
To appear in Proceedings of the 2014 ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP’14)

On Teaching How to Design
Programs: Observations

from a Newcomer

Norman Ramsey
Department of Computer Science, Tufts University

nr@cs.tufts.edu

March 2014

Abstract
This paper presents a personal, qualitative case study of a first

course using How to Design Programs and its functional teaching
languages. The paper reconceptualizes the book’s six-step design
process as an eight-step design process ending in a new “review and
refactor” step. It recommends specific approaches to students’ dif-
ficulties with function descriptions, function templates, data exam-
ples, and other parts of the design process. It connects the process
to interactive “world programs.” It recounts significant, informative
missteps in course design and delivery. Finally, it identifies some
unsolved teaching problems and some potential solutions.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; K.3.2 [Computer and Information Science
Education]: Computer Science Education

Keywords Introductory programming course; Program by
Design; How to Design Programs; Racket; Reflective practice

1

1 Introduction
This paper is about teaching introductory programming using the
method called Program by Design, which is explained in the book
called How to Design Programs (Felleisen et al. 2001). The method
uses functional-programming principles, and the book uses func-
tional languages derived from Scheme. The method has proven ef-
fective in different educational contexts at many levels (Felleisen
et al. 2004b, 2009; Bieniusa et al. 2008; Bloch 2010; Schanzer,
Fisler, and Krishnamurthi 2013).

How to Design Programs argues eloquently that everyone should
learn to program. And the book keeps the promise implied by its ti-
tle; my students really did learn. But knowing that students learned
is not enough; a teacher needs to know what “learning to program”
means. What exactly did my students learn to do? How did they
learn it? In the jargon of the educator, what were the learning out-
comes? While I have come to love lambdas and round parentheses
and cond expressions, these are not the kinds of learning outcomes
that teachers need to know about in order to ensure students’ sub-
sequent success in a second course. And although some valuable
information is available from Bieniusa et al. (2008), from Crestani
and Sperber (2010), and from Sperber and Crestani (2012), teach-
ers need even more. This paper provides some.

The contributions of this paper are

• To articulate a refined, extended version of the design method
presented in How to Design Programs, and to develop a view
of the method, from a newcomer’s perspective, that can help a
teacher prepare and lead a class (Section 2)

• To identify, from observation, where students struggle with
the method and what points can be emphasized to help them
succeed (Section 3)

• To communicate what it’s like for a functional programmer with
no Scheme experience to work with the languages and tools
(Section 4)

• To identify and learn from one beginner’s mistakes (Section 5)
• To identify some open problems and sketch potential solutions

(Section 6)

I have written the paper for people who wish to use functional
programming to teach an introductory course. I assume experience
with typeful functional programming at the level of Haskell, ML, or
System F. I also assume that you have read something about LISP
or Scheme (McCarthy 1960; Sussman and Steele 1975; Abelson
and Sussman 1985), but not that you have actual experience with
LISP, Scheme, or Racket—although beta readers who do have
such experience report finding some value in the paper. I address
questions like those we ask graduating PhD students: what parts
were hard, and when I do it again, what I will do differently.

I address these questions using the “humanities” approach to edu-
cational research (Burkhardt and Schoenfeld 2003), in which au-
thors reflect on their experience. Burkhardt and Schoenfeld write
that “the test of quality is critical appraisal concerning plausibility,
internal consistency and fit to prevailing wisdom. The key product
of this approach is critical commentary.” My reflections and com-
mentary are informed by empirical observations in the classroom,
but the paper is purely reflective, with no controlled experiments or
quantitative measurements. Information bearing on my credibility
as a reflective practitioner appears in Appendix A.

2 What is Program by Design?
If you teach a course in Program by Design, using How to Design
Programs, you can expect these outcomes:

1. Your students will learn a step-by-step design process. The pro-
cess is presented in six steps, but as explained below, I found it
helpful to articulate eight steps.

2. Your students will learn to apply the process to design func-
tions that consume increasingly sophisticated forms of data:
strings, images, numbers and numeric intervals; enumerations;
products; general sums (including sums of products); and lists,

trees, or other sums of products whose definitions incorporate
self-reference or mutual reference. Each form of data engenders
a specialized instance of the design process: a design recipe.

3. With additional guidance, your students will learn to design
interactive programs that are composed of many functions.

Your students can also pick up one or two techniques that don’t
fit neatly into the model of “process plus data equals recipe.”
Possibilities include using abstraction to eliminate duplicate or
near-duplicate code; writing “generative” recursive functions; us-
ing higher-order functions on lists; using accumulating parameters;
reasoning about costs; and programming with mutable state.

Your students can achieve these outcomes using either the com-
plete, first edition of How to Design Programs or the incomplete
second edition. (The choice is discussed in Web Appendix D.)
With either edition, the key learning outcome is mastery of design
recipes, and the distinctive aspect of the recipes is the design pro-
cess.

2.1 Introduction to the (refined) design process

How to Design Programs presents the design process for functions
in six steps:

1. Describe the data used by the function

2. Using a signature, purpose statement, and header, describe
what the function does1

3. Show examples of what the function does

4. Write a template (definition with holes) for the function

5. Fill the template with code, completing the function

6. Test the function

But this six-step process supports only some of the skills the book
teaches. The other skills primarily involve eliminating repetition

1 In the first edition, the signature is called a “contract.”

1B. Data Examples1A. Data Description

2. Function Description
(Signature/Purpose/Header) 3. Functional Examples

4. Function Template 5. Code

6. Tests

7. Review & Refactor

validated
by

names
used in

signature

signature
guides

template

inputs

guide
writing

are
alsowrite body

overlooked
cases

demands
more

Figure 1: The revised, eight-step design process.
Solid arrows show initial design; squiggly arrows show feedback.

and establishing a single point of truth, e.g., reducing multiple
function definitions to a single function definition by abstracting
over additional parameters, or eliminating repetitive case analysis
and recursion by using higher-order functions. At first I found these
skills hard to motivate, but after teaching them I realized they could
fit into a new, seventh step of the design process:

7. Review and refactor the code

To call this seventh step “new” is not really fair; ideas that bear
on reviewing and refactoring appear everywhere in How to Design
Programs. What I have done is to articulate this step, which had
been implicit and hidden.

The steps are presented sequentially, but in practice, they are richly
interrelated. Early steps support multiple later steps, and later steps
can trigger revisions in earlier steps. To help students use the design
process mindfully, I taught them about the relationships shown in
Figure 1. In the figure, as in class, I treat data description and data
examples as separate steps numbered 1A and 1B, making eight
steps in all. Separating data examples from data description makes
the examples harder for students to forget, and it helps me bring
out ways in which the description and development of functions
parallel the description and exemplification of data.2

Students of Program by Design learn all steps of the design pro-
cess immediately, using simple atomic data. They then learn to
specialize the process for products, sums, sums of products, self-
referential and mutually referential data (a.k.a. recursive types),
functions as data, and finally mutable data.

2.2 Relating Program by Design to functional programming

Program by Design is not just a paper-and-pencil design method;
it is supported by the DrRacket programming environment and by
the Racket teaching languages: Beginning Student Language, In-
termediate Student Language, and Advanced Student Language.
The software and the languages are described in detail elsewhere
(Findler et al. 2002; Felleisen et al. 2004a), but the languages are
worth summarizing here: Beginning Student Language is a pure,
eager, first-order, dynamically typed, functional language that has
global definitions of functions and variables, structure (record) defi-
nitions, LISP’s multiway conditionals, and language constructs for
expressing unit tests. Intermediate Student Language adds nested
definitions and lambda, making functions higher-order and first-

2 Sperber and Crestani (2012) also expand the design process into eight
steps: they split function description into two steps (purpose statement
and signature) and the function template into two steps (“skeleton” and
template). They do not mention anything like “review and refactor.”

class.3 Advanced Student Language adds mutation and impera-
tive I/O.

Is it functional programming? Well, the design method does not use
equational reasoning or algebraic laws, ideas that some functional
programmers deem essential (Bird and Wadler 1988). There are
(at least at first) no higher-order functions, and the language is
not lazy, which rules out the kinds of modularity that may make
functional programming matter (Hughes 1989). And while testable
equations are central, equational properties can be tested only if
you can integrate add-on software that is documented in German
(Crestani and Sperber 2010).

On the other hand, data are immutable. As a result, specifications of
functions are simple and equational, and unit tests are simply equa-
tions. The Beginning and Intermediate languages are pure, so their
evaluation can be explained (and debugged) using DrRacket’s alge-
braic stepper. Function composition is encouraged. Control flow is
expressed exclusively through a combination of function calls and
conditionals. In particular, there are no loops; there are only recur-
sive functions and higher-order list functions. And although there
is no static type checking, your students will nevertheless learn to
write parametric type definitions and polymorphic functions.

If your goal is to teach functional programming, this two-paragraph
summary may tell you if Program by Design will meet your needs.
Our institutional need, as detailed in Web Appendix C, was to teach
beginning students how to solve problems using the computer;
for us, functional programming is a means, not an end.

2.3 Understanding and teaching the design method

This section highlights aspects of Program by Design to which,
in my first time teaching the method, I had to pay extra attention.

Data definitions use familiar types As Felleisen et al. (2004a)
note, the syllabus is driven by data definitions. Data definitions

3 Intermediate Student Language actually comes in two flavors: with and
without lambda. I suggest that you use only the flavor that has lambda.

are informal; a data definition is a comment that introduces a type
and gives it a name.4 The types are familiar: there are (immutable)
base types, and new types can be formed using products, sums, ar-
rows, and universal quantification. But types are extra-linguistic:
although they are required in data definitions and function signa-
tures, they appear only in comments and are not checked by the
compiler.

