
Scalable Lock-Free Dynamic Memory Allocation

Maged M. Michael
IBM Thomas J. Watson Research Center

P.O. Box 218, Yorktown Heights, NY 10598, USA

magedm@us.ibm.com

ABSTRACT
Dynamic memory allocators (malloc/free) rely on mutual
exclusion locks for protecting the consistency of their shared
data structures under multithreading. The use of locking
has many disadvantages with respect to performance, avail-
ability, robustness, and programming flexibility. A lock-free
memory allocator guarantees progress regardless of whether
some threads are delayed or even killed and regardless of
scheduling policies. This paper presents a completely lock-
free memory allocator. It uses only widely-available oper-
ating system support and hardware atomic instructions. It
offers guaranteed availability even under arbitrary thread
termination and crash-failure, and it is immune to dead-
lock regardless of scheduling policies, and hence it can be
used even in interrupt handlers and real-time applications
without requiring special scheduler support. Also, by lever-
aging some high-level structures from Hoard, our allocator
is highly scalable, limits space blowup to a constant factor,
and is capable of avoiding false sharing. In addition, our
allocator allows finer concurrency and much lower latency
than Hoard. We use PowerPC shared memory multipro-
cessor systems to compare the performance of our allocator
with the default AIX 5.1 libc malloc, and two widely-used
multithread allocators, Hoard and Ptmalloc. Our allocator
outperforms the other allocators in virtually all cases and
often by substantial margins, under various levels of paral-
lelism and allocation patterns. Furthermore, our allocator
also offers the lowest contention-free latency among the al-
locators by significant margins.

Categories and Subject Descriptors: D.1.3 [Programming
Techniques]: Concurrent Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—
dynamic storage management; D.4.1 [Operating Systems]:
Process Management—concurrency, deadlocks, synchroniza-
tion, threads.

General Terms: Algorithms, Performance, Reliability.

Keywords: malloc, lock-free, async-signal-safe, availability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
PLDI’04, June 9–11, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-807-5/04/0006 ...$5.00.

1. INTRODUCTION
Dynamic memory allocation functions, such as malloc and

free, are heavily used by a wide range of important multi-
threaded applications, from commercial database and web
servers to data mining and scientific applications. In order
to be safe under multithreading (MT-safe), current alloca-
tors employ mutual exclusion locking in a variety of ways,
ranging from the use of a single lock wrapped around single-
thread malloc and free, to the distributed use of locks in
order to allow more concurrency and higher scalability. The
use of locking causes many problems and limitations with
respect to performance, availability, robustness, and pro-
gramming flexibility.
A desirable but challenging alternative approach for achiev-

ing MT-safety is lock-free synchronization. A shared object
is lock-free (nonblocking) if it guarantees that whenever a
thread executes some finite number of steps, at least one
operation on the object by some thread must have made
progress during the execution of these steps. Lock-free syn-
chronization implies several inherent advantages:

Immunity to deadlock: By definition, a lock-free object
must be immune to deadlock and livelock. Therefore, it is
much simpler to design deadlock-free systems when all or
some of their components are lock-free.

Async-signal-safety: Due to the use of locking in cur-
rent implementations of malloc and free, they are not consid-
ered async-signal-safe [9], i.e., signal handlers are prohibited
from using them. The reason for this prohibition is that if
a thread receives a signal while holding a user-level lock in
the allocator, and if the signal handler calls the allocator,
and in the process it must acquire the same lock held by the
interrupted thread, then the allocator becomes deadlocked
due to circular dependence. The signal handler waits for
the interrupted thread to release the lock, while the thread
cannot resume until the signal handler completes. Masking
interrupts or using kernel-assisted locks in malloc and free
is too costly for such heavily-used functions. In contrast,
a completely lock-free allocator is capable of being async-
signal-safe without incurring any performance cost.

Tolerance to priority inversion: Similarly, in real-time
applications, user-level locking is susceptible to deadlock due
to priority inversion. That is, a high priority thread can
be waiting for a user-level lock to be released by a lower
priority thread that will not be scheduled until the high
priority thread completes its task. Lock-free synchronization
guarantees progress regardless of scheduling policies.

Kill-tolerant availability: A lock-free object must be
immune to deadlock even if any number of threads are killed
while operating on it. Accordingly, a lock-free object must
offer guaranteed availability regardless of arbitrary thread

1

CAS(addr,expval,newval) atomically do

if (*addr == expval) {
*addr = newval;

return true;

} else

return false;

Figure 1: Compare-and-Swap.

AtomicInc(addr)

do {
oldval = *addr;

newval = oldval+1;

} until CAS(addr,oldval,newval);

Figure 2: Atomic increment using CAS.

termination or crash-failure. This is particularly useful for
servers that require a high level of availability, but can toler-
ate the infrequent loss of tasks or servlets that may be killed
by the server administrator in order to relieve temporary re-
source shortages.

Preemption-tolerance: When a thread is preempted
while holding a mutual exclusion lock, other threads wait-
ing for the same lock either spin uselessly, possibly for the
rest of their time slices, or have to pay the performance
cost of yielding their processors in the hope of giving the
lock holder an opportunity to complete its critical section.
Lock-free synchronization offers preemption-tolerant perfor-
mance, regardless of arbitrary thread scheduling.
It is clear that it is desirable for memory allocators to be

completely lock-free. The question is how, and more im-
portantly, how to be completely lock-free and (1) offer good
performance competitive with the best lock-based allocators
(i.e., low latency, scalability, avoiding false sharing, constant
space blowup factor, and robustness under contention and
preemption), (2) using only widely-available hardware and
OS support, and (3) without making trivializing assump-
tions that make lock-free progress easy, but result in unac-
ceptable memory consumption or impose unreasonable re-
strictions.
For example, it is trivial to design a wait-free allocator

with pure per-thread private heaps. That is, each thread
allocates from its own heap and also frees blocks to its own
heap. However, this is hardly an acceptable general-purpose
solution, as it can lead to unbounded memory consumption
(e.g., under a producer-consumer pattern [3]), even when
the program’s memory needs are in fact very small. Other
unacceptable characteristics include the need for initializing
large parts of the address space, putting an artificial limit
on the total size or number of allocatable dynamic blocks,
or restricting beforehand regions of the address to specific
threads or specific block sizes. An acceptable solution must
be general-purpose and space efficient, and should not im-
pose artificial limitations on the use of the address space.
In this paper we present a completely lock-free allocator

that offers excellent performance, uses only widely-available
hardware and OS support, and is general-purpose.
For constructing our lock-free allocator and with only the

simple atomic instructions supported on current mainstream
processor architectures as our memory access tools, we break
down malloc and free into fine atomic steps, and organize
the allocator’s data structures such that if any thread is
delayed arbitrarily (or even killed) at any point, then any
other thread using the allocator will be able to determine
enough of the state of the allocator to proceed with its own
operation without waiting for the delayed thread to resume.
By leveraging some high-level structures from Hoard [3],

a scalable lock-based allocator, we achieve concurrency be-
tween operations on multiple processors, avoid inducing false
sharing, and limit space blowup to a constant factor. In
addition, our allocator uses a simpler and finer grained or-

ganization that allows more concurrency and lower latency
than Hoard.
We use POWER3 and POWER4 shared memory mul-

tiprocessors to compare the performance of our allocator
with the default AIX 5.1 libc malloc, and two widely-used
lock-based allocators with mechanisms for scalable perfor-
mance, Hoard [3] and Ptmalloc [6]. The experimental per-
formance results show that not only is our allocator compet-
itive with some of the best lock-based allocators, but also
that it outperforms them, and often by substantial margins,
in virtually all cases including under various levels of par-
allelism and various sharing patterns, and also offers the
lowest contention-free latency.
The rest of the paper is organized as follows. In Section 2,

we discuss atomic instructions and related work. Section 3
describes the new allocator in detail. Section 4 presents our
experimental performance results. We conclude the paper
with Section 5.

