change in Z(n, R).

Palsberg 2002]. In six pages of well-documented pseudocode, it
covers all the important details of a practical implementation of a
Chaitin-style allocator, as modified to reflect George and Appel’s
strategy for coalescing copy instructions and for representing reg-
ister exclusions.

Before developing the ideas in this paper, we implemented the
iterated-coalescing algorithm in C++ following George and Ap-
pel’s pseudocode, with extensions suggested by Leung and George
[1998]. We have derived a second implementation from that first
one by substituting our generalization of the colorability criterion
and by using class trees to account for saturation. In this section,
we describe the effort required to generalize this representative
register allocator. In the next section, we show that the result is
practical to use in a production compiler.

There are a dozen places where the allocator tests whether a
node is trivially colorable. Naturally the allocator makes this test
during graph simplification, when it is trying to determine a col-
oring order by eliminating underconstrained nodes from the inter-
ference graph. But it also tests trivial colorability as part of its
heuristics for deciding when to try coalescing a copy instruction
and whether the decision to coalesce a copy could have negative
consequences.

The traditional allocator uses the criterion degreen < k to test
trivial colorability of node n. Our generalization replaces that test
with squeezen < |classn|. In each case, the test is small (one line
of code) and efficient (constant time, no procedure calls).

Strategy for coalescing. Coalescing is affected by more than
just the generalization of the colorability criterion. If an allocator
decides to eliminate a copy and coalesce the interference-graph
nodes representing its source and destination operands, the class
of the resulting coalesced node must be the intersection of the
operands’ classes. A copy instruction can be coalesced only if the
result of the intersection is a register class. On every machine of
which we are aware, the intersection of two classes is either empty
or is one of the two classes, so our implementation prohibits coa-
lescing only when the operands’ classes do not overlap. We check
for overlap during the construction of the interference graph, at the
point where the original allocator identifies copy instructions that
might be coalesced.

When two nodes are coalesced, the class of the coalesced node
is the smaller of the two original classes. Except for the fact that
the allocator must retain the node with the smaller class, coalesc-
ing is as implemented by George and Appel.

Should we ever encounter a machine in which two classes could
overlap without one being contained in the other, we would have to
change our code. First, we would have to add classes as needed to
make the set of classes closed under nonempty intersection. Sec-
ond, to coalesce two nodes, the allocator would have to create a
new node to replace the original nodes, making the new node’s
class the intersection of the original nodes’ classes. Transferring
edges to the new node would use the same procedure as transfer-
ring edges in the original pseudocode, maintaining the integrity of
the approach.

Representing register exclusions. In general, there are points in
a program where a register and all of its aliases are unavailable for
allocation. For example, a caller-saves register is unavailable at a
call site. The register allocator needs a way to inhibit allocation of
the register at such a point, i.e., the register must be excluded from
the set of allocable registers of candidates whose lifetimes cross
the point of unavailability.

For candidates whose register classes don’t contain an excluded
register, exclusion is implicit and needs no special representation.
For other candidates, it is customary to represent an exclusion by
extending the graph with an exclusion node that represents the ex-
cluded register, and to add an interference-graph edge from the
exclusion node to the candidate’s node. Such an exclusion edge is
needed for each member of the candidate’s class that is unavail-
able.

George and Appel use exclusion nodes and edges in their allo-
cator. But because an exclusion node can have a very large number
of exclusion edges, they omit neighbor lists from such nodes, and
they carefully design their allocator to avoid needing those lists.

