
Reprinted from Proceedings of the 33rd ACM Symposium on the Principles of Programming Languages (POPL’06)

Staged Allocation: A Compositional Technique for
Specifying and Implementing Procedure Calling Conventions

Reuben Olinsky
Division of Engineering
and Applied Sciences
Harvard University

olinsky@post.harvard.edu

Christian Lindig
Division of Engineering
and Applied Sciences
Harvard University

lindig@eecs.harvard.edu

Norman Ramsey
Division of Engineering
and Applied Sciences
Harvard University

nr@eecs.harvard.edu

Abstract
We presentstaged allocation, a technique for specifying calling
conventions by composing tiny allocators calledstages. A speci-
fication written using staged allocation has a precise, formal se-
mantics, and it can be executed directly inside a compiler. Specifi-
cations of nine standard C calling conventions range in sizefrom
15 to 30 lines each. An implementation of staged allocation takes
about 250 lines of ML or 650 lines of C++. Each specification can
be used not only to help a compiler implement the calling conven-
tion but also to generate a test suite.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Retargetable compilers

General Terms Algorithms, Design, Standardization, Languages

Keywords Calling conventions

1. Introduction
Calling conventions are tricky to specify precisely. Specifications
found in architecture manuals are written in informal English, but
such specifications can be long, self-contradictory, incomplete, and
misunderstood. Using informal specifications, even a mature com-
piler can fail (Lindig 2005), and a compiler can fail even on an
example found in a manual (Bailey and Davidson 1995).

Informal specifications also make implementation difficult. Dif-
ficulties mount when a compiler supports multiple conventions,
as it must if it supports multiple machines. Many compilers im-
plement more than one convention per machine, e.g., a language-
specific calling convention and the C calling convention. Inprac-
tice, each of these conventions is coded by hand, and the codeis
often error-prone and unsatisfying to write.

An alternative to hand coding is to specify the calling con-
vention concisely using a domain-specific language, then generate
an implementation (Bailey and Davidson 1995). This alternative
seems attractive, but no suitable language exists. Bailey and David-
son’s language, CCL, is concise, but it is defined only by example
and by an implementation that is no longer maintained.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

We propose a new alternative: to specify and implement calling
conventions usingstaged allocation. The name comes from the two
insights that drive the design:
• The convention’s placement of parameters in registers and

memory can be viewed as an allocation problem.
• We can build an allocator by composing smallstages. Each

stage may satisfy an allocation request or may pass a (possibly
modified) request to a subsequent stage.

By passing each allocation request through a sequence of stages,
we keep individual stages small and simple. For example, one
stage can allocate registers while another allocates stackslots. And
by making stages composable, we enable specification of many
different conventions using relatively few primitive stages.

Staged allocation makes the following contributions:
• Specifications written using staged allocation are concise.
• Staged allocation specifies register-use conventions by using

countersto “skip past” registers that should not be used. This
technique is simple and can express complex calling conven-
tions more easily than CCL’s alternative of using logical rules
to exclude registers.

• Staged allocation is lightweight. A specification written using
staged allocation can be executed directly in a compiler, socon-
figuration and installation are simpler than with a program gen-
erator. And it is easy to create a specialized calling convention
for a single use, e.g., to call a garbage collector or to fork anew
thread.

• Staged allocation has a precise, formal semantics, so if youneed
to implement it yourself, you can. The implementation should
be small and simple: our implementations, in the Quick C--
and Machine SUIF compilers, are about 250 lines of ML and
650 lines of C++, respectively.

We have specified and tested standard calling conventions onfive
machines, all of which are shown in this paper.

2. Calling-convention background
A calling convention is a contract among four parties: a calling
procedure (thecaller), a called procedure (thecallee), a run-time
system, and an operating system. All four parties must agreeon
how space will be allocated from the stack and how that space will
be used: each procedure needs stack space for saved registers and
private data, the operating system may need stack space to hold
state when a signal is delivered, and the run-time system needs
to walk a stack to inspect and modify the state of a suspended
computation. In addition to sharing the stack with the othertwo
parties, a caller and callee must agree on how to pass parameters
and results. This paper focuses on passing values between caller

409



and callee; we consider run-time system or operating systemonly
when they impose constraints on a procedure. A companion paper
addresses the complementary issues of how to share the stack
among all parties and how to lay out stack frames (Lindig and
Ramsey 2004).

2.1 The difficulty of calling conventions

It is surprising that a contract so central to the implementation
of programming languages is so hard to get right. Evidence of
difficulty is primarily anecdotal: many compiler writers find the
implementation of calling conventions tricky and unpleasant. There
is also some hard evidence that calling conventions are a source of
bugs: Bailey and Davidson (2003) report 23 faults in production-
quality C compilers for the MIPS and SPARC, and Lindig (2005)
reports 13 new bugs in more mature C compilers for four platforms.

Why do such bugs linger even in widely used compilers? Our
best guess is that because the specifications of calling conventions
are written in informal English, it is very hard to get all thecorner
cases right. Certainly common test and benchmark suites do not
exercise corner cases; for example, in the “torture” test suite for
gcc 4.0, 90% of arguments have type pointer, integer, or character,
and 90% of functions returnvoid or int. Very few tests pass
compound (struct or union) or floating-point values. As another
example, in the SPEC CPU 2000 benchmark, over 95% of values
passed have simple types, and most functions have at most two
arguments. Although the contract between caller and calleemust
cover all cases, bugs in corner cases can go undetected for a long
time.

2.2 Underlying assumptions

The contract embodied by a calling convention must say where
to place the value of each parameter or result. In a C calling
convention, a parameter is typically passed either in a register or
in memory, but a large parameter may be split, passing part in
registers and part in memory. As in prior work, we assume thatall
but finitely many parameters are passed in contiguous, sequentially
allocated locations in memory. Intuitively, these parameters are the
parameters that don’t fit in registers. We call the area from which
they are allocated theoverflow block. The assumption may seem
restrictive, but it is satisfied by all calling conventions we know of,
and it could easily be relaxed to accommodate multiple overflow
blocks.

We also assume that parameters can be placed by a sequence of
passes, each of which considers one parameter at a time, starting
with the leftmost parameter in the source code. A single passsuf-
fices if the location in which parameterk is passed depends only
on thetypes(including sizes) of parameters≤ k. Because of vari-
adic procedures (varargs), a single pass suffices for every Ccall-
ing convention: it must be possible to extract variadic parameters
one at a time using theva arg macro. More ambitious conventions
might require multiple passes; for example, a first pass might pack
64-bit floating-point parameters into aligned register pairs before
allowing a second pass to put 32-bit parameters in single floating-
point registers. Or in another convention, a first pass mightput all
32-bit integer parameters into integer registers before allowing later
passes to use integer registers for larger or smaller parameters.

2.3 Formal modeling

Bailey and Davidson (1995) first studied formal models of calling
conventions, making these contributions:
• Given a calling convention, they use a Mealy (1955) automaton

to allocate a location for each parameter. The parameter’s type
is presented to the automaton, and the automaton makes a state

transition and emits a location for that parameter. Becausethe
automaton must be capable of allocating arbitrarily many pa-
rameters, it must have infinitely many states. Bailey and David-
son invented a clever mapping of this infinite-state automaton
onto a finite-state automaton they call a P-FSA. The finite-state
P-FSA can’t be used to place parameters, but because the map-
ping is homomorphic (preserving the structure of the transitions
of the original automaton), the P-FSA can be used to analyze
the convention.

• They use the P-FSA to detect inconsistency and incomplete-
ness in calling conventions. (A convention is inconsistentif it
allocates a single location to carry more than one parameter.
A convention is incomplete if there is a sequence of parameters
for which no location is specified.)

• They present a domain-specificCalling Convention Language
(CCL) for describing calling conventions.

• They present an enumeration procedure that can be used to cre-
ate a P-FSA fromanyexecutable specification of a calling con-
vention, even one without a formal semantics. The enumera-
tion procedure repeatedly executes the specification with dif-
ferent parameter lists, exhaustively finding the P-FSA’s states
and transitions. An enumerated P-FSA can be represented as a
set of tables, which can be interpreted to place parameters at
compile time.

• They use enumerated P-FSAs to develop target-specific test
suites for calling conventions (Bailey and Davidson 1996; Bai-
ley and Davidson 2003).

Because a P-FSA can be analyzed for incompleteness and inconsis-
tency, and because it can also be used to generate a test suite, P-FSA
models should be attractive to any compiler writer. But because it
is defined only by example (and by its implementation), CCL isnot
so attractive. By contrast with CCL, staged allocation is precisely
defined, simpler, and easier to engineer into a compiler (Section 5).
And staged allocation, like any other deterministic algorithm for
placing parameters, fully supports P-FSAs and the automated anal-
ysis and testing techniques that have been developed for P-FSAs.

3. Specifying automata for passing parameters
To specify an automaton, we must formalize three things: thetypes
of parameters presented to the automaton, the locations produced
by the automaton, and the behavior of the automaton itself. We
start with types, then present two examples before moving onto
locations and automata. But before we can do any of this, we must
first explain how staged allocation fits into a surrounding context.