2. BACKGROUND

2.1 Atomic Instructions
Current mainstream processor architectures support ei-

ther Compare-and-Swap (CAS) or the pair Load-Linked and
Store-Conditional (LL/SC). Other weaker instructions, such
as Fetch-and-Add and Swap, may be supported, but in any
case they are easily implemented using CAS or LL/SC.
CAS was introduced on the IBM System 370 [8]. It is

supported on Intel (IA-32 and IA-64) and Sun SPARC ar-
chitectures. In its simplest form, it takes three arguments:
the address of a memory location, an expected value, and
a new value. If the memory location is found to hold the
expected value, the new value is written to it, atomically. A
Boolean return value indicates whether the write occurred.
If it returns true, it is said to succeed. Otherwise, it is said
to fail. Figure 1 shows the semantics of CAS.
LL and SC are supported on the PowerPC, MIPS, and

Alpha architectures. LL takes one argument: the address
of a memory location, and returns its contents. SC takes
two arguments: the address of a memory location and a new
value. Only if no other thread has written the memory lo-
cation since the current thread last read it using LL, the
new value is written to the memory location, atomically. A
Boolean return value indicates whether the write occurred.
Similar to CAS, SC is said to succeed or fail if it returns
true or false, respectively. For architectural reasons, current
architectures that support LL/SC do not allow the nesting
or interleaving of LL/SC pairs, and infrequently allow SC to
fail spuriously, even if the target location was never written
since the last LL. These spurious failures happen, for exam-
ple, if the thread was preempted or a different location in
the same cache line was written by another processor.
For generality, we present the algorithms in this paper

using CAS. If LL/SC are supported rather than CAS, then
CAS(addr,expval,newval) can be simulated in a lock-free

2

manner as follows: {do {if (LL(addr)!=expval) return
false;} until SC(addr,newval); return true;}.
Support for CAS and restricted LL/SC on aligned 64-bit

blocks is available on both 32-bit and 64-bit architectures,
e.g., CMPXCHG8 on IA-32. However, support for CAS or
LL/SC on wider block sizes is generally not available even on
64-bit architectures. Therefore, we focus our presentation of
the algorithms on 64-bit mode, as it is the more challenging
case while 32-bit mode is simpler.
For a very simple example of lock-free synchronization,

Figure 2 shows the classic lock-free implementation of
Atomic-Increment using CAS [8]. Note that if a thread is de-
layed at any point while executing this routine, other active
threads will be able to proceed with their operations with-
out waiting for the delayed thread, and every time a thread
executes a full iteration of the loop, some operation must
have made progress. If the CAS succeeds, then the incre-
ment of the current thread has taken effect. If the CAS fails,
then the value of the counter must have changed during the
loop. The only way the counter changes is if a CAS succeeds.
Then, some other thread’s CAS must have succeeded during
the loop and hence that other thread’s increment must have
taken effect.

2.2 Related Work
The concept of lock-free synchronization goes back more

than two decades. It is attributed to early work by Lam-
port [12] and to the motivating basis for introducing the
CAS instruction in the IBM System 370 documentation [8].
The impossibility and universality results of Herlihy [7] had
significant influence on the theory and practice of lock-free
synchronization, by showing that atomic instructions such
as CAS and LL/SC are more powerful than others such as
Test-and-Set, Swap, and Fetch-and-Add, in their ability to
provide lock-free implementations of arbitrary object types.
In other publications [17, 19], we review practical lock-free
algorithms for dynamic data structures in light of recent
advances in lock-free memory management.
Wilson et. al. [23] present a survey of sequential memory

allocation. Berger [2, 3] presents an overview of concurrent
allocators, e.g., [4, 6, 10, 11, 13]. In our experiments, we
compare our allocator with two widely-used malloc replace-
ment packages for multiprocessor systems, Ptmalloc and
Hoard. We also leverage some scalability-enabling high-level
structures from Hoard.
Ptmalloc [6], developed by Wolfram Gloger and based on

Doug Lea’s dlmalloc sequential allocator [14], is part of GNU
glibc. It uses multiple arenas in order to reduce the adverse
effect of contention. The granularity of locking is the arena.
If a thread executing malloc finds an arena locked, it tries
the next one. If all arenas are found to be locked, the thread
creates a new arena to satisfy its malloc and adds the new
arena to the main list of arenas. To improve locality and
reduce false sharing, each thread keeps thread-specific in-
formation about the arena it used in its last malloc. When
a thread frees a chunk (block), it returns the chunk to the
arena from which the chunk was originally allocated, and
the thread must acquire that arena’s lock.
Hoard [2, 3], developed by Emery Berger, uses multiple

processor heaps in addition to a global heap. Each heap
contains zero or more superblocks. Each superblock con-
tains one or more blocks of the same size. Statistics are
maintained individually for each superblock as well as col-
lectively for the superblocks of each heap. When a processor
heap is found to have too much available space, one of its su-

perblocks is moved to the global heap. When a thread finds
that its processor heap does not have available blocks of the
desired size, it checks if any superblocks of the desired size
are available in the global heap. Threads use their thread ids
to decide which processor heap to use for malloc. For free, a
thread must return the block to its original superblock and
update the fullness statistics for the superblock as well as
the heap that owns it. Typically, malloc and free require
one and two lock acquisitions, respectively.
Dice and Garthwaite [5] propose a partly lock-free allo-

cator. The allocator requires special operating system sup-
port, which makes it not readily portable across operating
systems and programming environments. In the environ-
ment for their allocator, the kernel monitors thread migra-
tion and preemption and posts upcalls to user-mode. When
a thread is scheduled to run, the kernel posts the CPU id of
the processor that the thread is to run on during its upcom-
ing time slice. The kernel also saves the user-mode instruc-
tion pointer in a thread-specific location and replaces it with
the address of a special notification routine that will be the
first thing the thread executes when it resumes. The notifi-
cation routine checks if the thread was in a critical section
when it was preempted. If so, the notification routine passes
control to the beginning of the critical section instead of the
original instruction pointer, so that the thread can retry its
critical section. The allocator can apply this mechanism
only to CPU-specific data. So, it is only used for the CPU’s
local heap. For all other operations, such as freeing a block
that belongs to a remote CPU heap or any access to the
global heap, mutual exclusion locks are used. The allocator
is not completely lock-free, and hence—without additional
special support from the kernel—it is susceptible to deadlock
under arbitrary thread termination or priority inversion.

3. LOCK-FREE ALLOCATOR
This section describes our lock-free allocator in detail.

Without loss of generality we focus on the case of a 64-bit
address space. The 32-bit case is simpler, as 64-bit CAS is
supported on 32-bit architectures.