We prefer to omit exclusion nodes from the interference graph
altogether. Instead, to identify the registers from which a can-
didate is excluded, our implementation associates an excluded-
register set with each candidate. When testing for colorability,
we still calculate squeezen and compare it to the number of reg-
ister names available to candidate n. The number of names avail-
able simply becomes the size of n’s class minus the size of n’s
excluded-register set E, |N | − |E|, which is a constant. When the
color-selection phase of the allocator computes the set of excluded
“colors” for each candidate, the excluded-register set is used to ini-
tialize the set of excluded colors. As Section 6 shows, omitting ex-
clusion nodes from the interference graph also leads to space bene-
fits. Omission of exclusion nodes can also improve the cost/benefit
estimates used for choosing a candidate to spill. The degree of a
candidate’s node is traditionally part of such estimates because it
approximates the increase in overall colorability to be gained by
removing the node from the graph. But counting exclusion edges
in such an estimate skews the result, since the colorability of the
exclusion nodes that they connect to is not in question.

Effort required. Overall, our original implementation of the
George and Appel allocator with extensions by Leung and George
took 1215 lines of code. For our generalized version, we changed
that code in 25 places. There are 80 lines of new code for defining
and maintaining extra fields for squeeze caches in the node data
structure. The squeezeChange function in Figure 3 is typical of
this added code. In addition, we replaced 37 lines of original code
with 68 lines of generalized but functionally similar code. The
twelve places where we generalized the colorability criterion are
typical of these replacements. Finally, we wrote 210 lines of code
that runs once, when the compiler configures itself to the target
machine. This code derives a representation of the register class
tree, the worst-case-displacement table, and other static structures
that allow the allocator to operate efficiently.
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6 Practicality

Section 3.2 talks about an approximation for the ideal squeeze∗
n

that is safe, good, and arguably fast. Here we explore exactly how
fast it is.

Our generalization of the George and Appel allocator, as dis-
cussed in Section 5, is implemented in Machine SUIF. This allo-
cator is not just an experimental prototype; we use it in our ev-
eryday research. We measured register-allocation times for the
SPEC2000 benchmark suite; each measurement is the average of
five runs on an unloaded 2.53 GHz Pentium 4 with 2 GB of mem-
ory. Machine SUIF includes back ends for Alpha and x86, and we
are able to compile and run all of the C and FORTRAN-77 bench-
marks on these two targets. Because SUIF does not support C++,
FORTRAN-90, or extended FORTRAN-77, we do not include re-
sults for the SPEC benchmarks written in these languages.

Our register allocator can be compiled to use either the tradi-
tional colorability criterion or our new, generalized criterion. Re-
configuring the allocator for a new machine requires specifying the
register classes, their members, and the register-alias map. In our
C++ implementation, this specification takes one line of code for
the class enumeration, one line per class for defining class mem-
bership, and one line per register name for specifying its aliases.
We are working on a scheme to generate this code automatically
from a simple specification language.

This section presents three sets of experiments that focus on the
practicality of our generalized colorability criterion. Section 6.1
looks at the cost of our approach for an x86 target, which is an
architecture that exhibits register aliasing and a non-trivial class
tree. Section 6.2 shows how the cost of our allocation approach
scales with increased register pressure. Section 6.3 measures the
cost of our approach for an Alpha target, which is an architecture
that doesn’t always need the generality of our approach.

6.1 Cost of doing allocation right

Our first set of experiments measures the cost of allocating integer
registers for the Intel x86 target. The x86 architecture is interesting
because it includes alias-equivalent 16-bit and 32-bit accumulator
registers that also alias with pairs of byte registers. In addition, the
architecture includes two alias-equivalent classes of 16- and 32-bit
index registers that cannot be used everywhere the 16- and 32-
bit accumulator registers can be used. As illustrated in Figure 4,
we thus have two register classes—the accumulator registers and
the index registers—that are alias-contained in the complete set of
integer registers.