By itself, staged allocation is not a complete formal framework.
It is a specification and implementation technique that is intended
to be embedded in a surrounding formal language or programming
language. The surrounding language must represent abstractions
such as machine locations, and it must also describe or implement
simple computations involving integers, strings, Booleans, and se-
quences. In this paper, we use a surrounding formal languagethat
borrows notation from functional programming languages. Func-
tions are written usingλ notation, and literal integers, strings,
and Booleans use standard notations. An empty sequence is[ ],
and a nonempty sequence with first elements and remaining el-
ementsss is s :: ss . We also use syntactic sugar: a finite sequence
is [x1, . . . , xn], and one sequence followed by another isss ++ ss ′.
Machine registers are written using typewriter font, aseax or f16,
for example.

We have implemented staged allocation using three languages:
Objective Caml (Leroy et al. 2004), Lua (Ierusalimschy 2003;
Ramsey 2005), and C++ (Stroustrup 1997). Although we useλ no-
tation in this paper, first-class functions are not requiredfor an im-
plementation; neither our C++ code nor our Lua code uses them.

410



3.1 Formalizing types

A calling convention is normally specified in terms of a particular
high-level language, and the convention decides where to place
parameters based on their types. Staged allocation abstracts away
from the high-level language and its type system. Instead, it expects
each high-level type to be mapped to a triple: awidth, a kind, and
analignment.
• The width is the size in bits of a value of the type.
• The kind is a string that indicates what kind of location a value

of the type might be passed in. For example, the"float" kind
might indicate a floating-point register while the"address"
kind indicates an address register. The empty kind"" typically
indicates a general-purpose or integer register. Another view of
a kind is that a kind encapsulates just enough information about
a high-level type to tell us in what sort of location a value of
that type should be passed.

• The alignment is an integer that constrains the address of what-
ever memory location a parameter might occupy: the address
must be a multiple of the alignment. The units of alignment are
the addressing units of the target machine: normally 8-bit bytes,
but larger units on word-addressed machines.

Mappings of high-level types are straightforward. For example,
on many platforms a Cdouble maps to a 64-bit parameter with
kind"float", aligned on an 8-byte boundary. As another example,
most conventions map C structures and unions to the empty kind,
but when structures and unions must be treated differently from
integers of the same size, we use the kind"struct" to indicate a
C structure or union.

In many cases a parameter’s alignment is determined by its
width and kind, but the alignment is not superfluous. For example,
different struct types may have the same width and kind but differ-
ent alignments: a struct containing twoints may have width 64,
the empty kind, and alignment 4; and a struct containing a single
double may have width 64, the empty kind, and alignment 8.

Type mapping has one fine point: staged allocation passes pa-
rameters by value. If a parameter should be passed by reference
or by value-result, it is the front end’s job to generate intermediate
code that passes, e.g., the address of that parameter. Similarly, the
C convention may require that a function returning a structure take
the address of that structure as an extra, hidden parameter.If so, the
front end must add the parameter before running staged allocation.

Width, kind, and alignment correspond to representations used
in typical compilers. Width and alignment are often represented
directly, as they are in Machine SUIF (Smith and Holloway 2000)
and lcc (Fraser and Hanson 1995), for example. A kind often
corresponds to an internal enumeration or abstraction; forexample,
it corresponds to the “type suffix” used inlcc version 4 and to the
“type id” used in Machine SUIF.

3.2 Example specifications

Given width, kind, and alignment, let us temporarily take locations
for granted in order to look at some example specifications. Fig-
ures 1 and 2 present specifications of standard C calling conven-
tions on the Pentium and the Alpha. Each convention requirestwo
automata: one to pass parameters and one to receive results.An au-
tomaton is specified by composingstages, which are defined pre-
cisely and discussed in detail in Section 3.4 below—here we show
examples.

Figure 1 shows the standard C calling convention for a Pentium
running Linux. A specification is a list of stages; it is created us-
ing the facilities of the surrounding language and the operations of
staged allocation, which are shown in small caps. Every convention
requires two specifications: one for parameters and one for results.

parms =
[WIDEN(λw.round up(w, 32)), OVERFLOW(co, UP, 4)]

results =
[CHOICE(

[λ〈w, k, σ〉.k = "float",
[WIDEN(λw.80), USEREGS([fp stack top])]

, λ〈w, k, σ〉.true,
[WIDEN(λw.round up(w, 32)), USEREGS([EAX, EDX])]

])
]

Figure 1. Pentium calling conventions

parms =
[WIDEN(λw.round up(w, 64))
, BITCOUNTER("bits")
, CHOICE(

[λ〈w, k, σ〉.k = "float",
REGS BY BITS("bits", [f16, . . . , f21])

, λ〈w, k, σ〉.true,
REGS BY BITS("bits", [r16, . . . , r21])

])
, OVERFLOW(co, UP, 16)
]

results =
[WIDEN(λw.round up(w, 64))
, CHOICE(

[λ〈w, k, σ〉.k = "float", USEREGS([f0, f1])
, λ〈w, k, σ〉.true, USEREGS([r0])
])

]

Figure 2. Alpha calling conventions

These appear in Figure 1 as the listsparms and results . When
a parameter is placed, it is first widened to a multiple of 32 bits,
so for example, a Cchar is promoted to anint. Then, space for
the parameter is allocated on the stack (in the overflow block). The
overflow block grows upward (UP), so earlier parameters are placed
at lower addresses, and an address in the overflow block may be
aligned on at most a 4-byte boundary. Theco in the OVERFLOW
stage is a counter that tracks how many bytes have been allocated
in the overflow block; in our implementations, this counter is not
exposed to the client, but because it is needed for the formalseman-
tics, we show it here.

Theresults automaton makes a choice based on the kind of the
result. TheCHOICE stage begins with a predicate that receives the
triple 〈w, k, al〉 and makes a decision based on the value of the
kind k. A floating-point result is widened to 80 bits and placed
on the top of the floating-point stack, which consists of 80-bit
registers. Any other result is widened to a multiple of 32 bits,
then placed either in general-purpose registerEAX or in the register
pair EAX:EDX, depending on width. (For example, a Clong long
result is placed in the pair.) If the result is wider than 64 bits, the
automaton halts with an error message. The C convention never
returns a result on the stack, so there is no overflow block.

Figure 2 gives another example: the C calling convention for
an Alpha running OSF/1. The Alpha is a 64-bit machine, and
up to six words of parameters may be placed in registers; the
remaining parameters are placed on the stack, in the overflow
block. A floating-point parameter may be placed in one of the
floating-point registersf16 to f21; any other type of parameter
may be placed in general-purpose registersr16 tor21. If a floating-
point parameter is placed inf16, the next integer parameter must
go in r17; that is, it is necessary to leave a gap. We specify this

411



gap by using a counter namedbits to count the number of bits of
parameters placed so far; eachREGS BY BITS stage skips as many
registers as account for that number of bits.

At the bottom of Figure 2, a floating-point result is returnedin
registerf0 (registersf0 andf1 if it is complex). Any other result
is returned in registerr0.

More examples appear in Section 4 and Appendix A.

3.3 Formalizing locations

In any calling convention, each parameter or result should be
passed in a distinctlocation. Ideally locations would be simple, but
in practice they aren’t. For example, although a machine register
or a block of memory is obviously a location, calling conventions
require more complex locations as well:
• The least significantk bits of an n-bit register could be a

location. For example, a byte-sized parameter could be passed
in the least significant 8 bits of a 32-bit register.

• A pair of registers could be a location. For example, a dou-
bleword floating-point parameter could be passed in the MIPS
floating-point register pairf12–f13 (also calledd12).

• More generally, a combination of registers and memory blocks
could be a location. For example, a large structure could have
its first 16 bytes passed in registersr4–r7 and the remaining
bytes in memory.

The many kinds of locations account for a significant fraction of
the complexity in calling conventions.

We formalize a location as an abstraction that has a width
and can be read or written. For purposes of this paper, we form
locations using the grammar in Figure 3. A location notatedr is
a machine register, and a location notatedstart + n is a slot
in the overflow block. These locations are atomic, have machine-
defined read and write operations, and have widths that depend on
the machine. There are also composite locations, which are notated
“combine(ℓ, ℓ′)” or “ narrow(ℓ, w, k),” wherew is the width of the
narrow location andk is the kind of narrowing done. The meaning
of composite locations is given by the equations in Figure 4.The
bottom part of the figure lists the functions and operators used in
the equations.

3.4 Specifying and formalizing automata

In staged allocation, we specify an automaton as a sequence of
stages, writtenss . A sequence of stages is formed according to the
grammar in Figure 5. In the rest of this section, we show how such
a sequence is used to compute the location of a parameter.

In a sequencess, each stage can respond to a request〈w, k, al〉,
which asks for a location of widthw bits with kind k and align-
ment al. The stage may satisfy the request or pass the (possibly
modified) request on to the next stage. A stage may also count re-
quests or bits allocated by using astate variableor counter, writ-
tenc. In a specification, such a variable is referred to by its name.
Its value is kept in astore, writtenσ; in the initial store, the value
of every variable is zero. The store and the specification together
form an automaton〈ss, σ〉. The state variables are private to the
automaton and are hidden from clients.