A product type uses a structure like those found in Common
Lisp (Steele 1990, Chapter 19). A structure, which is defined with
define-struct, has named fields, and it comes with a construc-
tor function for introduction and selector functions for elimination.
It also comes with a type predicate that can identify a structure
when it forms part of a sum. A structure definition alone, how-
ever, does not make a product type; that takes a data definition,
which refers to the structure definition and also gives the type and
meaning of each of the structure’s fields.

A sum type is a matter of programming convention, documented in
a data definition. Values automatically participate in sum types
without explicit injection, so sums have no introduction form.
The elimination form is the multiway conditional cond. The
branches of the conditional use predicates that are consistent with
the data definition of the sum type; these predicates typically in-
clude type predicates, from structure definitions or from base types.

Arrow types and polymorphic types resemble their counterparts
in Haskell or ML. Arrows are introduced by define or lambda
and are eliminated by function application. Polymorphism happens
automatically without any extra notation.

Because the familiar foundations are in place, I found it easy to
transplant ideas and techniques from Haskell and ML into the
teaching languages from How to Design Programs. But the ideas
and techniques have to be expressed a little differently, because the
teaching languages lack some familiar conveniences: there are no

4 The first half of the book refers to a type as a “class of data.” The word
“type” is not introduced until functions are made first-class.

anonymous tuple types; there is nothing corresponding to a value
constructor; there is no case expression; and neither sums nor
products can be eliminated using pattern matching.

Types guide code As suggested by Brooks (1975) and by Jack-
son (1975), the types of input data guide the shape of code. If a
function f consumes a value of type τ , then f ’s body is typically
designed around the elimination form(s) for type τ . In How to De-
sign Programs, the body’s design is called a template. The template
for a sum uses cond; the template for a product uses the selector
functions of the corresponding structure. (Values selected from a
product are then “combined” by applying a function to them.)

Teaching types and code Words like “sum type” and “product
type” are too mathematical for our beginning students, many of
whom think they can’t do math. To keep students comfortable
enough to learn, I use Stephen Bloch’s terminology: a definition
of a product type is a definition by parts, and a definition of a sum
type is a definition by choices. To avoid getting into the distinction
between defining a name and using a type-formation rule, I also
abuse terminology and talk about types that are “defined by name,”
like “image” and “number.”

How to Design Programs made it easy for me to teach students to
use the elimination forms for sums and products. It was not so easy
to teach students to use named types. The “elimination form” for
a named type is a function call, but what functions should students
call? It depends on where the name comes from and what manner
of type it refers to.

• If a type name refers to a base type (atomic data), then the right
calls are to library functions or to helper functions written by the
student. The student should look for a function whose signature
says it consumes a value of the named type.

• If a type name refers to the data definition in which it appears,
that definition is self-referential, and the right call is a naturally
recursive call to the function being defined.

• If a type name refers to a data definition in a group of mutually
referential definitions, then the design recipe calls for parallel
development of a group of similar functions, one per data def-
inition. The right call is to the function within the group that
consumes data of the type referred to.

• Finally, if the type name refers to a data definition written by
the student (or the instructor), then the right calls are to func-
tions written by the student (or possibly the instructor). Again,
the student should look for a function whose signature says it
consumes a value of the named type. If no suitable function is
available, I ask my students to create a work order for a new
function and to put it on an order list (see the discussion of
“wish lists” in Section 3.2 below).

This analysis suggests when and how to write a helper function and
when and how to look for a library function.

Although the book pushed me, implicitly, to teach elimination
forms, types can guide code in two other ways:

• In any function, you have available the inputs, the fields of
any structure inputs, and the results of any natural recursions.
You combine these values to compute the answer you want.
But how? You could use the method of tables and examples
described under Step 5 in Section 3.1 below, which relies on
insight. Or you could use types.
If you are designing a function f that is obligated to produce a
result of type τr , you can treat τr as a “goal type,” and you can
ask if there is a function available, either defined or on your
order list, that produces a result of that goal type τr . If you find
such a function g of type τa → τr , perhaps you already have
a value of type τa, or perhaps you repeat the exercise with τa
as the new goal type. Your goal-directed search produces, as
candidate expressions, well-typed compositions of functions.
It helps you by limiting what compositions you consider.

• Last, and rarely, you could design a function’s template around
the introduction form for the result type.

When I teach Program by Design again, I will make my students
aware of this decision point in the construction of a function’s tem-
plate: should they use elimination forms, function composition, or
an introduction form? They should use elimination forms usually,
function composition sometimes, and an introduction form rarely.

A data-description pitfall Because a data definition is informal
English, it can express invariants and other properties that are
difficult to express in simple type systems based on System F—
like the order invariant on a binary-search tree. Such expressive
power is useful, but it also represents a potential pitfall. Because
the role of a data definition is to guide the shape of code, good data
definitions use the power of informal English only as a last resort.
For example, I would never define a nonempty list of numbers
as a list of numbers that contains at least one number. Such a
definition is inferior because it expresses as a predicate (at least
one) a property that should be structural (not empty). It leaves
students with no guide to the structure of a function that consumes
nonempty lists of numbers. A property such as “a nonempty list
of numbers” or “a list of an even number of strings” should be
expressed inductively as part of the structure of a data definition.
For example,

;; A *nonempty list of numbers* (lon+) is one of
;; (cons n empty), where n is a number
;; (cons n ns), where n is a number
;; and ns is a lon+

This data definition is the one to use for such functions as “mini-
mum” or “maximum,” which are defined only on nonempty lists—
it tells a student exactly how to organize the functions.

Creativity and constraint The design process has a lot of steps,
and the textbook has a lot of rules and prescriptions. Some steps call
for students to get creative; others call for them to respect the rules
and prescriptions. To help students succeed, I tried to be explicit
about which were which.

• To look at the world or at a problem, and to capture its essen-
tial aspects in a data definition, is in my opinion the design step
that requires the most creativity. It is also the most challenging.
Because systematic design begins with data definition, and be-
cause I wanted my students to build on solid definitions, I rarely
asked my students to create data definitions; instead, I provided
most data definitions. To give students, safe, relatively easy op-
portunities to create their own data definitions, I recommend
using “world programs” (Section 4.2 below).

• The other design step that requires creative problem solving is
turning a function template into code. Because this step requires
a less difficult, puzzle-solving style of creativity, I asked my
students to turn templates into code all the time. To help them,
I taught the method of tables and examples discussed under
Step 5 in Section 3.1 below.

• The remaining steps of the design process reward order and
method over creativity. Function signatures should mention
only defined data and should be connected to words or rela-
tionships in the problem. Purpose statements must be written
methodically and checked to be sure they are complete and
comprehensive. Data examples should enumerate all possible
shapes of data, and functional examples should also include
examples of all shapes. Templates should be developed system-
atically using one of the three ways that types can guide code.
Tests should come from functional examples; additional tests
should be introduced only to help clarify function descriptions,
to isolate bugs, or to prevent regressions.

Presenting functional abstraction and higher-order functions
Both editions of How to Design Programs include sections on
simplifying and generalizing code. In particular, the book shows
how to combine two similar functions into one by abstracting over
the parts that are different. Both the desire to simplify and the
ability to abstract are essential for any working programmer, but
they don’t correspond to any step of the design process in the book,
so I found them difficult to motivate. This difficulty will be resolved

by making “review and refactor” an explicit, final step in the design
process, as suggested above: simplification and abstraction will be
two of a series of recommended refactorings.

What about standard higher-order functions on lists? Functions like
ormap (a.k.a. any or exists), andmap (a.k.a. all), map, filter,
and folds? I debated whether to teach them; in part, I feared that
identifying common patterns of recursion would be too difficult, or
that I could not offer enough practice time. Eventually, I decided
to teach these functions because they are prominent in the book,
and they are a functional programmer’s power tools. To justify
this decision, I concocted, with help from colleagues, a story about
preparing for the future:

Processing data in sequence is very common, and most
languages provide features that help. You will see “loops”
with keywords like “for”, “while”, or “repeat”; you may
see “iterators”; and if you use a fashionable language like
Python, you might even see fancy “list comprehensions.”
Why do such features matter? Because, if you are a princi-
pled software designer and you use a language that provides
its own bricks, you use the bricks that are provided—you
don’t bake your own funny-shaped bricks out of raw clay.
In other words, you must learn when and how to solve prob-
lems using built-in looping features.

I then explained that Intermediate Student Language provides these
bricks in the form of general-purpose functions that implement
“loops” for search, selection, and transformation. It even provides
two very general-purpose functions that amount to “do some-
thing with each element”: foldl works left-to-right, and foldr
works right-to-left. My students learned to use these functions well
enough, but I still don’t fully understand how the functions fit into
the steps of the design process.

3 Outcomes in the classroom; delivering a course
This section presents lessons I learned from teaching Program by
Design at Tufts. Tufts is a private, American, Carnegie Research I
university with very selective admissions. My course substituted
for our usual first course in computing, which is required of all
majors. Two-thirds of the students were in their first semester at
university; most of the others were starting their third year. Most
reported little or no prior experience with computer programming.
Those who completed my course were eligible to continue to the
second course in computing for majors, and most elected to do so.

My conclusions are drawn from observations in the classroom,
in the laboratory, and of students’ written work. I observed my stu-
dents, my staff, and myself. For students, I address their learning
about the design process and about some advanced topics. For my-
self, I confirm that my experiences are consistent with those pub-
lished in the literature. Because my conclusions come from just a
single case study, they are in no way definitive. But they should be
informative enough to help both you and your students.