3.1 Overview
First, we start with the general structure of the allocator.

Large blocks are allocated directly from the OS and freed
directly to the OS. For smaller block sizes, the heap is com-
posed of large superblocks (e.g., 16 KB). Each superblock
is divided into multiple equal-sized blocks. Superblocks are
distributed among size classes based on their block sizes.
Each size class contains multiple processor heaps propor-
tional to the number of processors in the system. A proces-
sor heap contains at most one active superblock. An active
superblock contains one or more blocks available for reser-
vation that are guaranteed to be available to threads that
reach them through the header of the processor heap. Each
superblock is associated with a descriptor. Each allocated
block contains a prefix (8 bytes) that points to the descrip-
tor of its superblock. On the first call to malloc, the static
structures for the size classes and processor heaps (about 16
KB for a 16 processor machine) are allocated and initialized
in a lock-free manner.
Malloc starts by identifying the appropriate processor

heap, based on the requested block size and the identity of
the calling thread. Typically, the heap already has an active
superblock with blocks available for reservation. The thread
atomically reads a pointer to the descriptor of the active su-
perblock and reserves a block. Next, the thread atomically

3

// Superblock descriptor structure

typedef anchor : // fits in one atomic block

unsigned avail:10,count:10,state:2,tag:42;

// state codes ACTIVE=0 FULL=1 PARTIAL=2 EMPTY=3

typedef descriptor :

anchor Anchor;

descriptor* Next;

void* sb; // pointer to superblock

procheap* heap; // pointer to owner procheap

unsigned sz; // block size

unsigned maxcount; // superblock size/sz

// Processor heap structure

typedef active : unsigned ptr:58,credits:6;

typedef procheap :

active Active; // initially NULL

descriptor* Partial; // initially NULL

sizeclass* sc; // pointer to parent sizeclass

// Size class structure

typedef sizeclass :

descList Partial; // initially empty

unsigned sz; // block size

unsigned sbsize; // superblock size

Figure 3: Structures.

pops a block from that superblock and updates its descrip-
tor. A typical free pushes the freed block into the list of
available blocks of its original superblock by atomically up-
dating its descriptor. We discuss the less frequent more
complicated cases below when describing the algorithms in
detail.

3.2 Structures and Algorithms
For the most part, we provide detailed (C-like) code for

the algorithms, as we believe that it is essential for under-
standing lock-free algorithms, unlike lock-based algorithms
where sequential components protected by locks can be de-
scribed clearly using high-level pseudocode.

3.2.1 Structures
Figure 3 shows the details of the above mentioned struc-

tures. The Anchor field in the superblock descriptor struc-
ture contains subfields that can be updated together atom-
ically using CAS or LL/SC. The subfield avail holds the
index of the first available block in the superblock, count
holds the number of unreserved blocks in the superblock,
state holds the state of the superblock, and tag is used to
prevent the ABA problem as discussed below.
The Active field in the processor heap structure is primar-

ily a pointer to the descriptor of the active superblock owned
by the processor heap. If the value of Active is not NULL, it is
guaranteed that the active superblock has at least one block
available for reservation. Since the addresses of superblock
descriptors can be guaranteed to be aligned to some power
of 2 (e.g., 64), as an optimization, we can carve a credits
subfield to hold the number of blocks available for reserva-
tion in the active superblock less one. That is, if the value
of credits is n, then the active superblock contains n+1
blocks available for reservation through the Active field.
Note that the number of blocks in a superblock is not lim-
ited to the maximum reservations that can be held in the
credits subfield. In a typical malloc operation (i.e., when
Active �= NULL and credits > 0), the thread reads Active
and then atomically decrements credits while validating
that the active superblock is still valid.

3.2.2 Superblock States
A superblock can be in one of four states: ACTIVE, FULL,

PARTIAL, or EMPTY. A superblock is ACTIVE if it is the active
superblock in a heap, or if a thread intends to try to install it
as such. A superblock is FULL if all its blocks are either allo-
cated or reserved. A superblock is PARTIAL if it is not ACTIVE
and contains unreserved available blocks. A superblock is
EMPTY if all its blocks are free and it is not ACTIVE. An EMPTY

superblock is safe to be returned to the OS if desired.

3.2.3 Malloc
Figure 4 shows the malloc algorithm. The outline of the

algorithm is as follows. If the block size is large, then the
block is allocated directly from the OS and its prefix is set
to indicate the block’s size. Otherwise, the appropriate heap
is identified using the requested block size and the id of the
requesting thread. Then, the thread tries the following in
order until it allocates a block: (1) Allocate a block from
the heap’s active superblock. (2) If no active superblock is
found, try to allocate a block from a PARTIAL superblock.
(3) If none are found, allocate a new superblock and try to
install it as the active superblock.

Malloc from Active Superblock
The vast majority of malloc requests are satisfied from the

heap’s active superblock as shown in the MallocFromActive
routine in Figure 4. The routine consists of two main steps.
The first step (lines 1–6) involves reading a pointer to the ac-
tive superblock and then atomically decrementing the num-
ber of available credits—thereby reserving a block—while
validating that the active superblock is still valid. Upon the
success of CAS in line 6, the thread is guaranteed that a
block in the active superblock is reserved for it.
The second step of MallocFromActive (lines 7–18) is pri-

marily a lock-free pop from a LIFO list [8]. The thread reads
the index of the first block in the list from Anchor.avail in
line 8, then it reads the index of the next block in line 10,1

and finally in line 18 it tries to swing the head pointer (i.e.,
Anchor.avail) atomically to the next block, while validat-
ing that at that time what it “thinks” to be the first two
indexes in the list (i.e., oldanchor.avail and next) are in-
deed the first two indexes in the list, and hence in effect
popping the first available block from the list.
Validating that the CAS in line 18 succeeds only if

Anchor.avail is equal to oldanchor.avail follows directly
from the semantics of CAS. However, validating that at that
time *addr=next is more subtle and without the tag sub-
field is susceptible to the ABA problem [8, 19]. Consider
the case where in line 8 thread X reads the value A from
Anchor.avail and in line 10 reads the value B from *addr.
After line 10, X is delayed and some other thread or threads
pop (i.e., allocate) block A then block B and then push (i.e.,
free) some block C and then block A back in the list. Later,
X resumes and executes the CAS in line 18. Without the tag
subfield (for simplicity ignore the count subfield), the CAS
would find Anchor equal to oldanchor and succeeds where

1This is correct even if there is no next block, because in
such a case no subsequent malloc will target this superblock
before one of its blocks is freed.

4

void* malloc(sz) {
// Use sz and thread id to find heap.

1 heap = find heap(sz);

2 if (!heap) // Large block

3 Allocate block from OS and return its address.
while(1) {

4 addr = MallocFromActive(heap);

5 if (addr) return addr;

6 addr = MallocFromPartial(heap);

7 if (addr) return addr;

8 addr = MallocFromNewSB(heap);

9 if (addr) return addr;

} }

void* MallocFromActive(heap) {
do { // First step: reserve block

1 newactive = oldactive = heap->Active;

2 if (!oldactive) return NULL;

3 if (oldactive.credits == 0)

4 newactive = NULL;

else

5 newactive.credits--;

6 } until CAS(&heap->Active,oldactive,newactive);

// Second step: pop block

7 desc = mask credits(oldactive);

do {
// state may be ACTIVE, PARTIAL or FULL

8 newanchor = oldanchor = desc->Anchor;

9 addr = desc->sb+oldanchor.avail*desc->sz;

10 next = *(unsigned*)addr;

11 newanchor.avail = next;

12 newanchor.tag++;

13 if (oldactive.credits == 0) {
// state must be ACTIVE

14 if (oldanchor.count == 0)

15 newanchor.state = FULL;

else {
16 morecredits =

min(oldanchor.count,MAXCREDITS);

17 newanchor.count -= morecredits;

}
}

18 } until CAS(&desc->Anchor,oldanchor,newanchor);

19 if (oldactive.credits==0 && oldanchor.count>0)

20 UpdateActive(heap,desc,morecredits);

21 *addr = desc; return addr+EIGHTBYTES;

}

UpdateActive(heap,desc,morecredits) {
1 newactive = desc;