An automaton is used to place parameters by giving it an al-
location request for each parameter. When automaton〈ss , σ〉 gets
a request〈w, k, al〉, it responds with a locationℓ. The automa-
ton may also update counters, producing a new storeσ′. We
specify the automaton’s behavior formally as a set of inference
rules, which are shown in Figure 6. These rules use the judgment

〈ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′, which says that automaton〈ss , σ〉 re-
sponds to request〈w, k, al〉 by producing locationℓ and changing

ℓ ::= r | start + n | combine(ℓ, ℓ′) | narrow(ℓ,w, k)

Figure 3. Ways to form a locationℓ

read(combine(ℓ, ℓ′)) = read(ℓ) << ℓ′.width + read(ℓ′)

write(combine(ℓ, ℓ′), v) = write(ℓ, v >> ℓ′.width);

write(ℓ′, lobitsℓ′.width(v))

read(narrow(ℓ, w, "float")) = f2f ℓ.width→w(read(ℓ))

write(narrow(ℓ, w, "float"), v) = write(ℓ, f2f w→ℓ.width(v))

read(narrow(ℓ, w, )) = lobitsw(read(ℓ))

write(narrow(ℓ, w, ), v) = write(ℓ, sxw→ℓ.width(v))

combine(ℓ, ℓ′).width = ℓ.width + ℓ′.width

narrow(ℓ,w, k).width = w

lobitsw Extract least significantw bits
sxw→w′ Sign extend fromw bits tow′ bits
f2f w→w′ Float-to-float conversion (change width)
<< Shift left
>> Shift right

Figure 4. Reading and writing composite locations

ss ::= s :: ss | [ ]

s ::= ss

| OVERFLOW(c, g,max align)

| WIDTHS(ws)

| WIDEN(f)

| ALIGN TO(f)

| ARGCOUNTER(c)

| BITCOUNTER(c)

| PAD(c)

| REGS BY ARGS(c, rs)

| REGS BY BITS(c, rs)

| CHOICE([ p1, s1, . . . , pn, sn])

| FIRST CHOICE(c, [ p1, s1, . . . , pn, sn])

USEREGS(rs) ≡ [BITCOUNTER(c), REGS BY BITS(c, rs)],
wherec is a fresh counter.

Figure 5. Abstract syntax of stages

its state toσ′. Figure 6 uses notation and auxiliary functions which
are summarized in Figures 7 and 8.

In principle, an allocation request could lead to a situation in
which no rule in Figure 6 applies. This situation would indicate
either an error in the mapping from high-level types to〈w, k, al〉
or an error in the specificationss . In practice, we use Bailey and
Davidson’s (1995) enumeration procedure to guarantee thatno such
errors occur. The enumeration requires a specificationss and a set
of high-level types, and it ensures at compile-compile timethatss is
complete.

In the rest of this section, we explain the rules in Figure 6,
working from the top down.

Overflow An overflow stageOVERFLOW(c, g ,max align) sat-
isfies every request by allocating from the overflow block; itnever
passes a request to its successor. Counterc counts the number of
bytes allocated in the block; directiong says which way the over-

412



al divides max align w is a multiple ofmem size n = σ(c) n′ = round up(n, al)

〈OVERFLOW(c, UP,max align) :: ss , σ〉@〈w, k, al〉
start+n′

=⇒ σ{c 7→ n′ + w/mem size}
(OVERFLOW-UP)

al divides max align w is a multiple ofmem size n = σ(c) n′ = round up(n, al) + w/mem size

〈OVERFLOW(c, DOWN,max align) :: ss , σ〉@〈w, k, al〉
start−n′

=⇒ σ{c 7→ n′}
(OVERFLOW-DOWN)

w ∈ ws 〈ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′

〈WIDTHS(ws) :: ss, σ〉@〈w, k, al〉
ℓ

=⇒ σ′

(WIDTHSOK)

w ≤ f(w) 〈ss, σ〉@〈f(w), k, al〉
ℓ

=⇒ σ′ ℓ′ = narrow(ℓ, w, k)

〈WIDEN(f) :: ss , σ〉@〈w,k, al〉
ℓ′

=⇒ σ′

(WIDEN )

〈ss, σ〉@〈w, k, f(w)〉
ℓ

=⇒ σ′

〈ALIGN TO(f) :: ss , σ〉@〈w,k, al〉
ℓ

=⇒ σ′

(ALIGNTO)

〈ss , σ〉@〈w,k, al〉
ℓ

=⇒ σ′ σ′(c) = n

〈ARGCOUNTER(c) :: ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′{c 7→ n + 1}
(ARGCOUNTER)

〈ss , σ〉@〈w,k, al〉
ℓ

=⇒ σ′ σ′(c) = n

〈BITCOUNTER(c) :: ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′{c 7→ n + w}
(BITCOUNTER)

n = σ(c) n′ = round up(n, al × mem size)

〈ss, σ{c 7→ n′}〉@〈w, k, al〉
ℓ

=⇒ σ′

〈PAD(c) :: ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′

(PAD )

σ(c) = n drop(n, rs) = [ ] 〈ss, σ〉@〈w, k, al〉
ℓ

=⇒ σ′

〈REGS BY ARGS(c, rs) :: ss , σ〉@〈w,k, al〉
ℓ

=⇒ σ′

(REGSBYARGS-NONE)

σ(c) = n drop(n, rs) = ℓ :: ℓs ℓ.width = w

〈REGS BY ARGS(c, rs) :: ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ
(REGSBYARGS-FITS)

C = [ p1, s1, . . . , pn, sn] 1 ≤ i ≤ n

pi(w, k, σ) ∀j : 1 ≤ j < i : ¬pj(w, k, σ)

〈si :: ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′

〈CHOICE(C) :: ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′

(CHOICE)

σ(c) = 0

C = [ p1, s1, . . . , pn, sn] 1 ≤ i ≤ n

pi(w, k, σ) ∀j : 1 ≤ j < i : ¬pj(w, k, σ)

〈si :: ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′

〈FIRST CHOICE(c, C) :: ss , σ〉@〈w,k, al〉
ℓ

=⇒ σ′{c 7→ i}
(FIRSTCHOICE-INIT)

σ(c) = i i > 0

C = [ p1, s1, . . . , pn, sn]

〈si :: ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′

〈FIRST CHOICE(c, C) :: ss , σ〉@〈w,k, al〉
ℓ

=⇒ σ′

(FIRSTCHOICE-LATER)

〈ss ′ ++ ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′

〈ss ′ :: ss, σ〉@〈w, k, al〉
ℓ

=⇒ σ′

(STAGES)

σ(c) = n drop bits(n, rs) = [ ] 〈ss, σ〉@〈w, k, al〉
ℓ

=⇒ σ′

〈REGS BY BITS(c, rs) :: ss, σ〉@〈w, k, al〉
ℓ

=⇒ σ′

(REGSBYBITS-NONE)

σ(c) = n drop bits(n, rs) = ℓ :: ℓs ℓ.width = w

〈REGS BY BITS(c, rs) :: ss, σ〉@〈w, k, al〉
ℓ

=⇒ σ
(REGSBYBITS-FITS)

σ(c) = n drop bits(n, rs) = ℓ :: ℓs ℓ.width < w

〈REGS BY BITS(c, rs) :: ss , σ{c 7→ n + ℓ.width}〉@〈w − ℓ.width, k, al〉
ℓ′

=⇒ σ′ ℓ′′ = combine(ℓ, ℓ′) σ′(c) = n′

〈REGS BY BITS(c, rs) :: ss, σ〉@〈w, k, al〉
ℓ′′

=⇒ σ′{c 7→ n′ − ℓ.width}
(REGSBYBITS-SOME)

Figure 6. Rules for allocating from an automaton

ss sequence of stages
c counter (state variable)
k kind
al alignment in bytes
w, ws width(s) in bits
r, rs register(s)

ℓ, ℓs location(s)
f function
p predicate
σ state
n integer
C list of choices

drop bits(0, rs) = rs

drop bits(n, [ ]) = [ ]

drop bits(n, r :: rs) = drop bits(n − r.width, rs)

whenn ≥ r.width
drop(0, rs) = rs

drop(n, [ ]) = [ ]

drop(n, r :: rs) = drop(n − 1, rs)

Figure 7. Summary of notation Figure 8. Auxiliary functions

413



flow block should grow; andmax align specifies the maximum
alignment supported by the calling convention. As shown in the
OVERFLOW-UP and OVERFLOW-DOWN rules at the top of Figure 6,
the OVERFLOW stage allocates locations in contiguous memory,
padding as needed to satisfy alignment requirements. Allocation
starts at addressstart, which is a symbolic address that is resolved
later, when the stack frame is frozen (Lindig and Ramsey 2004).
When the overflow block grows up,start refers to the bottom of
the block; when the block grows down,start refers to the top. The
constantmem size is the number of bits in the addressable unit of
the target machine, so for a byte-addressed machine,mem size is 8.

The direction of growth determines the order in which param-
eters appear on the stack. If the overflow block grows up, then
parameters that are allocated earlier—which are normally the pa-
rameters that appear on the left in the source code—have lower ad-
dresses. We wantnot to characterize such parameters being “first on
the stack,” because even though they appear at lower addresses, on
some machines they will have beenpushedlast. By separating the
placement of the parameters from the instructions used to achieve
that placement, we hope to avoid confusion.