In Figure 5, we evaluate the impact on compile time of using our
generalized algorithm with the register model illustrated in Fig-
ure 4. To help analyze the components of allocation time, we also
show two other timings. The first (Trad-ideal) uses the traditional
graph-coloring formulation and targets an x86-like machine that
has a single ideal register class containing six 32-bit registers that
are interchangeable and independent. The second (Gen-noalias)
uses our generalized formulation and the same set of x86 register
classes shown in Figure 4 but without any aliasing of their mem-
bers. The third (Gen-real) uses the generalized formulation for
the real x86 target, including aliasing. The allocation times are
reported, for each benchmark, relative to the allocation time of
the (Trad-ideal) case. For these experiments, we measure only
the cost of the first iteration of coloring, since the algorithms may
iterate different numbers of times given the different hardware-
resource constraints. Also, because the x86 does not have allo-
cable floating-point registers, we report allocation times for only
the integer benchmarks. The times are averages over five runs,
with all standard deviations well below 1%. Each bar in the graph
breaks the total allocation time into the time spent building the in-
terference graph, time devoted to coalescing copy instructions, and

Register classes for x86:

CEX : {eax, ebx, ecx, edx}
CX : {ax, bx, cx, dx}

CLH : {al, ah, bl, bh, cl, ch, dl, dh}
CEI : {esi, edi}
CI : {si, di}

CEXI : CEX ∪ CEI

CXI : CX ∪ CI

Class tree:

CEXI , CXI

CEX , CX , CLH CEI , CI

Figure 4. Class definitions and class tree for x86. Many of the
classes are alias-equivalent, e.g., the class CEX , containing the
32-bit accumulator classes, is alias-equivalent with CX , contain-
ing the 16-bit accumulators, and CLH , containing the 8-bit accu-
mulators.
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Figure 5. The cost of our approach when registers aren’t inter-
changeable and independent. The target machine is an x86. Al-
location times are presented for the traditional approach (Trad-
ideal) using a single idealized register class (with interchangeable
and independent registers), and for our approach using the real
set of x86 register classes (Gen-real) and using the same set of x86
register classes but without any aliasing of their members (Gen-
noalias). The results are scaled for each benchmark to the alloca-
tion time of the traditional approach.

time for other allocation activities (classifying operands, inserting
spill instructions, rewriting code to replace register candidates with
their assigned registers, etc.).

The results in Figure 5 show that our generalized approach in-
creases allocation times by less than 30% for all benchmarks and
less than 15% for all but perlbmk. By comparing the numbers for
Gen-real against Gen-noalias, we can quantify the cost of aliasing,
and by comparing Gen-noalias against Trad-ideal, we can quan-
tify the cost of class trees.

Increases in the cost to build an interference graph come from
several sources. When registers alias, the generalized allocator
must perform an interference check not just for the register de-
fined at a definition point, but also for each alias of the defined
register. This repeated work in the inner loop of building the in-
terference graph accounts for much of the difference in allocation
time between Gen-noalias and Gen-real. Most of the rest of the
extra time to build the interference graph is due to an increase in
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the number of edges inserted into the interference graph when reg-
ister classes alias. This resulting increase in register contention
also accounts for increases in the time to complete the allocation
tasks in the Coalescing and Other categories.

In the cost to build an interference graph, the differences be-
tween Trad-ideal and Gen-noalias are due to the cost of running
squeezeChange. This routine is run twice (once for each endpoint)
when adding an edge to the interference graph under Gen-noalias.
The routine is also run when nodes are removed from the graph,
explaining the small change in portions of the allocation times la-
belled Other.

6.2 Cost of increased register pressure

We now present an example of how the compile-time costs of our
generalized algorithm scale as registers become scarce. We focus
on architectures with aliased registers because, as shown in the
previous experiment, aliasing has a noticeable impact on allocation
time.

We define an imaginary family of targets based on the Al-
pha architecture, identical except for the sizes of their floating-
point register files. Our primary target in this section is one that
creates double-precision registers out of aligned pairs of single-
precision registers. To verify that our algorithm can successfully
exploit the single-precision register pairs, we also define a base-
line machine model with only double-precision registers—so that
a single-precision value consumes an entire double-precision reg-
ister.

For this experiment, we chose to use the benchmark GSM, a
speech-compression program from the MediaBench suite [Lee,
Potkonjak, and Mangione-Smith 1997]. This program contains
a good mix of single- and double-precision floating-point register
candidates. All run-time results for GSM were generated using its
“clinton” input.