2 newactive.credits = morecredits-1;

3 if CAS(&heap->Active,NULL,newactive) return;

// Someone installed another active sb

// Return credits to sb and make it partial

do {
4 newanchor = oldanchor = desc->Anchor;

5 newanchor.count += morecredits;

6 newanchor.state = PARTIAL;

7 } until CAS(&desc->Anchor,oldanchor,newanchor);

8 HeapPutPartial(desc);

}

void* MallocFromPartial(heap) {
retry:

1 desc = HeapGetPartial(heap);

2 if (!desc) return NULL;

3 desc->heap = heap;

do { // reserve blocks

4 newanchor = oldanchor = desc->Anchor;

5 if (oldanchor.state == EMPTY) {
6 DescRetire(desc); goto retry;

}
// oldanchor state must be PARTIAL

// oldanchor count must be > 0

7 morecredits =

min(oldanchor.count-1,MAXCREDITS);

8 newanchor.count -= morecredits+1;

9 newanchor.state =

(morecredits > 0) ? ACTIVE : FULL;

10 } until CAS(&desc->Anchor,oldanchor,newanchor);

do { // pop reserved block

11 newanchor = oldanchor = desc->Anchor;

12 addr = desc->sb+oldanchor.avail*desc->sz;

13 newanchor.avail = *(unsigned*)addr;

14 newanchor.tag++;

15 } until CAS(&desc->Anchor,oldanchor,newanchor);

16 if (morecredits > 0)

17 UpdateActive(heap,desc,morecredits);

18 *addr = desc; return addr+EIGHTBYTES;

}

descriptor* HeapGetPartial(heap) {
do {

1 desc = heap->Partial;

2 if (desc == NULL)

3 return ListGetPartial(heap->sc);

4 } until CAS(&heap->Partial,desc,NULL);

5 return desc;

}

void* MallocFromNewSB(heap) {
1 desc = DescAlloc();

2 desc->sb = AllocNewSB(heap->sc->sbsize);

3 Organize blocks in a linked list starting with index 0.
4 desc->heap = heap;

5 desc->Anchor.avail = 1;

6 desc->sz = heap->sc->sz;

7 desc->maxcount = heap->sc->sbsize/desc->sz;

8 newactive = desc;

9 newactive.credits =

min(desc->maxcount-1,MAXCREDITS)-1;

10 desc->Anchor.count =

(desc->maxcount-1)-(newactive.credits+1);

11 desc->Anchor.state = ACTIVE;

12 memory fence.
13 if CAS((&heap->Active,NULL,newactive) {
14 addr = desc->sb;

15 *addr = desc; return addr+EIGHTBYTES;

} else {
16 Free the superblock desc->sb.
17 DescRetire(desc); return NULL;

}
}

Figure 4: Malloc.

5

7
6
5
4
3
2
1
0 allocated

dontcare
allocated

6
allocated

3
7
1

sb
�

❄

Anchor

5 1 A 1112

avail
count
state

tag

Active

credits

�

❄

3

(a)

7
6
5
4
3
2
1
0 allocated

dontcare
allocated

6
allocated

3
7
1

sb
�

❄

Anchor

5 1 A 1112

avail
count
state

tag

Active

credits

�

❄

2

(b)

7
6
5
4
3
2
1
0 allocated

dontcare
allocated

6
allocated
allocated

7
1

sb
�

❄

Anchor

3 1 A 1113

avail
count
state

tag

Active

credits

�

❄

2

(c)

7
6
5
4
3
2
1
0 allocated

dontcare
allocated

6
allocated

3
7
1

sb
�

❄

Anchor

5 2 A 1113

avail
count
state

tag

Active

credits

�

❄

2

(d)

Figure 5: An example of a typical malloc and free from an active superblock. In configuration (a), the active
superblock contains 5 available blocks organized in a linked list [5,3,6,7,1], four of which are available for
reservation as indicated by Active.credits=3. In the first step of malloc, a block is reserved by decrementing
Active.credits, resulting in configuration (b). In the second step of malloc, block 5 is popped, resulting in
configuration (c). Free pushes the freed block (block 5) resulting in configuration (d).

it should not, as the new head of the free list would become
block B which is actually not free. Without the tag sub-
field, X is unable to detect that the value of Anchor.avail
changed from A to B and finally back to A again (hence the
name ABA). To prevent this problem for the Anchor field,
we use the classic IBM tag mechanism [8]. We increment the
tag subfield (line 12) on every pop and validate it atomically
with the other subfields of Anchor. Therefore, in the above
mentioned scenario, when the tag is used, the CAS fails—
as it should—and X starts over from line 8. The tag must
have enough bits to make full wraparound practically impos-
sible in a short time. For an absolute solution for the ABA
problem, an efficient implementation of ideal LL/SC—which
inherently prevents the ABA problem—using pointer-sized
CAS can be used [18, 19].
In lines 13–17, the thread checks if it has taken the last

credit in Active.credit. If so, it checks if the superblock
has more available blocks, either because maxcount is larger
than MAXCREDITS or because blocks were freed. If more blocks
are available, the thread reserves as many as possible (lines
16 and 17). Otherwise, it declares the superblock FULL (line
15). The reason for doing that is that FULL superblocks
are not pointed to by any allocator structures, so the first
thread to free a block back to a FULL superblock needs to
know that, in order to take responsibility for linking it back
to the allocator structures.
If the thread has taken credits, it tries to update Active

by executing UpdateActive. There is no risk of more than
one thread trying to take credits from the same superblock
at the same time. Only the thread that sets Active to NULL

in line 6 can do that. Other concurrent threads find Active
either with credits>0 or not pointing to desc at all.
Finally the thread stores desc (i.e., the address of the

descriptor of the superblock from which the block was allo-
cated) into the prefix of the newly allocated block (line 21),
so that when the block is subsequently freed, free can de-
termine from which superblock it was originally allocated.
Each block includes an 8 byte prefix (overhead).

Note that, after a thread finds Active.credits>0 and af-
ter the success of the CAS in line 6 and before the thread
proceeds to a successful CAS in line 18, it is possible that the
“active” superblock might have become FULL if all available
blocks were reserved, PARTIAL, or even the ACTIVE superblock
of a different processor heap (but must be the same size
class). However, it cannot be EMPTY. These possibilities do
not matter to the original thread. After the success of the
CAS in line 6, the thread is guaranteed a block from this
specific superblock, and all it need do is pop a block from
the superblock and leave the superblock’s Anchor.state un-
changed. Figure 5 shows a typical malloc and free from an
active superblock.

Updating Active Credits
Typically, when the routine UpdateActive in Figure 4

is called, it ends with the success of the CAS operation
in line 3 that reinstalls desc->sb as the active superblock
for heap with one or more credits. However, it is possible
that after the current thread had set heap->Active to NULL

(line 6 of MallocFromActive), some other thread installed a
new superblock. If so, the current thread must return the
credits, indicate that the superblock is PARTIAL, and make
the superblock available for future use in line 8 by calling
HeapPutPartial (described below).

Malloc from Partial Superblock
The thread calls MallocFromPartial in Figure 4 if it finds

Active=NULL. The thread tries to get a PARTIAL superblock
by calling HeapGetPartial. If it succeeds, it tries to re-
serve as many blocks—including one for itself—from the
superblock’s descriptor. Upon the success of CAS in line
10, the thread is guaranteed to have reserved one or more
blocks. It then proceeds in lines 11–15 to pop its reserved
block, and if it has reserved more, it deposits the additional
credits in Active by calling UpdateActive.
In HeapGetPartial, the thread first tries to pop a su-

perblock from the Partial slot associated with the thread’s

6

processor heap. If Partial=NULL, then the thread checks
the Partial list associated with the size class as described in
Section 3.2.6.