Selection and modification of width We use two width-related
stages that satisfy no requests themselves, but only check or mod-
ify requests before passing the requests to their successors. The
WIDTHS(ws) stage restricts the automaton to satisfy only requests
for a width on the listws. It is useful for detecting internal errors
in the compiler, e.g., passing a 16-bit value when the convention
supports only wider values.

Instead of halting with an error message, we can ask for a wider
location. For example, we might embed a 16-bit value inside a32-
bit location. The stageWIDEN(f) modifies a request for a widthw
so it has a widthf(w), which must be at least as large asw.
Common cases forf include λw.n, to widen a value to exactly
n bits; andλw.round up(w, n), to widen a value to the nearest
multiple ofn bits. Our C++ and Lua implementations provide some
syntactic sugar for these cases.

As Figure 6 shows, theWIDEN(f) stage requests a locationℓ
of width f(w) from its successor. Thewiden stage builds a new,
narrower locationℓ′ = narrow(ℓ, w, k), which it returns to its
client. As shown in Figure 4, a read fromℓ′ is implemented by
reading the wide value inℓ and narrowing the value tow bits.
A write to ℓ′ is implemented by widening the value written and
writing it into ℓ. Widening and narrowing are done using either
integer or floating-point operations, depending onk, the kind of
the allocation request.

Modification of alignment The alignment of a request can be
modified by the stageALIGN TO(f), which uses the new alignment
f(w), wherew is the width of the request. The modified request is
then passed to the successor ofALIGN TO(f).

Perhaps the functions used inALIGN TO and WIDEN stages
should be generalized to use a request’s kind, not just its width, to
make their modifications. We have not yet needed such generality.

Allocation of registers The most interesting stages are those that
place arguments in registers. We have identified two policies that
are used by common calling conventions: “the firstn arguments
go in the firstn registers” and “the firstn bits of arguments go
in the firstn bits of registers.” We use separate stages to countn
and to allocate. TheARGCOUNTER(c) andBITCOUNTER(c) stages
count arguments and bits, respectively. In our implementations,
a counterc is specified by giving its name; we allocate memory
for each named counter and initialize each counter to zero.

Each of these stages simply passes each request to its successor,
as shown in theARGCOUNTERandBITCOUNTER rules in the middle
left of Figure 6. Once the request is satisfied, the stage increments

its counter. AnARGCOUNTERstage increments its counter by1; a
BITCOUNTER stage increments its counter by the width of the re-
quest. Counters are incrementedafter successor stages have run;
when a stage is run, counters reflect state corresponding to param-
eters already allocated, not the current request.

The counters work with two other stages,REGS BY ARGS(c, rs)
and REGS BY BITS(c, rs). The stageREGS BY ARGS(c, rs) uses
argument counterc to implement the “n arguments ton registers”
policy. Given a request, it uses the valuen of counterc to drop
the firstn registers from listrs . Depending on whether registers
remain, it applies one of two rules at the lower left of Figure6.
If no registers remain (REGSBYARGS-NONE), the request is passed
to the next stage. If registers remain (REGSBYARGS-FITS), the first
remaining register is used to satisfy the request, providedits width
is equal to the width of the argument. If the widths don’t match,
something has gone wrong, and the automaton halts with an error.
This stage is seldom used because most conventions count bits of
arguments, not arguments themselves. One exception is the MIPS
R3000 (Section 3.6).

The stageREGS BY BITS(c, rs) uses bit counterc to implement
the “n bits of arguments ton bits of registers” policy. Given a
request, it uses the valuen of counterc to drop enough registers
from list rs to account for then bits already allocated. Its behavior
is similar to that of the “by arguments” stage, and it is described
by two rules at the lower right of Figure 6. If no registers remain
(REGSBYBITS-NONE), the request is passed to the next stage; oth-
erwise the first remaining register is used to satisfy the request,
provided the widths match (REGSBYBITS-FITS).

What if the width of the request is different from the width of
the first remaining register?
• If the request is too wide for the first register, one could usea

combination of registers to satisfy the request. For example, a
64-bit request might be satisfied using two 32-bit registers.

If a request is large enough to exhaust registers, one could use
registers to satisfy as much of the request as possible, thenget
the remaining space from the next stage. For example, a 64-bit
request might be satisfied using one 32-bit register and a 32-bit
area in the overflow block.

Both of these alternatives are covered by theREGSBYBITS-
SOME rule, which appears at the bottom of Figure 6. The rule
takes the first available registerℓ, temporarily changes the value
of the counter, and recursively requests a locationℓ′ to hold the
remaining bits. As described in Figure 4, the functioncombine
takes the two narrow locationsℓ and ℓ′ and returns a wide
locationℓ′′.

• If the request is too narrow for the first register, the stage could
halt the compiler with a bug report (an unsupported width) or
could widen the request implicitly. Widening the request isnot
the same as inserting a precedingWIDEN stage; for example, to
pass a 64-bit floating-point value on the Pentium, we might use
an 80-bit floating-point register if one is available, but request
a 64-bit memory slot from the successor stage if no register is
available. If the stage widens a request, it may need to increment
the counterc to indicate that more bits were allocated than were
actually requested.

It is often necessary to split requests; for example, it is common to
require that a large struct be passed partly in registers andpartly in
memory. But we have never seen a convention that needed to widen
a request implicitly, perhaps because such a convention would be
likely only if a datum were to require more bits when represented in
a register than when represented in memory. Therefore the second
alternative is not implemented in our system and not shown in
Figure 6.

414



Named counters, although crucial for sharing state among
stages, can be inconvenient. For the common case in which a
BITCOUNTER(c) is followed directly byREGS BY BITS(c, rs), we
provide the syntactic sugarUSEREGS(rs), which creates a fresh,
private counterc:

USEREGS(rs) ≡ [BITCOUNTER(c), REGS BY BITS(c, rs)].

Padding The alignment of a request normally affects only its
placement in the overflow block: bytes of padding are inserted
as needed to be sure a parameter’s address is a multiple of its
alignment. But some calling conventions insert padding even when
using registers. These conventions can be specified by usinga stage
PAD(c), which rounds a bit counter up to respect alignment, as
shown in the the left column of Figure 6. ThePAD rule multiplies
by mem size in order to convert from alignment units to bits.

Choice among stages Many calling conventions pass different
types of parameters in different kinds of registers. For example,
the Alpha convention passes floating-point values in floating-point
registers and other values in integer registers. We implement such
a rule using a “choice” stage, which uses the kind and width ofan
allocation request to decide which alternative stage should satisfy
the request. A choice stage operates on a list in which predicates
and stages alternate; its form isCHOICE([ p1, s1, . . . , pn, sn]). As
shown in theCHOICE rule at the upper right of Figure 6, a choice
stage works a bit like a Lispcond; when a request reaches the stage,
it evaluates the predicates one at a time, and it behaves as the first
stage whose predicate is satisfied. If no predicate is satisfied, no
rule applies, and the automaton halts with an error.

A predicatep is a function that takes a width, a kind, and the
store; it returns a Boolean. Our C++ and Lua implementations
provide extra support for many common cases, including predicates
that check for a particular kind, a particular width, and a particular
value for a given counter.

Arbitrary state transition Sometimes the location of a param-
eter depends on the width or kind of a previous parameter. On
the MIPS, for example, if the second parameter is a floating-
point parameter, its placement depends on the type of thefirst
parameter. We solve this problem by introducing history: a stage
that makes a permanent state transition on the relevant parameter.
The stageFIRST CHOICE(c, [ p1, s1, . . . , pn, sn]) is like the stage
CHOICE([ p1, s1, . . . , pn, sn]), except that the choice is made once,
when the first request reaches the stage, instead of each timea re-
quest reaches the stage. After the first request chooses substagesi,
counterc is set toi, and theFIRST CHOICE(c, [ p1, s1, . . . , pn, sn])
stage behaves likesi from then on. The implementation is shown in
theFIRSTCHOICE-INIT andFIRSTCHOICE-LATER rules at the middle
right of Figure 6, and an example appears in Section 3.6.

3.5 Implementing and using staged allocation

An implementation of staged allocation provides three operations
on specifications:
• Theinit operation creates a fresh storeσ whereσ(c) = 0 for

all c, then forms the automaton〈ss , σ〉. In addition toss , init
requires thestart address of the overflow block and the byte
order andmem size of the target machine.

• The allocate operation takes a request〈w, k, al〉 and an
automaton, uses Figure 6 to compute aσ′ and ℓ satisfying

〈ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′, mutates the internal state to re-
placeσ with σ′, and returnsℓ.

• Thefreeze operation takes an automaton and returns the over-
flow block and the set of registers used by previous calls to

allocate. Thefreeze operation is most easily formalized by
generalizing the rules in Figure 6 to keep track of what locations
are allocated.
To use staged allocation to implement a calling convention,

a compiler needs two specifications:parms and results . Both
specifications are used in every procedure definition and at every
call site. For all of the examples in this paper, parameters are
allocated in a single pass, and a specification is simply a sequence
of stagesss . We show how to generalize to multiple passes in step 2
below.