3.1 Where students struggle & where they don’t (design steps)

Not all steps of the design process are equally easy to learn. Here I
report on students’ experience with seven of the eight design steps.
(I conceived of the “review and refactor” step too late to teach it.)

Step 1A: Data definitions My students had little trouble learn-
ing to write monomorphic data definitions. What trouble they did
have arose from compositionality: although the elements of a sum
or product type can themselves be sum or product types, some stu-
dents thought at first that the elements of a sum or product type had
to be base types. Had I chosen better examples, my students could
have avoided this misconception.

A few students had a more subtle problem: they wanted to nest
sums and products more deeply than is wise. As is implicit in the
examples in the textbook, defining a sum of products of named
types is a good strategy and works well with the rest of the design

method. But putting an additional sum or product under one of the
nested products creates definitions that are harder to understand,
and it militates against the effective use of helper functions.

Finally, late in the term, many students allowed their data defini-
tions to get sloppy. Their most common fault was to conflate the
name of a structure element with the name of its type.

Step 1B: Data examples A data definition is a kind of specifi-
cation; like other specifications, it expresses what a programmer
intends to model. So how do we tell if a data definition expresses
the right intent? By writing data examples. Data examples also sup-
port problem-specific case analysis, e.g., which temperatures sup-
port deciduous trees? Or on a map, which hospitals lie in the local
jurisdiction?

My students often forgot to write data examples. And initially, most
of them struggled to write data examples that DrRacket would
accept. The forgetting can be addressed, as suggested above, by
teaching the construction of data examples as a discrete design
step with its own number. The struggles with DrRacket should
be addressed, in my opinion, by improving DrRacket so that it
supports data examples as well as it currently supports functional
examples. Let’s look at that support.

For functional examples, each teaching language provides a syn-
tactic form called check-expect. A check-expect may appear
anywhere at top level; in particular, a check-expect that calls a
function may appear before the definition of that function. Here is
an example; the check-expect uses swap before its definition:

;; DATA DEFINITION: A (pairof X Y) is a structure
;; (make-pair x y)
;; where x is an X and y is a Y
(define-struct pair (fst snd))

(check-expect
(swap (make-pair ’fish ’fowl))
(make-pair ’fowl ’fish))

;; swap : (pairof X Y) -> (pairof Y X)
;; return a pair that is equal to the given
;; pair with the elements swapped
(define (swap p)
(make-pair (pair-snd p) (pair-fst p)))

DrRacket accumulates uses of check-expect and related forms;
waits until all functions, values, and structures have been defined;
runs the accumulated uses in the context of the definitions; and
finally rewards students by saying something like “All 16 tests
passed!”

Data examples enjoy no comparable support:

• Data examples lack their own syntactic form; they are written
either as top-level expressions or as right-hand sides of define.

• Data examples are not accumulated and summarized.
• Data examples win no rewards from DrRacket. In fact, when

data examples are written as top-level expressions, DrRacket
delivers light punishment: before reporting about tests, it sprays
the values of those expressions to standard output. These values
may distract from the values of other expressions that have
more meaning or that have been placed in the code for use with
Racket’s algebraic stepper.

• A data example that incorporates a structure must appear af-
ter the relevant define-struct. This requirement confused
and frustrated my students, who tripped over it repeatedly. Stu-
dents expected data examples to be like function definitions and
check-expects, both of which can refer to functions and struc-
tures before they are defined.5

5 The definition of a variable, unlike the definition of a function, must
also appear after any definitions to which it refers. But my students rarely
defined variables and almost never defined a variable that depended on
another variable. So if this similar restriction on variable definitions caused
students any difficulty, I didn’t see it.

My students eventually learned to place their data examples after
all relevant definitions, but they deserve better. An idea of what
“better” might look like appears in Section 6.1 below.

Step 2: Function descriptions A function description comprises
a type signature, a purpose statement, and a header. The purpose
statement is essentially Meyer’s (1997) contract (precondition and
postcondition), but it is informal and therefore not checkable by
automated tools. The header names the parameters. Headers are
easy, but for my students, learning to write good signatures and
purpose statements was hard.

Students quickly learned the idea of signatures, but some stu-
dents suffered from a misconception similar to their misconcep-
tion about data definitions: that signatures could refer only to base
types. With that misconception cleared up, students wrote signa-
tures without difficulty, but like Crestani and Sperber’s (2010) stu-
dents, they wrote a lot of bad ones.

The worst kind of bad signature was imprecise because it contained
ill-kinded types. Most often I saw a bare list (with no type
parameter) or a bare structure (not identifying which structure).
A less bad signature had a precise meaning that was inconsistent
with the function it described, usually because it had the wrong
number of parameters. Both kinds of bad signature could be ruled
out by making signatures linguistic, as described by Crestani and
Sperber. Unfortunately, because I did not find documentation on
using Crestani and Sperber’s signatures with the standard teaching
languages, I can’t confirm their experience.

Writing good purpose statements is very hard, even for students
who are well past the beginning stages. I don’t know of a royal
road to writing purpose statements, but I do issue the following
instructions, which relate purpose statements and function headers:

Why is a function’s header grouped with its signature and
purpose statement? So you can use the names of the pa-
rameters in your purpose statement. Therefore, please make

sure that your purpose statement refers to each parameter by
name—and that it mentions the result.

The idea can be found in the textbook, but I needed to emphasize it.
And checking purpose statements in a final “review and refactor”
step of the design process is something even a raw beginner can do.

Steps 3 and 6: Functional examples and unit tests As noted
above under Step 1B, functional examples are written using a
special form called check-expect. This form, which is explained
in the second edition of the textbook, shows two expressions that
are expected to evaluate to equal values; a check-expect serves as
both example and test. Even though we were using the first edition,
I used check-expect for every functional example I presented.

My colleagues, my course staff, and I had worried that students
would rebel against a mandated testing step for each function;
students in our other classes almost never write unit tests, and
they are seldom graded on any kind of testing. We needn’t have
worried. My students quickly learned to write functional examples
and to reuse them as tests. All students learned to use tests, and
most students grew to value them highly. My most vivid example
comes from a hallway conversation about the differences between
Program by Design and our standard first course, which is taught
using C++. When I explained some of the limitations imposed
by C++, one student was dumbfounded: “You mean they don’t have
check-expect?”

Although my students learned to use examples and tests routinely,
not all students learned to use them well. For example, students
were slow to learn that if a function consumes a value that is defined
by choices (a sum type), they should write a functional example for
each choice. (If there is no test for a given choice, DrRacket reports
in Step 6 that code written for the choice is not tested, but by then
it is too late for the missing functional example to play its role in
guiding the construction of the code, as explained in Step 5 below.)

More subtle, and harder to learn, was the idea that functional exam-
ples should include a representative variety of results. The easiest

context in which to introduce this idea is a function that returns
a Boolean; there should be examples that return both true and
false. Had I known that such functions might present difficulties,
I could have forestalled a few instances in which students mistak-
enly wrote predicates that always returned true, for example.

Step 4: Templates Function templates were the most difficult part
of the design process for my students to apply. My students weren’t
confused, and they didn’t ask questions, but most of them consis-
tently turned in code that, to an instructor, was obviously not de-
rived from a legitimate template. Worse, students could not see for
themselves that they had deviated from the template approach. Sev-
eral deviations recurred frequently; I call them confused condition-
als and stubborn sums and structures. I also describe false choices.
To illustrate these deviations, I describe two students’ implemen-
tations of insert, a function that inserts a key and value into a
binary search tree. Such a tree is either false (the empty tree) or a
node containing a key, a value, and left and right subtrees.

The good implementation follows the template approach. Function
insert begins with the elimination construct for the sum: a condi-
tional that asks false? and node?. The case for node selects the
node’s key and continues with a three-way conditional that com-
pares the node’s key with the input key. The conditional has three
branches because the design recipe for ordered data partitions the
input data into three subsets: a key in an ordered set must be less
than, equal to, or greater than a search key. In the three-way condi-
tional, two of the three branches contain naturally recursive calls to
insert, passing the node’s left and right subtrees, respectively.

The bad implementation also begins with the correct conditional.
But its node case deviates from the template approach. It passes
all inputs (including the node) to a helper function change-value,
whose type is too general: change-value expects not a node
but an arbitrary tree. And change-value doesn’t use a tem-
plate based on input data; instead, it calls a helper function
has-key?, which tells if any node of the given tree contains the
given key. Then change-value calls another helper function, ei-

ther update-value or add-node. Finally, add-node contains a
three-way conditional that asks if the input tree is false or if the
given key is smaller or larger than the key in the node. Many things
are wrong here; let’s look first at the conditionals.

A conditional should either distinguish among alternatives in a sum
type, like a case expression in Haskell or ML, or it should make
some other single decision, like an if expression in Haskell or ML.
The initial conditional in both implementations of insert acts like
a case expression, distinguishing a node from an empty tree. Such
conditionals are prescribed by the design recipe for sum types, and
once that recipe is understood, they can be written quickly and eas-
ily. The second conditional in the good implementation of insert
acts like nested if expressions, deciding how the input key relates
to a node’s key. As noted above, it is prescribed by a design recipe
for ordered data. The conditional in add-node is a confused con-
ditional: it mixes the discrimination of alternatives in the sum with
discrimination among keys. Such conditionals are not prescribed
by any design recipe, and they are usually hard to understand.