Malloc from New Superblock
If the thread does not find any PARTIAL superblocks, it

calls MallocFromNewSB in Figure 4. The thread allocates
a descriptor by calling DescAlloc (line 1), allocates a new
superblock, and sets its fields appropriately (lines 2–11). Fi-
nally, it tries to install it as the active superblock in Active
using CAS in line 13. If the CAS fails, the thread deallocates
the superblock and retires the descriptor (or alternatively,
the thread can take the block, return the credits to the su-
perblock, and install the superblock as PARTIAL). The failure
of CAS in line 13 implies that heap->Active is no longer
NULL, and therefore a new active superblock must have been
installed by another thread. In order to avoid having too
many PARTIAL superblocks and hence cause unnecessary ex-
ternal fragmentation, we prefer to deallocate the superblock
rather than take a block from it and keep it as PARTIAL.
On systems with memory consistency models [1] weaker

than sequential consistency, where the processors might ex-
ecute and observe memory accesses out of order, fence in-
structions are needed to enforce the ordering of memory ac-
cesses. The memory fence instruction in line 12 serves to
ensure that the new values of the descriptor fields are ob-
served by other processors before the CAS in line 13 can
be observed. Otherwise, if the CAS succeeds, then threads
running on other processors may read stale values from the
descriptor.2

3.2.4 Free
Figure 6 shows the free algorithm. Large blocks are

returned directly to the OS. The free algorithm for small
blocks is simple. It primarily involves pushing the freed
block into its superblock’s available list and adjusting the
superblock’s state appropriately.
The instruction fence in line 14 is needed to ensure that

the read in line 13 is executed before the success of the CAS
in line 18. The memory fence in line 17 is needed to ensure
that the write in line 8 is observed by other processors no
later than the CAS in line 18 is observed.
If a thread is the first to return a block to a FULL su-

perblock, then it takes responsibility for making it PARTIAL

by calling HeapPutParial, where it atomically swaps the su-
perblock with the prior value in the Partial slot of the heap
that last owned the superblock. If the previous value of
heap->Partial is not NULL, i.e., it held a partial superblock,
then the thread puts that superblock in the partial list of
the size class as described in Section 3.2.6.
If a thread frees the last allocated block in a superblock,

then it takes responsibility for indicating that the superblock
is EMPTY and frees it. The thread then tries to retire the
associated descriptor. If the descriptor is in the Partial slot
of a processor heap, a simple CAS will suffice to remove it.
Otherwise, the descriptor may be in the Partial list of the
size class (possibly in the middle). We discuss this case in
Section 3.2.6.

2Due to the variety in memory consistency models and fence
instructions among architectures, it is customary for concur-
rent algorithms presented in the literature to ignore them.
In this paper, we opt to include fence instructions in the
code, but for clarity we assume a typical PowerPC-like archi-
tecture. However, different architectures—including future
ones—may use different consistency models.

free(ptr) {
1 if (!ptr) return;

2 ((void**)ptr)--; // get prefix

3 desc = *(descriptor**)ptr;

4 if (large block bit set(desc))

// Large block - desc holds sz+1

5 { Return block to OS. return; }
6 sb = desc->sb;

do {
7 newanchor = oldanchor = desc->Anchor;

8 *(unsigned*)ptr = oldanchor.avail;

9 newanchor.avail = (ptr-sb)/desc->sz;

10 if (oldanchor.state == FULL)

11 newanchor.state = PARTIAL;

12 if (oldanchor.count==desc->maxcount-1) {
13 heap = desc->heap;

14 instruction fence.
15 newanchor.state = EMPTY;

} else

16 newanchor.count++;

17 memory fence.
18 } until CAS(&desc->Anchor,oldanchor,newanchor);

19 if (newanchor.state == EMPTY) {
20 Free the superblock sb.
21 RemoveEmptyDesc(heap,desc);

22 } elseif (oldanchor.state == FULL)

23 HeapPutPartial(desc);

}

HeapPutPartial(desc) {
1 do { prev = desc->heap->Partial;

2 } until CAS(&desc->heap->Partial,prev,desc);

3 if (prev) ListPutPartial(prev);

}

RemoveEmptyDesc(heap,desc) {
1 if CAS(&heap->Partial,desc,NULL)

2 DescRetire(desc);

3 else ListRemoveEmptyDesc(heap->sc);

}

Figure 6: Free.

3.2.5 Descriptor List
Figure 7 shows the DescAlloc and DescRetire routines.

In DescAlloc, the thread first tries to pop a descriptor from
the list of available descriptors (lines 3–4). If not found,
the thread allocates a superblock of descriptors, takes one
descriptor, and tries to install the rest in the global available
descriptor list. In order to avoid unnecessarily allocating too
many descriptors, if the thread finds that some other thread
has already made some descriptors available (i.e., the CAS
in line 8 fails), then it returns the superblock to the OS and
starts over in line 1, with the hope of finding an available
descriptor. DescRetire is a straightforward lock-free push
that follows the classic freelist push algorithm [8].
As mentioned above in the case of the pop operation in the

MallocFromActive routine, care must be taken that CAS
does not succeed where it should not due to the ABA prob-
lem. We indicate this in line 4, by using the term SafeCAS
(i.e., ABA-safe). We use the hazard pointer methodology [17,
19]—which uses only pointer-sized instructions—in order to
prevent the ABA problem for this structure.

7

descriptor* DescAvail; // initially NULL

descriptor* DescAlloc() {
while (1) {

1 desc = DescAvail;

2 if (desc) {
3 next = desc->Next;

4 if SafeCAS(&DescAvail,desc,next) break;

} else {
5 desc = AllocNewSB(DESCSBSIZE);

6 Organize descriptors in a linked list.
7 memory fence.
8 if CAS(&DescAvail,NULL,desc->Next)) break;

9 Free the superblock desc.
}

}
10 return desc;

}

DescRetire(desc) {
do {

1 oldhead = DescAvail;

2 desc->Next = oldhead;

3 memory fence.
4 } until CAS(&DescAvail,oldhead,desc);

}

Figure 7: Descriptor allocation.

In the current implementation, superblock descriptors are
not reused as regular blocks and cannot be returned to the
OS. This is acceptable as descriptors constitute on average
less than 1% of allocated memory. However, if desired, space
for descriptors can be reused arbitrarily or returned to the
OS, by organizing descriptors in a similar manner to regular
blocks and maintaining special descriptors for superblocks of
descriptor, with virtually no effect on average performance
whether contention-free or under high contention. This can
be applied on as many levels as desired, such that at most
1% of 1%—and so on—of allocated space is restricted from
being reused arbitrarily or returned to the OS.
Similarly, in order to reduce the frequency of calls to mmap

and munmap, we allocate superblocks (e.g., 16 KB) in batches
of (e.g., 1 MB) hyperblocks (superblocks of superblocks) and
maintain descriptors for such hyperblocks, allowing them
eventually to be returned to the OS. We organize the de-
scriptor Anchor field in a slightly different manner, such that
superblocks are not written until they are actually used, thus
saving disk swap space for unused superblocks.