Given a specification and a list of formal or actual parameters,
here is how a compiler computes the location of each parameter:
1. Pass theparms specification toinit to create a fresh automa-

ton.

2. From the type of each parameter, compute a width, kind, and
alignment. Callallocate once for each parameter, and re-
member the location returned.

Most conventions can allocate parameters in a single pass, in
which caseallocate is simply called on each parameter in
turn, in the order in which the parameters appear in the source
code. But some conventions may require multiple passes. For
such conventions, we use a specification that gives not only
a sequence of stagesss but also a sequence of predicates
[p1, . . . , pn]. Each predicate specifies one pass of the alloca-
tion: a parameter is allocated on passi if its width, kind, and
alignment satisfypi but did not satisfy any earlier predicate.

3. When all parameters have been allocated, callfreeze to get the
set of registers used and an overflow block. The overflow block
becomes part of the stack frame; in our compiler, the overflow
block is composed with other blocks using a simple declarative
technique (Lindig and Ramsey 2004). The set of registers is
used in liveness analysis: at a call site, this set is kept live by the
call; in a procedure definition, this set is assumed to be defined
on entry.

Theresults specification is used in similar fashion at call sites and
return statements.

3.6 More complex examples

The conventions and examples shown above are relatively simple.
To show more of the stages described in Section 3, we present two
somewhat more complex examples: the MIPS R3000 convention,
which is notoriously complex and error-prone (Bailey and David-
son 1995), and the IA-64 convention.

MIPS On the MIPS, the first 16 bytes of parameters normally
go in integer registersr4–r7, and the remaining parameters go
on the stack. But floating-point parameters are subject to more
complicated rules, and because these rules depend on the type of
the first parameter, we need aFIRST CHOICE stage, as shown in
the upper part of Figure 9. The only fine point is the use of thePAD
stage. A 64-bit floating-point parameter in the second position goes
into integer register pairr6–r7, regardless of the size of the first
parameter; registerr5 may go unused. Because the 64-bit floating-
point parameter is the only parameter with an alignment of 8,we
achieve this end usingPAD.

When the first parameter is a floating-point parameter, we use
the middle part of Figure 9. The first two floating-point parameters
are placed by counting arguments, not bits: the first parameter
occupies either floating-point registerf12 or floating-point register
pairf12–f13 (here calledd12), depending on its size. The second
parameter, if it is also a floating-point parameter, goes in either
f14 or d14. Remarkably, if a procedure takes four 32-bit floating-
point parameters, the first two go inf12 andf14, the next two go in

415



parms =
[WIDEN(λw.round up(w, 32))
, ARGCOUNTER("args")
, BITCOUNTER("bits")
, PAD("bits")
, FIRST CHOICE(cfc ,

[λ〈w, k, σ〉.k = "float", 〈first parameter is floating-point〉,
, λ〈w,k, σ〉.true, [ ]
])

, REGS BY BITS("bits", [r4, . . . , r7])
, OVERFLOW(co, UP, 16)
]

〈first parameter is floating-point〉 ≡
CHOICE(

[λ〈w, k, σ〉.k = "float" ∧ w = 32,
REGS BY ARGS("args", [f12, f14])

, λ〈w,k, σ〉.k = "float" ∧ w = 64,
REGS BY ARGS("args", [d12, d14]),

, λ〈w,k, σ〉.true,
[ ]

])

results =
[WIDEN(λw.round up(w, 32))
, WIDTHS([32, 64, 128])
, CHOICE(

[λ〈w, k, σ〉.k = "float", USEREGS([f0, . . . , f3])
, λ〈w,k, σ〉.true, USEREGS([r2, r3])
])

]

Figure 9. The standard MIPS R3000 calling convention

parms =
[WIDEN(λw.round up(w, 64))
, BITCOUNTER("bits")
, CHOICE(

[λ〈w, k, σ〉.k = "float" ∧ σ("bits") < 512,
USEREGS([f8, . . . , f15])

, λ〈w,k, σ〉.true,
REGS BY BITS("bits", [out0, . . . , out7])

])
, OVERFLOW(co, UP, 16)]

results =
[CHOICE(

[λ〈w, k, al〉.k = "float" ∧ w ≤ 82,
[WIDTHS([32, 64, 82]), USEREGS([f8])]

, λ〈w,k, σ〉.true,
[WIDEN(λw.round up(w, 64))
, WIDTHS([64, 128])
, USEREGS([r8, r9])]])]

Figure 10. The standard IA-64 convention

r6 andr7, andf13 andf15 are not used. More examples of MIPS
parameter placements appear in Figure 13 in Appendix B.

IA-64 The standard C convention for IA-64, shown in Figure 10,
is also complex. This convention sets aside eight integer and eight
floating-point registers for passing parameters. Like the Alpha con-
vention in Figure 2, it uses at most eight of these sixteen registers,
even if more than eight parameters are passed. Also like the Alpha
convention, it leaves “gaps” in the integer registers to correspond

to floating-point parameters. But unlike the Alpha convention, it
leaves no gaps in the floating-point registers; instead, it leaves regis-
ters unused at the end. To place a floating-point parameter, we need
the semantics, “if fewer than eight parameters have been passed,
use the next available floating-point register; otherwise go to the
overflow block.” We implement this convention using the counter-
testing predicateσ("bits") < 512.

The results convention shows one oddity: most floating-point
results are returned in floating-point registers, but a 128-bit, quad-
precision floating-point result is returned in the integer register
pairr8–r9.

4. Variations and extensions
Section 3 tells only part of the story about allocating locations for
parameters: there are a number of variations and possible exten-
sions. Some we know to be useful; others might not be.

When aREGS BY BITS stage splits a large parameter across
multiple locations, it uses the equationℓ′′ = combine(ℓ, ℓ′). This
equation puts the most significant bits of the parameter in the
first location, which is appropriate for a big-endian machine. On
a little-endian machine, it makes more sense to use the equation
ℓ′′ = combine(ℓ′, ℓ). Our implementation uses the equation appro-
priate to the byte order of the target machine.

A convention might want to pass two small parameters together
in a single large register. To do so, we could define a variation on
REGS BY BITS that would split a register into two locations.

A variation on theBITCOUNTER stage could increment its
counter not by the width of the request but by the total width of
the machine locations that are used to satisfy that request.We have
chosen to use the width of the request because that is how most
calling conventions seem to be described. Usually the two widths
are the same.

Our WIDEN stage stores a small parameter in the least signifi-
cant bits of a larger location. But some conventions, including the
Mac OS X Power PC convention (Apple 2003), store a small pa-
rameter in themostsignificant bits of a larger location.

Some conventions, including the OS X convention, reserve
“shadow” space on the stack for parameters passed in registers.
To support such conventions, we provide alternate versionsof the
stages above, calledREGS BY BITS RESERVE, USEREGSRESERVE,
and REGS BY ARGS RESERVE. Even when such a stage finds a
register, it also allocates an extra location from its successor, but
it does not do anything with the extra location. In theREGSBY-
BITS andREGSBYARGSrules in Figure 6, this behavior amounts to
adding a new premise

〈ss, σ〉@〈w, k, al〉
ℓ̂

=⇒ σ̂,

ignoring ℓ̂, and threadinĝσ appropriately. In our implementations,
these “reserving” stages share code with the original versions of the
same stages.

Using theRESERVEforms, Figure 11 shows a specification for
the Mac OS X convention on the Power PC. This specification is
suitable for passing parameters that are multiples of 32 bits in size.
It is also suitable only for non-varargs functions, becausethe OS X
convention requires that a parameter passed to the variablepart of
a varargs C function be passed inboth floating-point and integer
registers (Apple 2003, p55). To implement this convention would
require a new kind of composite locationℓ = both(ℓ1, ℓ2) such
that writing ℓ writes bothℓ1 andℓ2. We would also need aBOTH
stage with suitable semantics. Finally, we would need the kindk to
distinguish a parameter passed to a varargs function from that same
parameter passed to a function with a non-varargs prototype.

As these examples should make clear, staged allocation is not
a complete, definitive language for specifying calling conventions.

416



parms =
[WIDEN(λw.round up(w, 32))
, BITCOUNTER("bits")
, CHOICE(

[λ〈w, k, σ〉.k = "float",
[WIDEN(λw.64), USEREGSRESERVE([f1, . . . , f13])]

, λ〈w,k, σ〉.true,
REGS BY BITS RESERVE("bits", [r3, . . . , r10])

])
, OVERFLOW(co, UP, 4)
]

results = CHOICE(
[λ〈w, k, σ〉.k = "float",

[WIDEN(λw.64), USEREGS([f1])]
, λ〈w, k, σ〉.true,

[WIDEN(λw.32), USEREGS([r3, r4])]
])

Figure 11. The OS X PowerPC convention

Rather, it is a framework for organizing the specification and imple-
mentation of calling conventions—a framework that covers most
conventional techniques, but that can be expanded at need.