Now let’s look at the types of the bad implementation’s functions.
Function insert discriminates between node and false, and it
passes only a node to change-value. But change-value expects
a tree, not a node. This tree is a stubborn sum—one that won’t go
away and is scrutinized repeatedly. Sure enough, trees are scru-
tinized by insert, has-key?, update-value, and add-node.
That’s four times as much scrutiny as the template (or the problem)
calls for.

I’ve also seen stubborn structures. One example was in a function
that takes a binary search tree keyed by number and returns the leaf
whose key is closest to a given number. The template for a node
structure should combine the node’s key with computations on the
node’s left and right subtrees. But the example code examines the
node’s key, then calls a helper function with one subtree and the
node. This node is a stubborn structure—instead of being aban-
doned once its elements have been selected, it is passed around,
and multiple helper functions select elements from it, repeatedly.

Finally, a false choice is a conditional decision that ought not to
be made, because one of the right-hand sides subsumes the oth-
ers. A typical example consumes a list: the empty? choice handles
empty lists, and the cons? choice, instead of using a natural re-
cursion to handle the tail of the list, handles the whole list—and
would work even if the list were empty. Another example is the
conditional in the bad implementation of insert: if insert uses
the helper function change-value, which can handle any tree, not
just a node, then insert should not have a conditional. In yet an-
other example, I saw conditionals with cases for a nonempty binary
tree whose left or right subtree is empty—cases that are subsumed
by the case for a general nonempty tree.

You can watch for these template problems, and you can warn stu-
dents about them, but if students are to identify template problems
independently, in their own code, I believe they need more support
from DrRacket. Some ideas appear in Section 6.2 below.

Step 5: Coding As noted in Section 2.3 above, going from tem-
plate to code sometimes requires creative puzzle solving. To help
stimulate students’ creativity, I have generalized a technique that is
presented in the second edition of How to Design Programs, in the
section on designing with self-referential data definitions.

The problem is to turn a template into code. The technique is
to create one table of examples for each nontrivial case in the
template’s main conditional, or if the template does not begin with
a conditional, one table for the whole template. The first column
of the table is labeled Wanted, and it shows the value the function
should return, which is taken from a functional example. Another
column is needed for each application of a selector function and for
each natural recursion. A labeled column for each input may also
help, as may labeled columns for calls to helper functions.

Once the columns are set up, the student fills in a row for each
functional example that meets the condition associated with the
table. The Wanted column, the inputs, and the results of applying
selector functions are filled in mechanically using the inputs from
the functional example. Columns for natural recursions or for calls

to helper functions are filled in using each called function’s purpose
statement. Here is an example of a table for the induction step of a
recursive function that sums the first n natural numbers:

Wanted n (sub1 n) (sum-to (sub1 n))

1 1 0 0
10 4 3 6
15 5 4 10

We hope the student sees that Wanted is (+ n (sum-to (sub1 n))).

I found the table-of-examples technique so valuable that after two-
thirds of the course, I devoted a full homework assignment to it
and to remedial template writing. The next time I teach the course,
I will ask students, on the very first assignment, to fill in tables of
examples, using images and perhaps a few numbers.

3.2 Where students do & don’t struggle (advanced topics)

Self-referential data and natural recursion I was wisely advised
to start teaching recursion not with lists but with a richer recursive
type. As my first example, I defined a particular binary tree: a con-
spiracy is either an empty conspiracy or a cell headed by a person
and containing two recruits, each of which is also a conspiracy.
To create a running example, I claimed a position at the root of
a class-wide conspiracy, and I sent emails to two students asking
them to recruit two classmates each, and to “give your [recruits]
these instructions and ask them to recruit two more classmates
into the conspiracy.” Students seemed to enjoy the play-acting, and
when the conspiracy was revealed at the blackboard, students were
able to help me evaluate and then define such functions as the num-
ber of people in a conspiracy (population) or the number of steps
needed to get a message to every conspirator (depth). Also, when
the time came to explain the function template for self-referential
data, I was able to draw an analogy between a recursive function
call and the self-reference in my informal recruiting instructions.

After this successful introduction to recursion, I thought we were
home free, but as I watched students tackle more ambitious prob-

lems, I observed a dispiriting phenomenon: many students tried to
understand recursion by mentally inlining recursive calls, arbitrar-
ily many times. Thinking about sequences of recursive calls aban-
dons the template approach, makes students’ heads hurt, and leads
to hideous, broken code. In the future, I will insist even more often
that when you call a function, you must not look at its definition, but
only at its description—and in particular, at its purpose statement.
It is only by trusting purpose statements that a programmer can
build things that are big or recursive. I don’t know if my students
picked up bad habits elsewhere or if the desire to inline functions
is innate, but now I do know I have to fight against it. And I know
that if a student cannot write a crisp, clear purpose statement, that
student is likely to struggle with recursive functions.

Generative recursion One of the contributions of Program by
Design is to distinguish natural recursion, which amounts to struc-
tural induction, from generative recursion, which describes all
other methods of dividing a problem into smaller subproblems
(Felleisen et al. 2004a). Generative recursion provides opportuni-
ties for great homework problems, but I needed to give remedial
homework on templates, and I had promised that students would
do the language-classification project described in Section 5.1 be-
low. So I assigned no generative-recursion homework. I was able to
assess students’ mastery of generative recursion only by observing
them at work. In class, we tackled the construction of a 2D-tree
from a list of points, and I set sorting a list of numbers as a quiz
problem. In both problems, at least some students were able to
identify which approaches were structural and which were gener-
ative. For example, given the standard structure in which a list is
either empty or is made with cons, students correctly identified
insertion sort as structural and selection sort as generative.

Local definitions and lambda expressions My students easily
made the transition from Beginning Student Language to Inter-
mediate Student Language, which adds local definitions and first-
class, nested functions. They also easily absorbed lambda. Al-
though lambda is officially an add-on, we went straight from Be-
ginning Student Language to Intermediate Student Language with

lambda; we never used Intermediate Student Language without
lambda. And because my mandate was to teach programming and
problem-solving, not functional programming, I did not dedicate
any class time to lambda; I simply used it in examples in which
I called higher-order list functions. To my surprise, in lab exercises
designed to reinforce skills with higher-order functions, at least half
the students chose to use lambda, without encouragement or in-
struction beyond what they had seen in class and read in the book.

Functional abstraction and higher-order functions Abstrac-
tion over differences includes abstraction over different functions,
and abstracting over a function produces a higher-order function.
I taught higher-order functions using a suggestion from Viera
Proulx: present purpose statements for functions that answer simi-
lar questions. For example, “How many students in this class carry
a MacBook?”, “How many students in this class are freshmen?”,
and so on. My students swallowed the idea whole and were able
to design, during class, a higher-order how-many function. And
they sailed through a homework assignment in which they used
abstraction to combine functions they had written previously.

My students also had little difficulty using standard higher-order
functions on lists. They did so not only on small problems that
emphasized standard list functions, but also on a large project
for which they were instructed to avoid recursion when possi-
ble. A number of students were comfortable enough to complain
about the names of ormap and andmap, which Haskell program-
mers know as any and all. Students did only one thing that disap-
pointed me: many of them used a fold where a map or filter would
be better. Correcting this fault would be an appropriate refactoring.

Parametric polymorphism As part of its story about abstraction,
How to Design Programs introduces parametric polymorphism.
Data definitions can abstract over type parameters, and function

signatures can use universally quantified type variables.6 My stu-
dents’ written work showed that most of them got the idea of a
parametric data definition, but none of them learned to use the no-
tation properly. And even granting some idiosyncratic notation, few
of them wrote definitions that were clear and unambiguous.

To correct these problems, I would follow Crestani and Sperber
(2010) in introducing a formal language for data definitions. And
although I do not advocate static type checking, I do think my
students would benefit from a static check that type expressions
are well kinded—each type constructor should receive the expected
number of type parameters.

My students had more problems with polymorphic function sig-
natures. Most of them sometimes wrote signatures that were less
polymorphic than their code, using a named type where a type vari-
able would be permitted. Many of them also sometimes wrote sig-
natures that were more polymorphic than their code, using a type
variable where a named type was required. These problems would
not have been detected by Crestani and Sperber’s (2010) dynamic
signature checker: the functions whose signatures aren’t polymor-
phic enough aren’t used at non-conforming types, and the functions
whose signatures are too polymorphic won’t be detected because a
type variable does not trigger any dynamic checks.

Wish lists How to Design Programs, especially the first edition,
emphasizes the design of functions over programs. But it does
present one key tool for designing programs, which it calls the
wish list. The wish list is a list of descriptions, each including a
name, signature, and purpose statement, of functions that need to
be written for the program to be complete.

Unfortunately, I never saw a student use a wish list effectively. And
I often saw students use wish lists ineffectively: instead of being
demanded by demonstrated needs, functions appeared on the wish

6 In the first edition, the universal quantifiers are implicit; in the second
edition, fortunately, they are explicit. I have learned from many experiences
not to ask undergraduate students to envision implicit universal quantifiers.

list after a quick reading of a problem, without thought. The wish
list turned into a fantasy list, containing anything a student might
possibly wish for. Such lists result from muddy, wishful thinking
about problems, not from systematic design.

To fight against muddy, wishful thinking, in future courses I will
avoid the term “wish list.” I will instead refer to an “order list” and
to “work orders.” I will tell students that issuing a work order costs
something, and they had better not order a function unless they’re
willing to pay for it. I look forward to seeing if the new words help.

3.3 Replicating others’ experience

My classroom experience confirms what others have written about
dynamic types, about lecturing, and about laboratories.