Since we would like to compile GSM under a range of regis-
ter pressures, we must identify a proxy for register pressure. The
proxy we use is the percentage of spill instructions (loads and
stores) executed. Using this measure, Figure 6 shows that our algo-
rithm encounters nearly no register pressure when compiling GSM
for a target with 12 double-precision registers (with pairs). The
number of executed spill instructions (and thus register pressure)
increases steadily as we reduce the number of available floating-
point registers.

Figure 6 also reports the percentage of spill instructions exe-
cuted by GSM when compiled for a target without single-precision
pairs. As expected, an aliasing-aware allocator is able to reduce
spilling by exploiting the single-precision register pairs.

Figure 7 resumes our focus on the targets with aliased pairs.
It shows the total time spent in allocation for all procedures in
GSM. As registers become scarce and register pressure increases
(reading the bars right to left), total allocation time also increases.
Interestingly, as Figure 7 illustrates, the change in allocation time
comes in steps. The reason is that when spilling occurs, the al-
locator is forced to rebuild the interference graph and to launch a
new coloring attempt. As register pressure increases, the alloca-
tor must discard and rebuild the interference graph more often. In
this experiment, the targets with 10 and 12 double-precision regis-
ters required the same number of iterations of the build-graph-and-
color loop; the targets with 6 and 8 double-precision registers re-
quired an extra two iterations due to spilling; and the target with 4
double-precision registers required yet another two rounds. Hence
the steps up in time.

It may seem odd that the times tend to be so even within the
steps. The reason the “10 pairs” case resembles “12 pairs” is sim-
ply that, for the GSM benchmark, spilling doesn’t change between
the two. But that’s not true for the transition between 6 and 8
pairs. To understand the effect of this difference, consider the time
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Figure 6. Dynamic spill-code fractions for the GSM benchmark.
Targets labelled With pairs create double-precision floating-point
registers from aligned pairs of single-precision registers. Targets
labelled Without pairs store all floating-point values in double-
precision registers. The vertical axis shows the fraction of dynamic
instructions that are spills.
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Figure 7. Register-allocation times for the GSM benchmark, as
compiled for an imaginary Alpha family with floating-point regis-
ter pairs. The horizontal axis shows the number of single-precision
pairs comprising the floating-point register pool. The vertical axis
shows the total number of seconds required for register allocation
of the entire GSM benchmark.

required to build an interference graph. For a given procedure, the
first graph takes as long to build for one target as for another. But
when spilling forces a second or subsequent iteration of the build-
and-color loop, two kinds of changes affect graph-building time.
The addition of spill instructions to the program means that there
are more instructions to be scanned while creating the interference
graph. However, the removal (by spilling) of highly constrained
register candidates means that there are fewer interference-graph
edges to be created. The time cost of graph building is very nearly
a linear combination of the number of instructions scanned and the
number of edges created. For allocations with 6 and 8 pairs, the
two terms counterbalance each other almost exactly.

The cost of copy coalescing also depends heavily on the edge
density of the graph, because the heuristic that avoids over-
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Figure 8. The cost of our generalization when it isn’t necessary.
The target is an Alpha. Allocation times are presented for the tra-
ditional approach (Trad-sep), our approach using separate allo-
cations for each register class (Gen-sep), and our approach using
a single combined allocation pass for all classes (Gen-comb). The
results are scaled for each benchmark to the allocation time of the
traditional approach.

coalescing requires visiting the neighbors of potential coalesced
nodes. However, the heuristic also entails more bookkeeping when
the number of overconstrained neighbors of a coalesced node is
higher, which becomes more likely as register pressure grows. So
like interference-graph building time, the time for copy coalescing
stays about level as the register pool drops from 8 pairs to 6 pairs,
because the lower edge density on second and subsequent color-
ing iterations is counterbalanced by a higher relative population of
overconstrained candidate nodes.