5. Results
We report on experience implementing and using staged allocation,
and we compare staged allocation with CCL.

5.1 Implementation experience

Staged allocation is not just for formal specification; it isintended
to be easy to implement. To evaluate the cost of implementa-
tion, we have added staged allocation to two different compilers:
Quick C--, which is implemented in a combination of Objective
Caml and Lua, and Machine SUIF, which is implemented in C++.
• Quick C-- is an implementation of C--, which is a language

and a run-time interface whose primary mission is to support
retargetable compilation of multiple programming languages
(Peyton Jones, Ramsey, and Reig 1999; Ramsey and Peyton
Jones 2000). The C-- language has just enough of a type
system to help a compiler put values in machine registers: the
type of a value is its width in bits. When a value is passed
to a separately compiled procedure, the C-- compiler needs
help deciding what kind of register should hold it. A C--
program provides such help by attaching a kind to every actual
and formal parameter; at any call site, the kind of each actual
parameter must match the kind of the corresponding formal
parameter at the declaration of the procedure called. Inside the
compiler, kinds are passed directly to automata.

• Machine SUIF is a flexible, extensible compiler infrastruc-
ture whose primary mission is to support the development of
machine-specific optimizations and profile-driven optimiza-
tions (Smith and Holloway 2000). It is also used to evaluate
architectural ideas.

Internally, Machine SUIF treats a source-language type as an
abstraction that has a size and alignment. The abstraction can
also be asked whether its values are Booleans, integers (signed
or unsigned), floating-point numbers, pointers, enumeration lit-
erals, structures, unions, or arrays. The answer is used to com-
pute a kind for staged allocation.
In both compilers, the compile-time costs of using staged al-

location are negligible. For example,gprof reports that0.1% of
Quick C--’s execution time is spent in staged allocation; this num-

ber is comparable to measurement error. We therefore focus on the
programmer-time costs: the effort of writing the implementations.

Developing staged allocation required significant intellectual ef-
fort, but the results of that effort are captured concisely in Figure 6,
which we have used to guide our implementations. The program-
ming effort can be summarized by these statistics:

Quick C-- (Caml) Machine SUIF (C++)
88 lines glue code

229 lines main code 621 lines code
20 constructor methods

45 top-level functions 63 other methods
14 data types 29 classes

It is difficult to make meaningful comparisons between Caml pro-
grams and C++ programs, but the main points appear to be these:
• Both implementations are small: 229 and 621 lines respectively.

Only non-blank, non-comment lines are counted.
• Quick C-- uses an additional 88 lines of “glue code,” which

makes the Caml implementation callable from Lua scripts
(Ramsey 2005). Using Lua has two advantages: it is consis-
tent with the way we configure the whole Quick C-- compiler,
and it enables us to experiment with (and debug!) calling con-
ventions without rebuilding the compiler. The Machine SUIF
compiler does not use Lua, so our C++ implementation has no
glue code.

• Although both implementations follow Figure 6, the Caml code
has significantly fewer top-level functions than the C++ code
has methods, even when constructor methods are omitted. This
is because Caml allows nested functions but C++ does not allow
nested methods.

• The C++ code requires classes to do jobs that the Caml code
handles using other language constructs. Of the C++ classes,
6 represent record types or exceptions, 3 represent abstractions
used in the implementation (e.g., location), and 20 are used
in the implementations of stages. Stages written in Caml use
anonymous functions, which need no special declarations.
The effort of building our implementation for Quick C-- is in-

separable from the effort of developing Figure 6. But with Figure 6
in hand, we were able to build an implementation for Machine
SUIF fairly quickly: one of us (Olinsky), who had no prior experi-
ence with compiler back ends or with Machine SUIF, built a first
implementation in one week. Then, part-time over three weeks, he
embedded the implementation in Machine SUIF, debugged it, and
simplified the code. The C++ code that implements calling con-
ventions using staged allocation is significantly easier toread and
maintain than the code it replaced:
• The calling convention is implemented only once, where before

it had been implemented both at call sites and in the generation
of a procedure’s prolog.

• Structured arguments and scalar arguments are handled using
the same code, where before structures had been handled spe-
cially and separately.

We conclude that the effort required to implement staged allocation
is small and that the benefits are worth the effort.

5.2 Specification experience

As shown above, we have written specifications for standard C
calling conventions on the Alpha, IA-64, MIPS, Pentium, and
Power PC. The Alpha, IA-64, and Pentium back ends have passed
Bailey and Davidson’s (2003) tests for interoperation withthe na-
tive C compiler. Our MIPS machine is not fast enough to run these
tests, and on the Power PC, Bailey and Davidson’s tests are im-

417



Staged CCL
Machine Allocators parms+res total

Alpha 13+6 — —
IA-64 11+12 — —

MIPS R3000 20+7 37+11 63
Pentium 4+9 — —

PowerPC 12+6 — —
SPARC∗ 5+6 17+10 45

VAX ∗ 2+3 14+10 37
68020∗ 2+3 11+11 35
88100∗ 5+3 21+10 42

Table 1. Number of lines in specifications (∗ means untested)

practical: even if we limit parameter types tochar, short, int,
float, anddouble, Bailey and Davidson’s procedure generates
over 70,000 tests. Instead, these platforms have passed a symbolic
test, which symbolically evaluates assembly language fromthena-
tivecompiler and checks that registers are used as predicted by our
specifications. They have also passed execution tests on functions
with randomly generated prototypes (Lindig 2005).

We have also written specifications of SPARC, VAX, 68020,
and 88100 calling conventions. We cannot test them at present, but
to enable comparisons with CCL, we include them in Appendix A.

Most of the effort of writing a specification goes into under-
standing the calling convention. Writing the simple specifications
for the Pentium, SPARC, VAX, 68000, and 88000 took just min-
utes each, for example. Writing the IA-64 specification required
deeper thought; eventually we decided we wanted a predicateto
test the value of a named counter. Once we used this predicate,
the IA-64 specification worked on its first tests. The most difficult
specification to write was the MIPS specification, because itis so
difficult to understand the convention. We did so by reverse engi-
neeringlcc’s implementation (Fraser and Hanson 1995). This job
was fairly easy becauselcc’s argreg function matches up nicely
with our allocation stages: it counts arguments (ARGCOUNTER),
counts bytes of parameters allocated (related toBITCOUNTER), re-
members whether the first argument was a floating-point argument
(FIRST CHOICE), and uses the byte count to index an array of reg-
isters (REGS BY BITS). By automatically comparing our code with
code from the native C compiler, we debugged our specification in
about half an hour.

Table 1 compares the sizes of our specifications and CCL spec-
ifications; it counts the number of non-blank, non-comment lines
required to write each specification. For staged allocation, we show
line counts from our Lua implementations in Quick C--. For CCL,
we show counts from Appendix B of Bailey’s (2000) PhD thesis.
Each count for value passing, whether for staged allocationor for
CCL, is reported as a sum: parameters+results. To make compar-
isons fair, we show two counts for each CCL specification: the
“parms+res” count includes only those parts of the CCL specifica-
tion that describe value passing; “view changes” and globalaliases
are omitted. The “total” count shows the total size of each CCL
specification, including parts that are not used by the CCL tools.
Even when these unused parts are omitted, our specificationsare
about half the size of CCL’s.

5.3 Other comparisons with CCL

Before making further comparisons with CCL, we provide a brief
summary based on Bailey 2000,§4.3. Unfortunately, CCL descrip-
tions are too big to include examples in this paper.

Summary of CCL CCL treats each parameter, each result, and
each location as a “resource.” Like our machine locations, each re-
source has a width, but it also has two Boolean properties: whether
it has been allocated to hold a parameter and whether it is available
to be allocated. The values of these properties change as thestate
of an automaton changes. A resource that represents a parameter or
result also has a type, which appears to be equivalent to a kind in
staged allocation.

A CCL specification describes a mapping from each parameter
to a location. Locations are arranged in ordered sets of ordered sets,
and a CCL description includes code that indicates from which
ordered set locations should be allocated. The CCL interpreter
iterates through the parameters, at each step allocating the first
location whose properties identify it as unallocated and available.
If the location is too small, CCL appears to allocate more locations
and combine them somehow. If the location is too big, CCL returns
it, and the compiler must figure out what to do with the too-big
location.1

A CCL description includes rules that trigger changes to prop-
erties as the state of the automaton changes. In practice, these rules
are triggered by the allocation of a location, and they are used to
mark other locations as unavailable. For example, in the CCLMIPS
specification, if floating-point registerf12 is allocated, the rules
mark integer registersr4 andr5 as unavailable. In other words, the
rules are used to implement anexclusion relation.

CCL also provides other information. It lists the registerswhose
values are preserved across calls, and it also includes something
called a view change, which serves two purposes: it accounts
for changes in the names of stack locations as the stack pointer
moves, and on machines that have register windows, it accounts for
changes in the names of registers as register windows move. This
information appears not to be used by the CCL tools.

Comparison The work based on CCL is largely complementary
to staged allocation.
• Bailey and Davidson’s work is all about P-FSAs: identifying

this class of automata, devising an enumeration procedure for
computing P-FSAa, analyzing P-FSAs, and using P-FSAs to
generate test cases. The specification language, CCL, is almost
an afterthought, which explains why it has no published syntax
or semantics.

• Staged allocation is all about the specification language: defin-
ing the syntax and semantics, expressing standard calling con-
ventions, repeatedly refining and simplifying the language, and
implementing it in different compilers. The P-FSA is an af-
terthought; we have replicated Bailey and Davidson’s algo-
rithms for analysis and testing, but in our implementations, we
never build a P-FSA or related tables.