Dynamic types Findler et al. (2002) argue that the type systems
of Haskell and ML are too sophisticated for beginning students,
but that a first-order, monomorphic type system might be helpful
for beginning students. Felleisen et al. (2004a) argue that dynamic
typing is a benefit because students and teachers need not spend
energy finding and explaining static type errors. (And when a type
error occurs dynamically, it comes with an example!) My students’
difficulty writing well-formed templates (Section 3.1) suggests that
writing statically well-typed code might also be a challenge.

The compile-time checking provided by Haskell or ML would have
ruled out many of the bad templates I observed—provided that
sums and products were eliminated using case expressions and
pattern matching, and that cases were checked for exhaustiveness.
But as much as I love this compile-time checking, I have seen the
difficulty that beginning students have writing proper templates,
and I agree that compile-time checking is likely to be more of
a barrier than a help. (Several colleagues report using hygienic
macros to provide case expressions and pattern matching without
compile-time checking. Such experiments sound intriguing.)

Live coding in the lecture theater Sperber and Crestani (2012)
recommend that instructors teach design by solving problems us-
ing the full design process, with DrRacket, before a live audience of

students. They caution against taking shortcuts. I found this method
of teaching most effective during the second half of the course.
I also found that a 75-minute lecture is too short for complete, cor-
rect solution of such problems as designing higher-order functions
proposed by the students, or building a 2D-tree. I had to choose
between dropping examples and taking shortcuts, and I took short-
cuts. (When taking a shortcut, I identified each design step I wished
to skip, and I asked students’ permission to skip it.) You may need
to make similar compromises.

Laboratory experiences and assisted programming At Tufts, in-
struction is limited to 150 minutes of lecture per week, plus a 75-
minute lab. A lab accommodates up to 22 students and is supervised
by a staff of two or three undergraduate assistants, plus a “lab run-
ner,” who is typically a doctoral student. My class was limited to 40
students, so I needed only two labs, which I ran myself—primarily
so I could observe students at work.

In lab, I tried to replicate the assisted programming model de-
scribed by Bieniusa et al. (2008): students are given a set of small
programming exercises, of which they are expected to finish half.
Students worked in pairs, and I asked them, at the end of each lab, to
write what they had done and what they learned. Although personal
observation told me more, the self-assessments helped me judge
students’ learning and address issues in subsequent lectures. And
self-assessments scale in a way that personal observation doesn’t.

My labs presented many of the same issues described by Bieniusa
et al., especially the construction of exercises with a suitable num-
ber of problems of suitable difficulty. My most popular labs were
those that posed many small problems. Examples included a list lab
that asked for one data definition and ten functions, and a higher-
order functions lab that asked for ten functions and the results of
several function applications. My least popular labs were those that
posed a single problem broken down into many pieces. Examples
included a lab to convert any S-expression into a sequence of atoms
(and back again); a lab to build a game of whack-a-mole; and a lab
to build an interactive map of the northeast United States, highlight-

ing the hospital nearest the mouse cursor. No student completed any
of these labs, so students did not enjoy the early successes that so
help their motivation and learning (Ambrose et al. 2010, Chapter 3).

Other instructors report being challenged to develop good labs
that work in 90 or 120 minutes. A 75-minute lab is even more
challenging. If possible, arrange for a longer lab.

4 Working with the languages, libraries and tools
In this section I explain what I learned about DrRacket, the teaching
languages, and the teaching libraries.

4.1 Using the teaching languages with DrRacket

For over fifteen years I have taught programming languages us-
ing little languages (Kamin 1990; Ramsey 2016). With this experi-
ence as background, I cannot praise the Racket teaching languages
highly enough. The language design is lapidary. I was especially
impressed that functions in Beginning Student Language may not
have local variables. At first I thought this restriction was crazy, but
after observing students at work, I see that not only is the language
simplified,7 but without local variables, students are nudged to cre-
ate helper functions—a notorious point of difficulty for beginning
students.

Including check-expect is a masterstroke. Even if you use only
the first edition of the textbook, you must teach check-expect,
because it is so beautifully integrated with DrRacket. Clicking
Run runs all tests, and DrRacket shows untested code in red on
a reverse-video background. After seeing this feature demonstrated
in one or two early lectures, almost all students routinely submitted
code with complete “statement” coverage. They submitted untested

7 A first-order language with local variables must explain how local defi-
nitions (which may not include first-class functions) differ from top-level
definitions (which do include first-class functions). Intermediate Student
Language, in which all functions are first-class, needs only one, simple,
uniform account of the meaning of a local definition.

code only in assignments that were substantially incomplete. Why?
Probably because every time you compile, DrRacket runs your
tests and tells you about coverage. When my fellow instructors
and I compare programming environments, we agree that easy,
routine, automatic testing and coverage analysis is DrRacket’s most
important benefit.

4.2 Teaching with world programs and the universe library

The teaching languages come with purely functional image and
universe libraries, which can be used to create interactive graph-
ical applications as well as distributed applications (Felleisen et al.
2009). Interactive applications are called “world programs,” and
my students wrote lots of them. (We did no distributed comput-
ing.) A world program is built around a single higher-order func-
tion, big-bang,8 which has a polymorphic type. The unspecified,
universally quantified type is called the world state.9 Client code
provides a function to render a world state as an image, as well as
pure functions that respond to mouse and keyboard events, or even
to the passage of time, by mapping world states to world states.
The design of world programs is discussed briefly by Felleisen et al.
(2009) and at length in the second edition of How to Design Pro-
grams. My summary guide is reproduced in Web Appendix E.

World programs impressed me very favorably: big-bang is both
powerful and simple, and creating satisfying interactive programs
is easy. But world programs have more intellectual depth than
I realized, and I made some mistakes (Section 5.4 below). I trace
my mistakes to a shallow understanding of the universe library;
I was too willing to take at face value the idea that the purpose of the
library is to enable students to “construct a program that is like the
applications they use on their computers” (Felleisen et al. 2009).
I now believe the library serves broader and deeper purposes:

8 Actually, big-bang is a syntactic form, but you don’t need to know this.
9 Felleisen et al. explain world programs using units (modules), but an
explanation using polymorphism and type variables also works.

• The library provides a simple space in which students can
develop and practice the skill of “look at the world; see data;
define a representation in the computer.”

• The library provides a safe, guided environment in which stu-
dents can design programs, not just functions.

• The library exposes students to the power of data abstraction
(over the world state).

• The library provides flexibility for students to choose different
representations of a world state and to design the event handlers
required by big-bang. This kind of flexibility, and the control
students have over their choices, enhance motivation and learn-
ing (Ambrose et al. 2010, Chapter 3).

Pleasing students with lifelike applications is all very well, but
world programs are important because of their other purposes.
In the future, the aspects I will emphasize most are the skill of
modeling the world in the computer, and the practice in designing
programs, not just functions.

4.3 What to expect from the programming environment

Except for the help and menu system, I found the student-facing
part of DrRacket as good as advertised. Almost all of my students
were instantly productive using the Beginning Student Language.
The help and menu system does present a problem: as far as I can
tell, students are expected to deal with the same help and menu sys-
tem that fully fledged Racket programmers use. Most students were
willing to ignore menu items they didn’t understand, but almost all
of my students tried to use the help system and found themselves
reading documentation for full Racket—especially library docu-
mentation. This documentation, with its idiosyncratic notation for
function signatures, was difficult even for my teaching assistants.

The instructor-facing part of DrRacket surprised me. I was expect-
ing mature, well-documented, stable production software. I got ma-
ture, well-documented, evolving research software. Once I adjusted
my expectations, I got along fine, but I hit a couple of pain points

worth knowing about. Because I hope these pain points will soon
disappear, I have relegated the details to Web Appendix D.3.

One pain point is not going to disappear: if you write libraries, you
are expected to use full Racket. If, like me, you’ve learned only
up to Intermediate Student Language, full Racket presents some
problems: it’s not just bigger; it’s different. I tripped over differ-
ences in definitions of structure types and in meanings of numeric
literals. Luckily, Matthew Flatt suggested a great compromise: use
Intermediate Student Language plus full Racket’s provide form.
To get provide, you need only a small file written in full Racket.
You import that file (using require), use provide to export your
public names, then write the rest of your library in Intermediate
Student Language.

One final caution: it is all too easy for a student to use DrRacket’s
menus to import the wrong library (“teachpack”) by mistake—a
mistake that both students and teaching assistants found hard to
diagnose. Insist that your students import libraries only by using
require in their source code. Using require makes manifest
what libraries have been imported, and as a bonus, it puts your own
libraries on the same footing as built-in libraries.

5 Rookie mistakes and what I learned from them
People love to do things well, but we learn more from our mis-
takes. I asked other instructors to help me learn from their mis-
takes, but those who made beginner’s mistakes did not share them.
Shriram Krishnamurthi did identify two common mistakes: fail-
ing to get complete buy-in from teaching assistants, and allowing
experienced students to disrupt or undermine a class. What fol-
lows is an account of my own most significant mistakes—the ones
from which I learned the most, and the ones I most wish I had
avoided.

5.1 Misdirected effort in preparation and planning

I began preparing my course by trying to identify learning out-
comes, in more detail than I present in Section 2 above. I read the

textbook painstakingly and took detailed notes. This work turned
out to have been a poor use of my time. I later skimmed the book
quickly and made a high-level summary. The summary, which splits
the material into six broad tiers and articulates a simple learning
goal for each tier, helped me far more than my detailed notes. It still
does not contain what my colleagues in education would consider
proper learning objectives, but in hopes that it may also help you,
I have reproduced it as Web Appendix B.