The effect of increased spilling on the “Other” time costs of
register allocation is smaller, because the extra time to insert load
and store instructions and to create short-lived temporaries is a
relatively small fraction of the work in this catchall category.

In summary, the allocation-time performance of our generalized
algorithm increases slowly and in a predictable manner as register
pressure increases. Part of the appeal of traditional graph coloring
is that its cost is commensurate in practice with the work it gets
done, and our generalization retains that appealing property.

6.3 Cost of always doing allocation right

Our last experiment measures the cost of allocating the integer
and floating-point registers for a real Alpha target. The Alpha
architecture is interesting because if we allocate Alpha’s integer
and floating-point registers separately, our generalization is not
needed—we can use the traditional formulation of graph coloring.
Figure 8 compares allocation times for the traditional formulation;
for our formulation, but using separate allocation passes for integer
and floating-point registers; and for our formulation using a single
combined allocation pass for all registers. Since we’re interested
in compilation involving multiple register classes, this section in-
cludes results for only the SPEC floating-point benchmarks.

As the figure illustrates, the allocation times for our approach
with separate allocations of the integer and floating-point registers
are within 5% of the times of the traditional approach. When we
run the allocation of integer and floating-point registers together,
however, you can again see the costs of allocating multiple register
classes simultaneously, which were highlighted in Section 6.1.

Separate Combined
Benchmark Procedures Trad Gen Gen

ammp 179 402 402 218
mesa 1106 2329 2329 1216
apsi 98 256 256 157

mgrid 13 29 29 16
art 26 53 53 27

sixtrack 147 322 322 172
equake 27 55 55 28
swim 7 14 14 7

wupwise 22 50 50 28

Table 1. Number of procedures compiled per benchmark and to-
tal number of coloring iterations required during register alloca-
tion under the traditional (Trad) and our generalized (Gen) ap-
proaches.

Total edges Edges/node
Benchmark out in out in

ammp 1880.1 2107.7 2.4 3.0
mesa 1958.5 2090.3 1.2 1.6
apsi 8819.6 9339.5 7.3 8.4

mgrid 10163.4 10440.4 9.0 9.7
art 775.6 888.5 1.3 1.6

sixtrack 27413.6 28294.2 3.6 4.2
equake 2419.5 2592.3 1.5 1.7
swim 2755.6 2887.6 3.0 3.3

wupwise 5962.2 6385.1 3.6 4.6

Table 2. Increase in the number of edges per interference graph
and the average number of edges per node in an interference graph
when compiling without (out) and with (in) special register nodes
in the interference graph. These numbers are averages over all
interference graphs produced during each benchmark’s compila-
tion; the edges-to-nodes ratio was computed as a geometric mean.

Table 1 may help to explain the consistent nature of the in-
creases in Figure 8. The table lists the number of procedures com-
piled and the total number of coloring iterations required for reg-
ister allocation. Notice that there are always slightly more than
half as many iterations required in the combined case. This is a
result of the fact that spilling in one class requires reallocation of
all classes. This extra cost, plus the non-linear cost of interference-
graph building with larger sets of live candidates and greater num-
bers of relevant candidate-definition points, accounts for the ma-
jority of the increase in allocation time. Overall, these compile-
time costs should be considered when investigating new optimiza-
tions that require the simultaneous allocation of register classes, as
discussed in the introduction.

Using the Alpha configuration, we also investigated the time
and space effects of including special register nodes in the inter-
ference graph. In this experiment, we configure our generalized
algorithm so that it allocates all register classes in a single pass.
We don’t present the time effects in detail because there was very
little difference between the allocation times (all within 2%). With
respect to space savings, Table 2 reports on the change in the av-
erage number of edges per interference graph and the average ra-
tio of edges-to-nodes per interference graph. We found that han-
dling register exclusions without introducing special register nodes
eliminates about 6%, on average, of the edges in each interference
graph.
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7 Related Work

Starting with Chaitin et al. [1981], there is a large body of work on
global register allocation by graph coloring. But only a handful of
authors describe algorithms that extend graph-coloring allocation
beyond the assumptions that registers are interchangeable and in-
dependent.3 As we explain below, none of these algorithms is as
complete a solution as ours.