Implementation comparison At 229 lines of Objective Caml
and 621 lines of C++, our implementations of staged allocation
are much smaller than the implementation of CCL. The program
generator for CCL is about 2500 lines of Icon (Griswold and Gris-
wold 1996). Because Icon is a very high-level language, a line of
Icon is more nearly equivalent to a line of Objective Caml than to a
line of C++. CCL’s program generator emits a table that must be in-
terpreted at compile time; the interpreter requires another 200 lines
of C.

To port either staged allocation or CCL to a new compiler need
not require writing any new code, provided the implementation
language of the new compiler is Objective Caml or C++ (for staged
allocation) or C (for CCL). But if the new compiler is writtenin a
new language, like Java for example, significant reimplementation

1 Private communication from Jack Davidson, 2 Oct 2002.

418



would be required for either staged allocation or CCL. In the
case of staged allocation, the rules in Figure 6 would have tobe
reimplemented in Java. In the case of CCL, the table interpreter
would have to be rewritten in Java, and some part of the program
generator would have to be rewritten to emit tables in Java. Because
the implementation of CCL is no longer available, we don’t know
how much of CCL’s program generator would have to be rewritten.

It might seem unfair to compare the implementations of CCL
and staged allocation, because CCL talks about the stack pointer
and about volatility of registers, and staged allocation does not.
But as far as we can tell, CCL is used only to place parameters
and results; its implementation does not generate code to deal with
movement of the stack pointer or with volatility of registers.

6. Discussion
Evaluating the design There is no obvious yardstick by which
to measure the quality of a language for describing calling conven-
tions. The common “core-language” approach to design—in which
the best language is the one that is the most expressive whilehav-
ing the fewest primitives—is not appropriate for calling conven-
tions. The reason is that there are many conventions we wouldpre-
fer not to express. Becauseany function that maps each list of pa-
rameter types to a list of distinct machine locations is a legitimate
parameter-passing convention, the space of potential conventions is
large. But there are far more “bad” conventions than “good” ones.
(A convention is bad if it wastes machine resources or is too com-
plicated.) So it is a bad idea to ask for the simplest languagethat
expresses the most conventions.

A better approach is a “domain-specific” approach in which a
good languagerestrictswhat can be said. But because the design
space of good calling conventions is not well understood, a re-
strictive approach runs the risk that the domain-specific language
may be unable to express some necessary convention. We have ad-
dressed that risk by designing staged allocation as an extensible
framework, not just a language. The essence of the frameworkis

captured by the form of the judgment〈ss, σ〉@〈w, k, al〉
ℓ

=⇒ σ′.
This judgment, together with the stages we have designed, captures
our considered opinions about a space of “good” conventions.2 As
language primitives, our stages are big by design; we hope that us-
ing big primitives will make it more likely not only that simple
specifications describe good conventions but also that goodcon-
ventions can be described by simple specifications. For thisreason,
for example, we have madeFIRST CHOICEa primitive even though
it can be defined by some (slightly scary) syntactic sugar.

The centrality of the judgment〈ss , σ〉@〈w, k, al〉
ℓ

=⇒ σ′ has
several consequences.
• New kinds of stages can be added by hand with relatively few

constraints: a stage should not base decisions on information
that is not part of the formal model (such as the names of
parameters), and it should not maintain private state that is
not in σ. Of course, if a new kind of stage is to be useful
for specification as well as implementation, it must be given
a formal semantics.

These loose constraints leave room for bad new ideas as well as
good. For example, it would be easy but incorrect to add a stage
that allocates a single location to multiple parameters (although
such an error would be caught by Bailey and Davidson’s analy-
sis of consistency). An idea we consider bad but could be done
correctly would be to choose a counter inσ based on informa-
tion about parameters.

2 FIRST CHOICE is not “good,” but it is necessary to support C calling
conventions that are, in our opinion, poorly designed.

• Our framework precludes some attractive language-design pos-
sibilities. For example, given their close similarity, it would
be satisfying ifREGS BY BITS and REGS BY BITS RESERVE
could be expressed as different combinations of simpler prim-
itives. The problem is that decomposing these operations into
simpler primitive stages would require more communication
between the primitives. We prefer to keep the communication
simple and to live with the near-duplication of primitives.

• Our framework excludes not only many obviously bad conven-
tions but also some that might be considered reasonable. For
example, there is no way to express any convention of the form
“pass parameters in registers if and only ifall parameters can be
passed in registers; otherwise, pass all parameters on the stack.”
Such a convention is certainly conceivable, but in the interest
of keeping common cases simple, we have chosen to describe
only conventions in which parameters can be allocated one ata
time (in some order).
Returning to evaluation, we believe that, aside from purelyin-

ternal questions about the perspecuity of its syntax and semantics,
a language for describing calling conventions should be evaluated
empirically. Does it describe common conventions? Can goodcon-
ventions be specified simply? Does the language discourage bad
conventions? Can it stretch to accommodate legacy conventions,
however awkward? By these measures, we are satisfied with staged
allocation.

Completing the convention Although the rules for passing pa-
rameters and results are the most complicated part of a calling con-
vention, a convention also has other parts:
• The convention says where overflow parameters and results are

expected; stack-frame layout must put them there. Frame layout
must also put saved registers where the convention says the run-
time system expects to find them.

• The convention says how a return address is passed to a callee.
• The convention says what registers the compiler may use and

which of those registers must be preserved across calls.
• The convention says which way the stack grows, which register

is the stack pointer, and how the stack pointer is aligned.
• The convention says whether deallocating stack space used to

pass parameters is the job of the caller or the callee. In typical
C calling conventions, the caller deallocates, but in a conven-
tion that supports proper tail calls, the callee must deallocate
(Ramsey and Lindig 2002,§4).

These parts of a calling convention are trivial to specify and easy
to implement, except for frame layout. We lay out stack frames us-
ing a declarative, constraint-based technique, which computes the
location of each slot in a stack frame by accumulating and solving
a set of simultaneous linear equations (Lindig and Ramsey 2004).

Other techniques for specifying automata One might think that
automata naturally lead to regular expressions. But regular expres-
sions and the tools based on them are designed only toacceptcer-
tain sequences of inputs and to reject others. A parameter-passing
automaton must not only accept a sequence of inputs (parameter
types); it must also produce a location for each input. And itmust
accepteverysequence of inputs; if a parameter-passing automaton
rejects any sequence of inputs, the convention it specifies is incom-
pleteand therefore incorrect. Regular expressions are not much use
for specifying calling-convention automata.

We can imagine specifying an automaton by giving its nodes
and edges. Any set of nodes and edges can be written using
FIRST CHOICE, USEREGS, and OVERFLOW. But a direct specifi-
cation of nodes and edges would be long, hard to write, and hard
to read: Bailey and Davidson (1996) report 9 nodes and 90 edges

419



for the relatively simple SPARC convention; the more complex
MIPS convention takes 70 nodes and 772 edges. Our own mea-
surements show that the Mac OS X Power PC convention takes at
least 2,815 nodes and 28,150 edges. Direct specification would be
impractical.

The existing technique most closely related to staged allocation
is combinator parsing(Hutton 1992), which could be used to map
a sequence of types to a sequence of locations. The main difference
in feel would be in handling choices: where staged allocation uses
explicit predicate functions, classic combinator parsinghandles
choice using a success/failure model and a choice operator that
takes two parsers and returns a parser. We could adopt this model
for staged allocation, but we think ourCHOICEstage and predicates
will be easier for a compiler writer who has not seen combinator
parsing.

Applications Our primary goal has been to build a retargetable
compiler that supports standard C calling conventions. Butstaged
allocation is good for more than just standard conventions.For
example, we use staged allocation to define a special convention
that is used to start a new user-level thread. To start a thread,
we take a functionf and a valuex, create a stack, and return a
program counter that, when jumped to, callsf(x) on that stack.
Ordinarily, the program counter we return would point to a snippet
of code written in assembly language—this code would getf andx
off the stack and callf(x). By defining a special-purpose calling
convention, we make it possible to write this code in our source
language, instead. The code is written using the"C-- thread"
calling convention, which looks for parameters on the stack, not
in registers. The calling convention is named using theforeign
keyword.
foreign "C-- thread"
Cmm_start_thread_helper(bits32 f, bits32 x) {
f(x);
foreign "C" abort();

}

The call tof(x) is not supposed to return, so if it does return, we
call the C functionabort.

Using staged allocation to define new calling conventions may
have other benefits. In Quick C--, it is especially easy to define a
new calling convention, because the Lua specifications of calling
conventions are read at compile time. By pointing to different
Lua code on the compiler’s command line, we can change calling
conventions without rebuilding the compiler. By making changes
so easy, we hope to enable more extensive experiments along lines
set out by Davidson and Whalley (1991).