3.2.6 Lists of Partial Superblocks
For managing the list of partial superblocks associated

with each size class, we need to provide three functions:
ListGetPartial, ListPutPartial, and ListRemoveEmpty-
Desc. The goal of the latter is to ensure that empty de-
scriptors are eventually made available for reuse, and not
necessarily to remove a specific empty descriptor immedi-
ately.
In one possible implementation, the list is managed in a

LIFO manner, with the possibility of removing descriptors
from the middle of the list. The simpler version in [19] of the
lock-free linked list algorithm in [16] can be used to manage
such a list. ListPutPartial inserts desc at the head of the
list. ListGetPartial pops a descriptor from the head of the

list. ListRemoveEmptyDesc traverses the list until it removes
some empty descriptor or reaches the end of the list.
Another implementation, which we prefer, manages the

list in a FIFO manner and thus reduces the chances of con-
tention and false sharing. ListPutPartial enqueues desc
at the tail of the list. ListGetPartial dequeues a descrip-
tor from the head of the list. ListRemoveEmptyDesc keeps
dequeuing descriptors from the head of the list until it de-
queues a non-empty descriptor or reaches the end of the
list. If the function dequeues a non-empty descriptor, then
it reenqueues the descriptor at the tail of the list. By re-
moving any one empty descriptor or moving two non-empty
descriptor from the head of the list to its end, we are guar-
anteed that no more than half the descriptors in the list are
left empty. We use a version of the lock-free FIFO queue
algorithm in [20] with optimized memory management for
the purposes of the new allocator.
For preventing the ABA problem for pointer-sized vari-

ables in the above mentioned list implementations, we can-
not use IBM ABA-prevention tags (such as in Anchor.tag),
instead we use ideal LL/SC constructions using pointer-sized
CAS [18]. Note that these constructions as described in [18]
use memory allocation, however a general-purpose malloc is
not needed. In our implementation we allocate such blocks
in a manner similar but simpler than allocating descriptors.
Note that in our allocator, unlike Hoard [3], we do not

maintain fullness classes or keep statistics about the full-
ness of processor heaps and we are quicker to move partial
superblocks to the partial list of the size class. This simplic-
ity allows lower latency and lower fragmentation. But, one
concern may be that this makes it more likely for blocks to
be freed to a superblock in the size class partial lists. How-
ever, this is not a disadvantage at all, unlike Hoard [3] and
also [5] where this can cause contention on the global heap’s
lock. In our allocator, freeing a block into such a superblock
does not cause any contention with operations on other su-
perblocks, and in general is no more complex or less efficient
than freeing a block into a superblock that is in the thread’s
own processor heap. Another possible concern is that by
moving partial superblocks out of the processor heap too
quickly, contention and false sharing may arise. This is why
we use a most-recently-used Partial slot (multiple slots can
be used if desired) in the processor heap structure, and use
a FIFO structure for the size class partial lists.

4. EXPERIMENTAL RESULTS
In this section, we describe our experimental performance

results on two PowerPC multiprocessor systems. The first
system has sixteen 375 MHz POWER3-II processors, with
24 GB of memory, 4 MB second level caches. The second sys-
tem has eight 1.2 GHz POWER4+ processors, with 16 GB
of memory, 32 MB third level caches. Both systems run AIX
5.1. We ran experiments on both systems. The results on
the POWER3 system (with more processors) provided more
insights into the allocators’ scalability and ability to avoid
false sharing and contention. The results on the POWER4
system provided insights into the contention-free latency of
the allocators and contention-free synchronization costs on
recent processor architectures.
We compare our allocator with the default AIX libc mal-

loc,3 Hoard [3] version 3.0.2 (December 2003), and Ptmal-

3Our observations on the default libc malloc are based on
external experimentation only and are not based on any
knowledge of its internal design.

8

375 MHz POWER3-II 1.2 GHz POWER4+
New Hoard Ptmalloc New Hoard Ptmalloc

Linux scalability 2.25 1.11 1.83 2.75 1.38 1.92
Threadtest 2.18 1.20 1.94 2.35 1.23 1.97
Larson 2.90 2.22 2.53 2.95 2.37 2.67

Table 1: Contention-free speedup over libc malloc.

loc2 (Nov. 2002) [6]. All allocators and benchmarks were
compiled using gcc and g++ with the highest optimization
level (-O6) in 64-bit mode. We used pthreads for multi-
threading. All allocators were dynamically linked as shared
libraries. For meaningful comparison, we tried to use opti-
mal versions of Hoard and Ptmalloc as best we could. We
modified the PowerPC lightweight locking routines in Hoard
by removing a sync instruction from the beginning of the
lock acquisition path, replacing the sync at the end of lock
acquisition with isync, and adding eieio before lock re-
lease. These changes reduced the average contention-free
latency of a pair of malloc and free using Hoard from 1.76
µs. to 1.51 µs. on POWER3, and from 885 ns. to 560 ns.
on POWER4. The default distribution of Ptmalloc2 uses
pthread mutex for locking. We replaced calls to pthread
mutex by calls to a lightweight mutex that we coded us-
ing inline assembly. This reduced the average contention-
free latency of a pair of malloc and free using Ptmalloc by
more than 50%, from 1.93 µs. to 923 ns. on POWER3 and
from 812 ns. to 404 ns. on POWER4. In addition, Ptmalloc
showed substantially better scalability using the lightweight
locks than it did using pthread mutex locks.

4.1 Benchmarks
Due to the lack of standard benchmarks for multithreaded

dynamic memory allocation, we use microbenchmarks that
focus on specific performance characteristics. We use six
benchmarks: benchmark 1 of Linux Scalability [15], Thread-
test, Active-false, and Passive-false from Hoard [3], Lar-
son [13], and a lock-free producer-consumer benchmark that
we describe below.
In Linux scalability, each thread performs 10 million mal-

loc/free pairs of 8 byte blocks in a tight loop. In Threadtest,
each thread performs 100 iterations of allocating 100,000
8-byte blocks and then freeing them in order. These two
benchmarks capture allocator latency and scalability under
regular private allocation patterns.
In Active-false, each thread performs 10,000 malloc/free

pairs (of 8 byte blocks) and each time it writes 1,000 times
to each byte of the allocated block. Passive-false is simi-
lar to Active-false, except that initially one thread allocates
blocks and hands them to the other threads, which free them
immediately and then proceed as in Active-false. These two
benchmarks capture the allocator’s ability to avoid causing
false sharing [22] whether actively or passively.
In Larson, initially one thread allocates and frees ran-

dom sized blocks (16 to 80 bytes) in random order, then an
equal number of blocks (1024) is handed over to each of the
remaining threads. In the parallel phase which lasts 30 sec-
onds, each thread randomly selects a block and frees it, then
allocates a new random-sized block in its place. The bench-
mark measures how many free/malloc pairs are performed
during the parallel phase. Larson captures the robustness
of malloc’s latency and scalability under irregular allocation
patterns with respect to block-size and order of deallocation
over a long period of time.

In the lock-free Producer-consumer benchmark, we mea-
sure the number of tasks performed by t threads in 30 sec-
onds. Initially, a database of 1 million items is initialized
randomly. One thread is the producer and the others, if
any, are consumers. For each task, the producer selects a
random-sized (10 to 20) random set of array indexes, allo-
cates a block of matching size (40 to 80 bytes) to record
the array indexes, then allocates a fixed size task structure
(32 bytes) and a fixed size queue node (16 bytes), and en-
queues the task in a lock-free FIFO queue [19, 20]. A con-
sumer thread repeatedly dequeues a task, creates histograms
from the database for the indexes in the task, and then
spends time proportional to a parameter work performing
local work similar to the work in Hoard’s Threadtest bench-
mark. When the number of tasks in the queue exceeds 1000,
the producer helps the consumers by dequeuing a task from
the queue and processing it. Each task involves 3 malloc op-
erations on the part of the producer, and one malloc and 4
free operations on the part of the consumer. The consumer
spends substantially more time on each task that the pro-
ducer. Producer-consumer captures malloc’s robustness un-
der the producer-consumer sharing pattern, where threads
free blocks allocated by other threads.