Briggs describes an algorithm for coloring aligned and un-
aligned register pairs [Briggs 1992; Briggs, Cooper, and Torczon
1992]. This algorithm requires that a node’s degree accurately
reflect its colorability. To make a node’s degree reflect its col-
orability even in the presence of aliasing, Briggs adds “additional”
edges to the interference graph in an attempt to model the aliasing
constraints. Unfortunately, this edge-focused approach sometimes
reports that a node is trivially colorable when it is not, and it is
not easy to see how the approach could be extended to handle the
simultaneous allocation of multiple, overlapping register classes.

Nickerson [1990] presents an algorithm that handles register
candidates requiring two or more adjacent, aligned registers. Can-
didates requiring two or more registers are called “clusters” and
the individual registers of a cluster are called “cluster-mates”. In
Nickerson’s approach, an interference-graph node represents an
individual register of a cluster. Nickerson points out that it is not
always possible to use the traditional colorability criterion every-
where in his interference graph, even after identifying and remov-
ing implicit edges whose interference relation is subsumed by an
edge of a cluster-mate. For these cases, Nickerson invents an arti-
ficial k to make his model work.

Runeson and Nyström [2003] describe a design for a retar-
getable graph-coloring allocator for irregular architectures. Their
work goes part of the way along the path to a generalized color-
ing criterion. When overlapping alias sets are alias-equivalent, our
generalized colorability criterion simplifies to their 〈p, q〉 test. Our
independently discovered results, however, go quite a bit farther.
We show how nested register classes can lead the 〈p, q〉 test to
identify candidates as more squeezed than they truly are, and we
show how to avoid this inaccuracy by using saturation bounds.

Koseki, Komatsu, and Nakatani [2002] describe a technique for
modifying the selection phase of graph-coloring allocation to in-
crease the likelihood that candidates are given their preferred reg-
isters. Preference-directed graph coloring is related to our work
in that it handles multiple register classes. However, while we
use class information to help determine when candidate nodes are
trivially colorable, Koseki et al. use class information only during
register selection (i.e., register classes appear only in their register-
preference graph, not in their interference graph). Their approach
has no notion of saturation and can incorrectly assume that an in-
terference node is not trivially colorable when it actually is. Fi-
nally, their algorithm does not seem to support architectures in
which registers alias.

A number of researchers have cast register allocation as a
mathematical-programming problem, rather than a graph-coloring
problem [Goodwin and Wilken 1996; Kong and Wilken 1998; Ap-
pel and George 2001; Fu and Wilken 2002; Scholz and Eckstein
2002; Hirnschrott, Krall, and Scholz 2003]. These approaches can
handle a wide variety of architectural irregularities, but these ben-
efits come at the cost of significant increases in compile time.

8 Conclusions

Despite decades of research on compiler construction, reusable
compiler components remain all too rare. Chaitin’s graph-coloring

3Clearly, many others have implemented allocators that go beyond
these assumptions, but here, we avoid discussing what would be catego-
rized as “workarounds”.

formulation of register allocation has been remarkably robust, but
to make it usable for real targets, practitioners have almost always
had to augment it in unstructured ways. We maintain the structure
and efficiency of the original algorithm while making it extremely
simple to target new machines and retrofit existing allocators.

One of our key insights is that coloring constraints on each
interference-graph node should be expressed in terms of the set
of registers available to it. With this insight we produce a gener-
alization that handles simultaneous allocation of multiple register
classes and accommodates register aliasing in an elegant way. Be-
cause allocators using our approach know about the set of registers
available to each node, they can recognize when overlap between
such sets would introduce inaccuracies in the criterion for col-
orability, and thereby avoid the overcounting inherent in simpler
formulations.
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