I worked on the course with seven students who had studied func-
tional programming with me. None of us had used Racket or its
teaching languages; what we had used was a dialect of Scheme
called µScheme, which is a bit smaller than Racket’s Intermediate
Student Language. We did not try to learn the teaching languages
in advance, which was a good decision: we picked them up quickly
and easily.

We spent our preparation time on potential homework assignments.
Because our departmental culture encourages “projects,” which
are big, open-ended assignments intended to provide scope for
significant design choices (Web Appendix C), we focused almost
exclusively on project ideas. We especially wanted projects that
would meet our departmental goals of establishing connections to
real-world technology, to real-world data, or to students’ interests
outside of computer science. In the light of experience, our focus
was misdirected.

• In almost every week of a course in Program by Design, stu-
dents learn a new way to organize data. Unfortunately, coming
up with projects that organize data in sufficiently diverse ways
was beyond our abilities. Almost every one of our project ideas
required a list of structures, and for many ideas, a list of struc-
tures was sufficient. But in Program by Design, before students
are ready to work with a list of structures, they have to spend
a month learning simpler forms of data. They then have only
a week or two in which lists of structures are on topic, after
which they move on to other forms of data. Even after much ef-

fort, we couldn’t imagine a set of projects that would fit a course
in Program by Design.

• In Program by Design, students learn so much technique that
there isn’t room for a lot of projects. In a 13-week course, even
though I chose not to teach mutation, I felt that I had only about
3 1
2

weeks in which I could give students a project that was
not driven by a technical learning objective. I was able to use
only one of those weeks for a project. (I used another week to
remediate difficulties with templates, and I used the remaining
week and a half to help my students prepare a learning portfolio,
which served them in lieu of a final examination.)

My staff and I also looked for problem domains that could serve
as unifying themes for multiple labs and homeworks. We settled
on two themes: probability and GPS navigation. I knew probability
was a stretch, but I wanted to deliver a project that has repeatedly
been popular in our first course: write a naı̈ve Bayesian classifier
that identifies the natural language in which a web page is written.
I was more confident in GPS navigation: I felt that it would provide
a more interesting introduction to numeric computation than the
ancient, boring Fahrenheit/Centigrade conversions, and I felt it
would lead up to interactive mapping applications. But neither of
the two themes worked out as well as I had hoped.

• We didn’t have time to take probability seriously. We started
well enough by having students estimate and measure some
real-world probabilities, using log odds. We then ignored prob-
ability for ten weeks, and in the eleventh week, I bombed
students with a few dense pages of probabilistic notation and
Bayesian reasoning, so they could build classifiers. I don’t be-
lieve they retained anything.

• We did better with GPS navigation, but I underestimated my
students’ discomfort with sines and cosines. Not only did my
students find sines and cosines intimidating, but sines and
cosines use “inexact” (floating-point) arithmetic, which I could
otherwise have delayed or avoided. Many students struggled to

write simple functions on GPS coordinates, which took them
far more time and effort than I ever imagined.

These two problem domains may or may not have been poor
choices, but my real blunder was more fundamental. I was warped
by my youthful experiences with C and Pascal, and without think-
ing, I assumed that problems for beginners should use numbers.
Numbers have their benefits—students can draw on their school
experience to develop examples and tests that are independent of
their code—but Beginning Student Language also includes a first-
class image type. This type comes with a lovely algebra of opera-
tions, and it even enjoys special support in DrRacket’s read-eval-
print loop! Or if I hadn’t thought of images, as a longtime Haskell
and ML programmer I should definitely have thought of strings.10

I promise future students that their very first experiences of com-
puting will include examples that draw pictures and say things, not
just examples that compute numbers. Bloch (2010) agrees.

What else did I learn from my mistakes in course planning?

• I found room for only one or two things beyond basic functional
programming. The textbook suggests mutation, but I chose in-
stead to take an extended look at tree structures (1D- and 2D-
trees) and to use a novel final assessment (learning portfolios).

• I believe in projects,11 but when I teach the course again, I will
identify one project and have students build it in pieces through-
out the term. I might try a simple web browser or perhaps

10 Although the first edition of How to Design Programs uses LISP symbols
almost exclusively, the second edition uses strings, and there is a fine string
library.
11 An anonymous reviewer suggests that in conventional courses, projects
are necessary because the cognitive and syntactic overhead of industrial
languages is so great that problems with small solutions rarely provide
much intellectual challenge. By contrast, the reviewer finds the Racket
teaching languages expressive enough, with little enough overhead, that
even problems with 20-line solutions can present significant intellectual
challenges.

a browser for some other kind of database. I would consider
a game like Scrabble, which would provide practice in data
structures and in designing world programs, but my department
is cautious about games (Web Appendix C).

5.2 Miscalibrated homework

My most embarrassing mistake was to assign a problem I thought
was simple without first having completed the entire design process
myself. I asked students to write three functions on GPS positions:
distance, bearing, and projection. I had previously implemented the
functions, and I knew that the function descriptions and codes were
simple. I also knew that some of the trigonometry was subtle, so
I prepared my students thoroughly for the trigonometric calcula-
tions. I thought that was enough.

I was wrong: I badly misjudged the cost of developing functional
examples and unit tests. When I finally finished my reference solu-
tion, the code itself, even with liberal use of helper functions, took
only 24 lines of Beginning Student Language. But to test it prop-
erly, I had to define at least another half a dozen functions, and the
full solution contained 226 nonblank lines of code, tests, and doc-
umentation. The assignment turned out to be about three times as
much work as I had meant to ask for, and I was lucky my students
did not desert en masse.

5.3 Misunderstood templates

As a beginner, I was a little too eager to construct function tem-
plates by leaping at the elimination form for one of the argument
types, as described in Section 2.3 above. I had learned from the
book that when you get a value of sum or product type, you take it
apart using a conditional or a set of selector functions. But there’s
always another choice: you can leave an argument alone, not in-
spect it or take it apart, but simply pass it to another function.
I didn’t teach my students this choice early enough. The possibility,
however, can be taught from the very beginning; indeed, values of
atomic type can only be passed to other functions.

Midway through the term, I tried to correct my mistake by intro-
ducing a new word for an uninspected value: sealed. The decision
about whether to leave arguments sealed comes into play in the
book’s section on processing multiple pieces of complex data, but
I wish I had introduced it earlier. Delaying may have contributed to
my students’ difficulties with templates and to my own difficulties
in teaching function composition.

5.4 My world-state disaster

When I introduced world programs to my students, I made my
biggest mistake of the term. I wanted to show them an interactive
graphics program that did something interesting, and they had
learned about structures but not yet about lists. I somehow got the
idea of a program that would drop a disk on the screen at every
mouse click, potentially filling the screen with disks. No lists?
No problem! I chose as my world state an image containing all the
dropped disks. Had I been trying to sabotage myself, I could not
have chosen a worse example. For weeks, my students conflated
world states with images, and when asked to write new world
programs, they struggled mightily. To get everybody sorted out
on the difference between an image and a world state took my
teaching assistants a month of hard work. Next time I introduce
world programs, I will begin with a simple state containing just
one disk which can change position.

6 Open problems
During the semester, I identified a number of teaching problems
that I have not yet solved. Some problems require Racket program-
ming that is beyond my skills; some require a depth of understand-
ing that I have not yet developed; and some require time, effort,
and in-class experimentation that I have not yet been able to invest.
I begin with easier problems and move to more difficult ones.

6.1 Making data examples first-class

In Section 3.1 above, in Step 1B (data examples), I enumerate the
ways in which data examples are second-class citizens, not sup-

ported by the teaching languages or by DrRacket. All the problems
my students had could be addressed by adding a syntactic form like
this one:

(check-eval expression)

where expression is the data example. The semantics I intend is that
DrRacket accumulates the expressions and then evaluates them,
like the expressions in a check-expect, after all definitions are
in scope. DrRacket could then report something like “All 7 data
examples built!”

This check-eval proposal, which says simply “I have some data,”
does not please the experts. Experts have, however, shown signifi-
cant interest in more ambitious proposals, all of which say “I have
some data of a particular class.” But the experts do not agree on
how a class of data should be formally specified. One specifica-
tion language, contracts (Findler and Felleisen 2002), has grown
into a large and important part of full Racket. Another specification
language, signatures (Crestani and Sperber 2010), has been used
successfully with beginning students. These languages will do well
for instructors who have the skill and inclination to go beyond How
to Design Programs. But as long as the book teaches students to
write function signatures that are informal and unchecked, I hope
a place can be found for a data-example form in which the class of
data is also informal and unchecked.

6.2 Enabling templates to persist and be reviewed

DrRacket does not provide enough support for function templates.
The teaching languages do include forms such as ... and,
which can be used to write templates. But DrRacket does not
recognize these forms as special: it complains that they are untested
code. Untested code is anathema, and DrRacket’s complaints push
students to turn templates into code as soon as possible. And once
a template has been turned into code, it is gone forever.

Because templates disappear, a student cannot review a template to
see if it makes sense in the context of a given signature and data

definition, and a student cannot compare a template with a function
definition to see if the two are consistent. Bad templates account
for almost all the times my students wrote horrible code or went off
the rails entirely. And students don’t see them! As an experienced
functional programmer, I can look at a function and imagine the
template from which it was derived, and I can identify problems
that stem from the template in my imagination. But such acts of
critical imagination are too much to expect of beginning students.