4.2 Results

4.2.1 Latency
Table 1 presents contention-free4 speedups over libc mal-

loc for the new allocator, Hoard, and Ptmalloc, for the
benchmarks that are affected by malloc latency: Linux scal-
ability, Threadtest, and Larson. Malloc’s latency had little
or no effect on the performance of Active-false, Passive-false,
and Producer-consumer.
The new allocator achieves significantly lower contention-

free latency than the other allocators under both regular
and irregular allocation patterns. The reason is that it has
a faster execution path in the common case. Also, unlike
lock-based allocators, it operates only on the actual allo-
cator variables without the need to operate on additional
lock related variables and to synchronize these accesses with
the accesses to the allocator variables through fence instruc-
tions.
The new allocator requires only one memory fence instruc-

tion (line 17 of free) in the common case for each pair of
malloc and free, while every lock acquisition and release re-
quires an instruction fence before the critical section to pre-

4It appears that libc malloc as well as Hoard use a tech-
nique where the parent thread bypasses synchronization if
it knows that it has not spawned any threads yet. We ap-
plied the same technique to our allocator and the average
single-thread latency for our allocator was lower than those
for libc malloc and Hoard. However, in order to measure
true contention-free latency under multithreading, in our
experiments, the parent thread creates an additional thread
at initialization time which does nothing and exits immedi-
ately before starting time measurement.

9

vent reads inside the critical section from reading stale data
before lock acquisition, and a memory fence after the end of
the critical section to ensure that the lock is not observed to
be free before the writes inside the critical sections are also
observed by other processors. In the common case, a pair of
malloc and free using Ptmalloc and Hoard need to acquire
and release two and three locks, respectively.
Interestingly, when we conducted experiments with a

lightweight test-and-set mutual exclusion lock on the
POWER4 system, we found that the average contention-
free latency for a pair of lock acquire and release is 165 ns.
On the other hand. the average contention-free latency for
a pair of malloc and free in Linux Scalability using our allo-
cator is 282 ns., i.e., it is less than twice that of a minimal
critical section protected by a lightweight test-and-set lock.
That is, on that architecture, it is highly unlikely—if not
impossible—for a lock-based allocator (without per-thread
private heaps) to have lower latency than our lock-free allo-
cator, even if it uses the fastest lightweight lock to protect
malloc and free and does nothing in these critical sections.

4.2.2 Scalability and Avoiding False Sharing
Figure 8(a) shows speedup results relative to contention-

free libc malloc for Linux scalability. Our allocator, Ptmal-
loc, and Hoard scale well with varying slopes proportional
to their contention-free latency. Libc malloc does not scale
at all, its speedup drops to 0.4 on two processors and contin-
ues to decline with more processors. On 16 processors the
execution time of libc malloc is 331 times as much as that
of our allocator.
The results for Threadtest (Figure 8(b)) show that our

allocator and Hoard scale in proportion to their contention-
free latencies. Ptmalloc scales but at a lower rate under
high contention, as it becomes more likely that threads take
over the arenas of other threads when their own arenas have
no free blocks available, which increases the chances of con-
tention and false sharing.
Figures 8(c–d) show the results for Active-false and

Passive-false. The latency of malloc itself plays little role
in these results. The results reflect only the effect of the
allocation policy on inducing or avoiding false sharing. Our
allocator and Hoard are less likely to induce false sharing
than Ptmalloc and libc malloc.
In Larson (Figure 8(e)), which is intended to simulate

server workloads, our allocator and Hoard scale, while Pt-
malloc does not, probably due to frequent switching of
threads between arenas, and consequently more frequent
cases of freeing blocks to arenas locked by other threads. We
also noticed, when running this benchmark, that Ptmalloc
creates more arenas than the number of threads, e.g., 22
arenas for 16 threads, indicating frequent switching among
arenas by threads. Even though freeing blocks to remote
heaps in Hoard can degrade performance, this effect is elim-
inated after a short time. Initially threads free blocks that
were allocated by another thread, but then in the steady
state they free blocks that they have allocated from their
own processor heaps.

4.2.3 Robustness under Producer-Consumer
For Producer-consumer we ran experiments with various

values for work (parameter for local work per task). Fig-
ures 8(f–h) show the results for work set to 500, 750, and
1000, respectively. The results for all the allocators are vir-
tually identical under no contention, thus the latency of the
allocator plays a negligible role in the results for this bench-

mark. The purpose of this benchmark is to show the robust-
ness of the allocators under the producer-consumer sharing
pattern when the benchmark is scalable. The case where
the benchmark cannot scale even using a perfect allocator
is not of interest. We focus on the knee of the curve, where
the differences in robustness between allocators impact the
scalability of the benchmark.
Our allocator scales perfectly with work set to 1000 and

750, and up to 13 processors with work set to 500. With
more than 13 processors (and with work set to 500), we
found that the producer could not keep up with the con-
sumers (as the queue was always empty at the end of each
experiment), which is not an interesting case as the appli-
cation would not be scalable in any case. Our allocator’s
scalability is limited only by the scalability of the applica-
tion.
Ptmalloc scales to a lesser degree, but at the cost of

higher external memory fragmaentation, as the producer
keeps creating and switching arenas due to contention with
consumers, even though most arenas already have available
blocks.
Hoard’s scalability suffers due to high contention on the

producer’s heap, as 75% of all malloc and free operations are
targeted at the same heap. Our allocator’s performance does
not suffer, although it faces exactly the same situation. The
main reason is that in Hoard, even in the common case, free
operations need to acquire either the processor heap’s lock
or the global heap’s lock. In our allocator typical free oper-
ations are very simple and operate only on the superblock
descriptor associated with the freed block, thus allowing sub-
stantially more concurrency than Hoard. Other minor rea-
sons for our allocator’s ability to perform well even under
contention on the same superblock are: (a) In our alloca-
tor, read-modify-write code segments are shorter in dura-
tion, compared with critical sections in Hoard. (b) Success-
ful lock-free operations can overlap in time, while mutual
exclusion locks by definition must strictly serialize critical
sections.

4.2.4 Optimization for Uniprocessors
With uniprocessors in mind, we modified a version of our

allocator such that threads use only one heap, and thus
when executing malloc, threads do not need to know their
id. This optimization achieved 15% increase in contention-
free speedup on Linux scalability on POWER3. When we
used multiple threads on the same processor, performance
remained unaffected, as our allocator is preemption-tolerant.
In practice, the allocator can determine the number of pro-
cessors in the system at initialization time by querying the
system environment.

4.2.5 Space Efficiency
We tracked the maximum space used by our allocator,

Hoard, and Ptmalloc when running the benchmarks that
allocate a large number of blocks: Threadtest, Larson, and
Producer-consumer. The maximum space used by our allo-
cator was consistently slightly less than that used by Hoard,
as in our allocator each processor heap holds at most two su-
perblocks, while in Hoard each processor heap holds a vari-
able number of superblocks proportional to allocated blocks.
The maximum space allocated by Ptmalloc was consistently
more than that allocated by Hoard and our allocator. The
ratio of the maximum space allocated by Ptmalloc to the
maximum space allocated by ours, on 16 processors, ranged
from 1.16 in Threadtest to 3.83 in Larson.