There are also advantages to specifying new calling conventions
to be used only at certain call sites. For example, many compilers
inline the fast path of allocation (Appel 1992), which meansthat
statically, there are many calls to the garbage collector, but dynam-
ically, these calls are rare. It therefore makes sense to design a spe-
cial “GC convention” with the goal of minimizing code size. One
candidate is a convention in which as many registers as possible are
preserved across the call.3 In particular, if the call to the garbage
collector passes no parameters, the convention should not set aside
any registers for passing parameters—registers that hold parame-
ters in other conventions should be callee-saves in the GC conven-
tion. With similar goals in mind, specialized GC conventions are
used in production compilers, such as Standard ML of New Jersey
(George 1999).

3 This convention implies unnecessary saves at most calls, but the cost of
saving some registers unnecessarily is tiny compared to thecost of garbage
collection.

Conclusion Staged allocation is simple, readable, precisely de-
fined, and easy to implement. It can describe a variety of useful
conventions with a minimum of notation. It can be packaged in
a configuration language, like Lua, or it can be implemented in a
compiler’s native language, like C++. We hope these properties will
make it the specification technique of choice for future conventions
and the implementation technique of choice for future compilers.

ACKNOWLEDGEMENTS
Our implementation in Machine SUIF would have been impossible
without the enthusiasm and support of Glenn Holloway. Sukyoung
Ryu found many errors in a draft of this paper. João Dias, Simon
Peyton Jones, Andreas Rossberg, and Mike Smith made helpful
suggestions. This paper has also benefited from the comments,
criticisms, and suggestions of many anonymous referees. Weare
especially grateful to the POPL referees for their difficultand
insightful questions.

This work has been supported by NSF grants CCR-0096069 and
ITR-0325460, by an Alfred P. Sloan Research Fellowship, andby
a gift from Microsoft.

References
Appel, Andrew W. 1992. Compiling with Continuations. Cam-

bridge: Cambridge University Press.
Apple Computer. 2003.Mach-O Runtime Architecture.
Bailey, Mark W. 2000. CSDL: Reusable Computing System De-

scriptions for Retargetable Systems Software. PhD thesis,
University of Virginia, Dept of Computer Science.

Bailey, Mark W. and Jack W. Davidson. 1995. A formal model and
specification language for procedure calling conventions.In
Conference Record of the 22nd Annual ACM Symposium on
Principles of Programming Languages, pages 298–310.

. 1996. Target-sensitive construction of diagnostic programs
for procedure calling sequence generators. Proceedings ofthe
ACM SIGPLAN ’96 Conference on Programming Language
Design and Implementation,in SIGPLAN Notices 31 (May):
249–257.

. 2003. Automatic detection and diagnosis of faults in
generated code for procedure calls. IEEE Transactions on
Software Engineering 29 (November): 1031–1042.

Davidson, Jack W. and David B. Whalley. 1991. Methods for
saving and restoring register values across function calls.
Software—Practice & Experience 21 (2): 149–165.

Fraser, Christopher W. and David R. Hanson. 1995.A Retargetable
C Compiler: Design and Implementation. Redwood City, CA:
Benjamin/Cummings.

George, Lal. 1999. SMLNJ: Garbage collection API. As of
November 2005, available fromhttp://www.smlnj.org/
compiler-notes/gc-api.ps.

Griswold, Ralph E. and Madge T. Griswold. 1996.The Icon
Programming Language. Third edition. San Jose, CA: Peer-
to-Peer Communications.

Hutton, Graham. 1992. Higher-order functions for parsing.Journal
of Functional Programming 2 (July): 323–343.

Ierusalimschy, Roberto. 2003.Programming in Lua. Lua.org.
ISBN 85-903798-1-7.

Leroy, Xavier, Damien Doligez, Jacques Garrigue, Didier R´emy,
and Jérôme Vouillon. 2004.The Objective Caml system re-
lease 3.08: Documentation and user’s manual. INRIA. Avail-
able athttp://pauillac.inria.fr/ocaml/htmlman.

Lindig, Christian. 2005. Random testing of C calling conventions.
In Sixth International Symposium on Automated and Analysis-
Driven Debugging (AADEBUG), pages 3–11.

420



Lindig, Christian and Norman Ramsey. 2004. Declarative compo-
sition of stack frames. In13th International Conference on
Compiler Construction (CC 2004), Vol. 2985 ofLNCS, pages
298–312.

Mealy, George H. 1955. A method for synthesizing sequential
circuits. Bell System Technical Journal 34 (5): 1045–1079.

Peyton Jones, Simon L., Norman Ramsey, and Fermin Reig. 1999.
C--: a portable assembly language that supports garbage col-
lection. InInternational Conference on Principles and Prac-
tice of Declarative Programming, Vol. 1702 ofLNCS, pages
1–28. Springer Verlag.

Ramsey, Norman. 2005. Embedding an interpreted language using
higher-order functions and types. Journal of Functional Pro-
gramming. To appear. A preliminary version of this paper ap-
peared inProceedings of the ACM Workshop on Interpreters,
Virtual Machines, and Emulators, June 2003.

Ramsey, Norman and Christian Lindig. 2002. Custom calling
conventions in a portable assembly language. Unpublished
paper available athttp://www.eecs.harvard.edu/~nr/
pubs/custom-abstract.html.

Ramsey, Norman and Simon L. Peyton Jones. 2000. A single inter-
mediate language that supports multiple implementations of
exceptions. Proceedings of the ACM SIGPLAN ’00 Confer-
ence on Programming Language Design and Implementation,
in SIGPLAN Notices 35 (May): 285–298.

Smith, Michael D. and Glenn Holloway. 2000. An introduc-
tion to Machine SUIF and its portable libraries for analysis
and optimization. Seehttp://www.eecs.harvard.edu/
machsuif/software/nci/overview.html.

Stroustrup, Bjarne. 1997. The C++ Programming Language.
Third edition. Reading, MA: Addison-Wesley.

A. More examples
For illustrative purposes, Figure 12 shows example specifications
for several machines that are not supported by our compiler.These
specifications are untested, but at least they give an idea ofsize and
complexity.

B. Details of the MIPS R3000 convention
Here we explore some details of the calling convention for the
MIPS R3000. Figure 13 shows where parameters are placed by
calls to some 4-argument C functions. The left column shows the
type of each parameter:d for double, i for int, andf for float.
The right column shows the location in which each parameter is
passed. The notationk(sp) indicates a location on the stack, in the
overflow block.

Figure 14 shows the exclusion relation for today’s MIPS R3000
convention as implemented bylcc (Fraser and Hanson 1995), ver-
sion 4.2. We computed the relation by runninglcc on all C proce-
dures that passint, float, or double parameters in registers. We
then parsed the assembly output and identified the sets in thefigure,
which are sets of registers that are never used in the same call.

The same exclusion relation can be expressed in the style
of CCL using rules; for example, one rule says “if bothf13 andf14
are used, thenr6 may not be used.” To express the relation re-
quires 23 such rules. This example, brief though it is, suggests
why we prefer to specify complex conventions usingCHOICE and
FIRST CHOICE constructs, not using exclusion.

VAX parms =
[OVERFLOW(co, UP, 4)]

VAX results =
[WIDEN(λw.round up(w, 32), USEREGS([r0, r1])]

68020 parms =
[OVERFLOW(co, UP, 8)]

68020 results =
[WIDEN(λw.round up(w, 32), USEREGS([d0, d1])]

88100 parms =
[WIDEN(λw.32)
, USEREGS([r2, . . . , r9])
, OVERFLOW(co, UP, 8)
]

88100 results =
[WIDEN(λw.round up(w, 32)), USEREGS([r2, r3])]

SPARC parms =
[WIDEN(λw.round up(w, 32))
, USEREGS([r8, . . . , r13])
, OVERFLOW(co, UP, 8)
]

SPARC results =
[WIDEN(λw.round up(w, 32))
, CHOICE(

[λ〈w, k, σ〉.k = "float",
USEREGS([f0, f1])

, λ〈w, k, σ〉.true,
USEREGS([f8])

])
]

Figure 12. Untested specifications for which we have no corre-
sponding back ends

d·d·i·f f12–f13 · f14–f15 · 16(sp) · 20(sp)

d·i·d·i f12–f13 · r6 · 16(sp) · 24(sp)

d·i·i·f f12–f13 · r6 · r7 · 16(sp)

i·i·i·i r4 · r5 · r6 · r7

i·i·i·d r4 · r5 · r6 · 16(sp)–20(sp)
i·i·d·i r4 · r5 · r6–r7 · 16(sp)

i·d·i·i r4 · r6–r7 · 16(sp) · 20(sp)

d·d·i·i f12–f13 · f14–f15 · 16(sp) · 20(sp)

f·f·f·f f12 · f14 · r6 · r7

f·i·f·i f12 · r5 · r6 · r7

d·f·f·i f12–f13 · f14 · r7 · 16(sp)

f·f·d·i f12 · f14 · r6–r7 · 16(sp)

i·f·i·f r4 · r5 · r6 · r7

i·f·i·i r4 · r5 · r6 · r7

i·i·f·i r4 · r5 · r6 · r7

Figure 13. Example parameter placements on MIPS R3000

{{r4, f12}, {r4, f13}, {r4, f14}, {r4, f15}, {r5, f13},

{r5, f14}, {r5, f15}, {r6, f13, f14}, {r6, f15}, {r7, f15}}

Figure 14. Exclusion sets for the MIPS R3000 convention

421