Every other step of the original design process (data descrip-
tion, data examples, function description, functional examples,
code, and tests) leaves behind a visible artifact that can be as-
sessed. Templates should leave footprints, too. It might be enough
to extend DrRacket with a new syntactic form, perhaps called
define-template, which would define a new species of function.
Such a “template function” would undergo the same static checks
as a regular function, would be required to contain the ... form or
related forms, would be expected not to be tested, and could coexist
with a true function of the same name. Template functions would
play many roles:

• Most important, template functions would provide scaffolding
to help students define ordinary functions that are consistent
with the definitions of the data those functions consume.

• During the “review and refactor” step, template functions would
make it possible for students to answer two crucial questions:
Is the template consistent with the signature and the data defi-
nition? And is the function definition consistent with the tem-
plate? When the template itself is invisible, as at present, these
questions are too difficult for my students to answer.

• Template functions would help my teaching staff communicate
with students during laboratories and office hours; my staff
could ask to see a template function and then could ask students
the same two questions about consistency.

• Finally, explicit template functions would help my staff and me
assess students’ code and provide better feedback.

It is also possible that DrRacket could check to see if a function’s
definition is consistent with its template. For example, DrRacket
could check if a definition could be obtained from its template by
replacing each ellipsis with a term. I am not confident that such a
check would provide much additional value—I think the important
property of a function template is that it be present—but it’s an
experimental question. The real value that I am confident of is that
explicit, persistent templates would help my students apply design
recipes correctly. If I could change only one thing about DrRacket,
making templates explicit and persistent would have the biggest
effect on my students’ learning.

6.3 Developing the “review and refactor” step

I plan to teach an explicit “review and refactor” step not only to
unify some disparate instructions and activities that are distributed
throughout How to Design Programs, but also to show students
that mature designers don’t just write good code; they improve
code by refactoring. To identify review and refactoring activities
and to match them to levels of learning and development, much
work remains to be done. As a first step, here are some sug-
gested activities, starting with those suitable for very beginning stu-
dents:

• Check signatures for arity problems, references to unqualified
“lists” or “structures,” and other faults. (Crestani and Sperber
(2010) observe that this activity can be profitably automated by
adding formal signatures to a teaching language.)

• Check functional examples to be sure every choice of input is
represented.

• Check functional examples to be sure every choice of output
is represented. This activity is especially valuable for functions
returning Booleans.

• Examine code for violations of the template approach, espe-
cially the “confused conditionals” and the “stubborn” sums or
structures described in Section 3.1.

• Look for duplicate or near-duplicate codes; if you can identify
parameters to abstract over, replace them with calls to a single,
new function.

• Look for functions that have similar purpose statements (speci-
fications) and consume the same kind of data. Identify and elim-
inate redundancies.

• Look for groups of similar data definitions; if you can identify
type parameters to abstract over, replace them with instances of
a single, new, parametric data definition.

• Look for functions that take one or more arguments of sum,
product, and arrow types. Identify which arguments are “in-
spected” (by cond or selectors) and which are “sealed” (ignored
or passed to other functions). Decide if the decision to inspect
or seal makes sense or if the code would be improved by decid-
ing differently. Especially, look for arguments that are inspected
but could be sealed.

• Rewrite or eliminate conditionals in which one case can sub-
sume others.

• Look for recursive functions that consume lists and can be
expressed using standard higher-order list functions.

• Look for uses of foldl and foldr that can be rewritten using
map or filter.

• Look for recursive functions with similar structures, and replace
them with new higher-order functions.

• Review type signatures of polymorphic functions. For each type
variable, try substituting different actual types, such as image,
Boolean, and list of number. Verify that after substitution, each
signature accurately describes the types of data that you expect
to flow into and out of the function.

6.4 Developing better guidance for conditionals

How should students design conditionals? What role(s) should
else play? When we review a conditional expression, how do we

tell if it’s good or bad? How can a student tell if a conditional
expression is good or bad? I can answer only in two situations:

• An experienced Haskell or ML programmer knows that pat-
tern matching in case expressions is most easily understood
when patterns are non-overlapping, so the behavior of the pro-
gram is independent of the order in which the cases appear.
Each case can be understood in isolation, without considering
the others. The corresponding principle in the Racket teach-
ing languages is that when cond is used to choose among al-
ternatives in a sum type, each alternative should be identified
by an appropriate predicate. For example, a function that con-
sumes a list xs should use the predicates (empty? xs) and
(cons? xs); it should not use else. However, in the first
edition of How to Design Programs, students will see else
used more often than “(cons? xs).” In the second edition,
“(cons? xs)” is used more often.

• When a cond uses just two predicates, they are nontrivial, and
they are complements, use else.12 For example, this code from
a student would be clearer with else:
(cond [(look-across? tree close x y) ...]

[(not (look-across? tree close x y)) ...])

Beyond these two situations, I don’t know what to tell my students.
And while I myself can usually look at a conditional and distinguish
good from bad, I don’t know how to teach graders to do it.

6.5 Assessing students’ programs

The open problem that most affected my students’ learning was
that I found no clear, principled basis on which to assign grades.
My staff and I got bogged down with grading, to a point where
we could not give students timely feedback on their work—and
without such feedback, students learn less and are less confident.

12 The second edition muddies these waters further by adding if to the
Beginning Student Language. However, the 2013 draft uses over eight times
fewer ifs than conds, and I plan to ignore them.

My staff and I got bogged down because although we knew the
big question we wanted to answer—whether our students were
practicing systematic design—we could not figure out how, or on
what scale, to evaluate systematic design.

Many instructors use a system of points. For example, Mitch Wand
uses a detailed rubric graded on a 50-point scale and containing
over 65 potential deductions. Unfortunately, this rubric is designed
for beginning master’s students, and it assumes an in-person code
review. I did not understand the principles used to create the rubric
and so could not adapt it for my situation. Also, just as instructors
in Germany have special concerns about plagiarism (Bieniusa et al.
2008), I, like many other instructors in America, have concerns
about wrangling with students over points.

As a promising alternative to a points system, the education lit-
erature recommends that we identify primary traits to look for in
students’ work, and that we evaluate each trait on a scale with three
to five choices (Stevens and Levi 2005; Walvoord and Anderson
2011). I have used primary traits successfully in our third and fourth
courses. In principle, these courses use the same five-point scale
that the NSF uses to grade proposals: Excellent, Very Good, Good,
Fair, and Poor. In practice, the two extreme grades are rarely used
and are easy to identify; “normal” work is graded on a three-point
scale of Very Good (meets all expectations, equivalent to an Amer-
ican A), Good (does not meet all expectations but shows evidence
of quality and significant learning), and Fair (the lowest passing
grade).13

To apply this scale to a course, the instructor must characterize
traits of work that is Very Good, Good, or Fair. But my staff and I
were able to characterize only Very Good and Fair work:

• Very Good work may contain flaws, but it shows evidence
throughout of having been developed using the design process.

13 At the extremes, Excellent work exceeds expectations and impresses the
course staff (an American A-plus). Poor work shows evidence of serious
deficiencies, typically by being substantially incomplete (a failing grade).

• Fair work shows a systemic failure to apply the appropriate de-
sign recipe. For example, a solution would be graded Fair if
every function’s purpose statement merely restated the infor-
mation given the function’s signature.

We were not able to develop criteria by which to place students’
work between Very Good (developed according to a design recipe)
and Fair (systemic failure of design). And we are not comfortable
grading on a two-point scale.

An ideal analysis of primary traits characterizes what is observed
about each trait for each level of performance. But a partial anal-
ysis, in which only the highest levels of performance are charac-
terized, can also be useful. For instance, Jordan Johnson has devel-
oped a list of 27 characteristics of exemplary work in Program by
Design. To assign a grade, Johnson counts how often these charac-
teristics appear, on a scale of Always, Usually, Sometimes, Seldom,
and Never. He reports good results, but his classes are small—at
most 14 students each. In my class of 40 students, we tried to repli-
cate the “counting” approach for a just a few characteristics on a
couple of homework assignments, with a coarser scale. But our
graders reported that even a little counting was time-consuming
and stressful, and I felt that the counts did not really character-
ize the quality of students’ work. For students, I expect Johnson’s
characteristics would make a fine checklist, but for graders, the
counting approach is too expensive and does not lead to an obvious
grade.

Another alternative is to base grades on a program’s functional cor-
rectness, perhaps as determined by testing. In Program by Design,
test results are less important than systematic design, but students
do wish to be rewarded for producing “working” code. Automated
testing finds bugs effectively (Claessen and Hughes 2000; Crestani
and Sperber 2010). But automated tests require well-specified in-
terfaces, and an essential aspect of Program by Design is that the
interfaces are designed by the students, not the instructor. Were I

to specify interfaces for students to implement, I would be doing
much of the design work that I want them to learn to do.14

Bieniusa et al. (2008) use a “semi-automatic” tool that checks a
student’s program and assigns a preliminary “score.” But the tool
appears to require interfaces to be specified. And unfortunately,
Bieniusa et al. do not discuss the set of possible scores, algorithms
by which scores are assigned, principles on which such algorithms
are based, or instructions given to the teaching assistant who con-
verts the preliminary score to a final score.

A principled grading method that lies outside the context of Pro-
gram by Design is described by Edwards (2003): students submit
both code and tests, and the submission is scored by multiplying
three fractions: the fraction of the student’s tests that are consistent
with the problem statement, the fraction of the student’s tests that
the student’s code passes, and the fraction of the instructor’s code
covered by the student’s tests. Like other testing approaches, this
approach limits students’ freedom to design.