10

Speedup over contention-free libc malloc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5

10

15

20

25

30

35

new

Hoard

Ptmalloc

libc

Processors

(a) Linux scalability

Speedup over contention-free libc malloc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5

10

15

20

25

30

new

Hoard

Ptmalloc

libc

Processors

(b) Threadtest

Speedup over contention-free libc malloc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

4

6

8

10

12

14

16

18

new

Hoard

Ptmalloc

libc

Processors

(c) Active false sharing

Speedup over contention-free libc malloc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

4

6

8

10

12

14

16

18

new

Hoard

Ptmalloc

libc

Processors

(d) Passive false sharing

Speedup over contention-free libc malloc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5

10

15

20

25

30

35

40

45

new

Hoard

Ptmalloc

libc

Processors

(e) Larson

Speedup over contention-free libc malloc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

4

6

8

10

12

14

16

18

new

Hoard

Ptmalloc

libc

Processors

(f) Producer-consumer with work = 500

Speedup over contention-free libc malloc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

4

6

8

10

12

14

16

18

new

Hoard

Ptmalloc

libc

Processors

(g) Producer-consumer with work = 750

Speedup over contention-free libc malloc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

4

6

8

10

12

14

16

18

new

Hoard

Ptmalloc

libc

Processors

(h) Producer-consumer with work = 1000

Figure 8: Speedup results on 16-way 375 MHz POWER3.

11

5. SUMMARY
In this paper we presented a completely lock-free dynamic

memory allocator. Being completely lock-free, our allocator
is immune to deadlock regardless of scheduling policies and
even when threads may be killed arbitrarily. Therefore, it
can offer async-signal-safety, tolerance to priority inversion,
kill-tolerance, and preemption-tolerance, without requiring
any special kernel support or incurring performance over-
head. Our allocator is portable across software and hard-
ware platforms, as it requires only widely-available OS sup-
port and hardware atomic primitives. It is general-purpose
and does not impose any unreasonable restrictions regard-
ing the use or initialization of the address space. It is space
efficient and limits space blowup [3] to a constant factor.
Our experimental results compared our allocator with the

default AIX 5.1 libc malloc, and two of the best multithread
allocators, Hoard [3] and Ptmalloc [6]. Our allocator outper-
formed the other allocators in all cases, often by significant
margins, under various levels of parallelism and allocation
patterns. Our allocator showed near perfect scalability un-
der various allocation and sharing patterns. Under maxi-
mum contention on 16 processors, it achieved a speedup of
331 over libc malloc.
Equally significant, our allocator offers substantially lower

latency than the other allocators. Under no contention, it
achieved speedups of 2.75, 1.99, and 1.43 over libc malloc,
and highly-optimized versions of Hoard and Ptmalloc, re-
spectively. Scalable allocators are often criticized that they
achieve their scalability at the cost of higher latency in the
more common case of no contention. Our allocator achieves
both scalability and low latency, in addition to many other
performance and qualitative advantages.
Furthermore, this work, in combination with recent lock-

free methods for safe memory reclamation [17, 19] and ABA
prevention [18] that use only single-word CAS, allows lock-
free algorithms including efficient algorithms for important
object types—such as LIFO stacks [8], FIFO queues [20],
and linked lists and hash tables [16, 21]—to be both com-
pletely dynamic and completely lock-free, including in 64-bit
applications and on systems without support for automatic
garbage collection, all efficiently without requiring special
OS support and using only widely-available 64-bit atomic
instructions.

Acknowledgments
The author thanks Emery Berger, Michael Scott, Yefim

Shuf, and the anonymous referees for valuable comments on
the paper.

6. REFERENCES
[1] Sarita V. Adve and Kourosh Gharachorloo. Shared

memory consistency models: A tutorial. IEEE Com-
puter, 29(12):66–76, 1996.

[2] Emery D. Berger. Memory Management for High-
Performance Applications. PhD thesis, University of
Texas at Austin, August 2002.

[3] Emery D. Berger, Kathryn S. McKinley, Robert D. Blu-
mofe, and Paul R. Wilson. Hoard: A scalable memory
allocator for multithreaded applications. In Proceed-
ings of the 9th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 117–128, November 2000.

[4] Bruce M. Bigler, Stephen J. Allan, and Rodney R. Old-
ehoeft. Parallel dynamic storage allocation. In Proceed-
ings of the 1985 International Conference on Parallel
Processing, pages 272–275, August 1985.

[5] Dave Dice and Alex Garthwaite. Mostly lock-free mal-
loc. In Proceedings of the 2002 International Sympo-
sium on Memory Management, pages 269–280, June
2002.

[6] Wolfram Gloger. Dynamic Memory Allocator Imple-
mentations in Linux System Libraries.
http://www.dent.med.uni-muenchen.de/~wmglo/.

[7] Maurice P. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and Systems,
13(1):124–149, January 1991.

[8] IBM. IBM System/370 Extended Architecture, Princi-
ples of Operation, 1983. Publication No. SA22-7085.

[9] IEEE. IEEE Std 1003.1, 2003 Edition, 2003.
[10] Arun K. Iyengar. Dynamic Storage Allocation on a Mul-

tiprocessor. PhD thesis, MIT, 1992.
[11] Arun K. Iyengar. Parallel dynamic storage allocation

algorithms. In Proceedings of the Fifth IEEE Sympo-
sium on Parallel and Distributed Processing, pages 82–
91, December 1993.

[12] Leslie Lamport. Concurrent reading and writing. Com-
munications of the ACM, 20(11):806–811, November
1977.

[13] Per-Åke Larson and Murali Krishnan. Memory alloca-
tion for long-running server applications. In Proceedings
of the 1998 International Symposium on Memory Man-
agement, pages 176–185, October 1998.

[14] Doug Lea. A Memory Allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html.

[15] Chuck Lever and David Boreham. Malloc() perfor-
mance in a multithreaded Linux environment. In Pro-
ceedings of the FREENIX Track of the 2000 USENIX
Annual Technical Conference, June 2000.

[16] Maged M. Michael. High performance dynamic lock-
free hash tables and list-based sets. In Proceedings of
the Fourteenth Annual ACM Symposium on Parallel Al-
gorithms and Architectures, pages 73–82, August 2002.

[17] Maged M. Michael. Safe memory reclamation for dy-
namic lock-free objects using atomic reads and writes.
In Proceedings of the Twenty-First Annual ACM Sym-
posium on Principles of Distributed Computing, pages
21–30, July 2002.

[18] Maged M. Michael. ABA prevention using single-
word instructions. Technical Report RC 23089, IBM
T. J. Watson Research Center, January 2004.

[19] Maged M. Michael. Hazard pointers: Safe memory
reclamation for lock-free objects. IEEE Transactions on
Parallel and Distributed Systems, 2004. To appear. See
www.research.ibm.com/people/m/michael/pubs.htm.

[20] Maged M. Michael and Michael L. Scott. Simple, fast,
and practical non-blocking and blocking concurrent
queue algorithms. In Proceedings of the Fifteenth An-
nual ACM Symposium on Principles of Distributed
Computing, pages 267–275, May 1996.

[21] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
extensible hash tables. In Proceedings of the Twenty-
Second Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 102–111, July 2003.

[22] Josep Torrellas, Monica S. Lam, and John L. Hennessy.
False sharing and spatial locality in multiprocessor
caches. IEEE Transactions on Computers, 43(6):651–
663, June 1994.

[23] Paul R. Wilson, Mark S. Johnstone, Michael Neely,
and David Boles. Dynamic storage allocation: A sur-
vey and critical review. In Proceedings of the 1995 In-
ternational Workshop on Memory Management, pages
1–116, September 1995.

12