Program by Design’s method enables yet another approach, with
which we can assess functional correctness without limiting stu-
dents’ freedom to design: we assess correctness by reading pur-
pose statements and unit tests (functional examples). DrRacket tells
us which code has actually been executed. If a function’s purpose
statement is clear, the code has been tested, and the tests seem suf-
ficient to validate the purpose statement, the function is deemed
correct. This approach gives students the freedom to design inter-
faces, but compared with automated approaches, it is significantly
more expensive.

7 Conclusion
Principled course design focuses not on material but on students:
what they can do, and how we know they can do it (Wiggins and

14 I have developed prototype software that discovers students’ interface
designs by probing their code, but it relies on compile-time type checking.

McTighe 2005). How to Design Programs is a great source of
material, and prior work (Bieniusa et al. 2008; Crestani and Sperber
2010; Sperber and Crestani 2012) tells us a great deal about how to
teach it. This paper adds to that work, showing some significant
mistakes to avoid, and telling us more about students: what they
learn to do, and where they do and don’t struggle in learning to
do it. Plenty of problems are still open, of which the most difficult
is assessing whether students can do what we think they can do:
we need reliable, cost-effective ways of knowing when and to what
degree students are really programming by design.

Acknowledgments
For help with the manuscript, Stephen Bloch, Matthias Felleisen,
Andrew Gallant, Shriram Krishnamurthi, Ben Shapiro, Mike Sper-
ber, Aaron Tietz, Mitch Wand, and Jayme Woogerd.

For their thoughtful reviews, and especially their observations
about the pedagogical value of programming with numbers, the
anonymous referees. And for an unusually wide-ranging and thor-
ough review, Referee 1.

For analysis of senior surveys and data about Tufts faculty, Dawn
Terkla and Lauren Conoscenti.

For help preparing the way, Sam Guyer, Ben Hescott, Kathleen
Fisher, and Carla Brodley.

For preliminary planning and for learning portfolios, Ariel Hamlin.

For educational matters, Annie Soisson and Donna Qualters. And
for pointers to even more education papers, Ben Shapiro.

For help teaching, in addition to those named in the text, many
members of the plt-edu mailing list, including Stephen Bloch,
Matthew Flatt, Gregor Kiczales, Shriram Krishnamurthi, Viera
Proulx, and Mitch Wand. Especially Stephen and Viera.

For help above and beyond the call of duty, provided to me and to
my staff, Matthias Felleisen.

For making it happen, the students and staff of COMP 50, Fall 2013.

References
Harold Abelson and Gerald Jay Sussman. 1985. Structure and

Interpretation of Computer Programs. McGraw-Hill, New York.

Susan A. Ambrose, Michael W. Bridges, Michele DiPietro, Mar-
sha C. Lovett, Marie K. Norman, and Richard E. Mayer. 2010.
How Learning Works: Seven Research-Based Principles for
Smart Teaching. Jossey-Bass higher and adult education series.
Wiley.

Annette Bieniusa, Markus Degen, Phillip Heidegger, Peter Thie-
mann, Stefan Wehr, Martin Gasbichler, Michael Sperber, Mar-
cus Crestani, Herbert Klaeren, and Eric Knauel. 2008. HtDP and
DMdA in the battlefield: A case study in first-year programming
instruction. In FDPE ’08: Proceedings of the 2008 International
Workshop on Functional and Declarative Programming in Edu-
cation, pages 1–12, New York, NY. ACM.

Richard Bird and Philip Wadler. 1988. Introduction to Functional
Programming. Prentice Hall, New York.

Stephen Bloch. 2010. Picturing Programs: An Introduction to
Computer Programming. College Publications (Kings College
London).

Frederick P. Brooks, Jr. 1975. The Mythical Man-Month. Addison
Wesley, Reading, MA.

Hugh Burkhardt and Alan H Schoenfeld. 2003. Improving edu-
cational research: Toward a more useful, more influential, and
better-funded enterprise. Educational Researcher, 32(9):3–14.

Koen Claessen and John Hughes. 2000 (September). QuickCheck:
a lightweight tool for random testing of Haskell programs. Pro-
ceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming (ICFP’00), in SIGPLAN Notices,
35(9):268–279.

Marcus Crestani and Michael Sperber. 2010 (September). Expe-
rience Report: Growing programming languages for beginning
students. Proceedings of the Fifteenth ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’10), in
SIGPLAN Notices, 45(9):229–234.

Stephen H. Edwards. 2003 (September). Improving student perfor-
mance by evaluating how well students test their own programs.
Journal on Educational Resources in Computing, 3(3).

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shri-
ram Krishnamurthi. 2001. How to Design Programs: An In-
troduction to Programming and Computing. MIT Press, Cam-
bridge, MA, first edition.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shri-
ram Krishnamurthi. 2004a. The structure and interpretation of
the Computer Science curriculum. Journal of Functional Pro-
gramming, 14(4):365–378.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shri-
ram Krishnamurthi. 2004b. The TeachScheme! project: Com-
puting and programming for every student. Computer Science
Education, 14(1):55–77.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shri-
ram Krishnamurthi. 2009 (August). A functional I/O system or,
fun for freshman kids. Proceedings of the Fourteenth ACM SIG-
PLAN International Conference on Functional Programming
(ICFP’09), in SIGPLAN Notices, 44(9):47–58.

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias
Felleisen. 2002. DrScheme: A programming environment for
Scheme. Journal of Functional Programming, 12(2):159–182.

Robert Bruce Findler and Matthias Felleisen. 2002 (September).
Contracts for higher-order functions. Proceedings of the Sev-
enth ACM SIGPLAN International Conference on Functional
Programming (ICFP’02), in SIGPLAN Notices, 37(9):48–59.

David R. Hanson. 1996. C Interfaces and Implementations. Addi-
son Wesley.

John Hughes. 1989 (April). Why functional programming matters.
The Computer Journal, 32(2):98–107.

Michael A. Jackson. 1975. Principles of Program Design. Aca-
demic Press, London.

Samuel N. Kamin. 1990. Programming Languages: An Interpreter-
Based Approach. Addison-Wesley, Reading, MA.

John McCarthy. 1960 (April). Recursive functions of symbolic
expressions and their computation by machine, part I. Commu-
nications of the ACM, 3(4):184–195.

Bertrand Meyer. 1997. Object-Oriented Software Construction.
Prentice-Hall, Englewood Cliffs, NJ, second edition.

Norman Ramsey. 2016. Programming Languages: Build, Prove,
and Compare. Cambridge University Press. Forthcoming.

Emmanuel Schanzer, Kathi Fisler, and Shriram Krishnamurthi.
2013. Bootstrap: Going beyond programming in after-school
computer science. In SPLASH-E (Education track of OOP-
SLA/SPLASH).

Michael Sperber and Marcus Crestani. 2012. Form over function—
teaching beginners how to construct programs. In Scheme and
Functional Programming 2012. At press time, the workshop
proceedings had not yet been published, but the paper could be
found at schemeworkshop.org.

Guy Lewis Steele, Jr. 1990. Common LISP: The Language. Digital
Press, Newton, Mass., 2nd edition.

Danelle D. Stevens and Antonia Levi. 2005. Introduction to
Rubrics: An Assessment Tool to Save Grading Time, Convey
Effective Feedback, and Promote Student Learning. Stylus.

Gerald Jay Sussman and Guy Lewis Steele, Jr. 1975 (December).
Scheme: An interpreter for extended lambda calculus. MIT
AI Memo No. 349, reprinted in Higher-Order and Symbolic
Computation 11(4):405–439, Dec 1998.

Barbara E. Walvoord and Virginia Johnson Anderson. 2011. Effec-
tive Grading: A Tool for Learning and Assessment in College.
Wiley.

Grant P. Wiggins and Jay McTighe. 2005. Understanding by
Design. ACSD, Alexandria, VA, second edition.

A Teaching experience
My teaching experience includes a track record of creating required
programming courses that have long-term impact. One measure of
this impact is our university-wide survey of graduating students,
which asks them about highlights of their four years at Tufts.
Students identify up to three faculty or staff who had a “significant
impact” on their development, and they identify one course that
exemplifies “what a truly excellent college course should be.”

In aggregate, students surveyed in 2012 and 2013 were taught by
700 to 750 faculty, of whom they named 300 to 500 on the surveys.
In 2012, 16 graduating students named me as having a significant
impact on their development, and 11 named one of my courses as
an exemplar of excellence. In 2013 the numbers were 16 and 18,
respectively. (Students named both the third and fourth courses in
our programming sequence.) The responses to my teaching place
me, among the 40% to 70% of our faculty who are named on the
surveys, in the 98th, 98th, 95th, and 99th percentiles.

Supplemental material
A technical-report version of this paper is accompanied by addi-
tional appendices, which are referred to in the text as Web Ap-
pendix B through Web Appendix E. These appendices have not
been peer-reviewed.

B High-level learning outcomes
This section presents my high-level summary of learning outcomes,
as mentioned in Section 5.1. All figure and page numbers refer to
the first edition of How to Design Programs.

Level 0: Tyro (sums of products)

Tyros learn simple computation on data descriptions that can be
written in a way that defines each data class completely before any
other description uses that class.

• Simple design recipe; named functions; define; auxiliary
functions arise from dependencies in the problem [Sections
1 to 3, design recipe Fig 4 page 21]

• Conditional expressions and functions; cond [Section 4, design
recipe Fig 6 page 44]

• Symbols [Section 5] and strings [2nd edition, Section 1.2]
• Structures, define-struct [Section 6, design recipe Fig 12

page 71]
• Mixed data, type predicates such as number? and so on [Sec-

tion 7, design recipe Fig 18 page 89]
• BNF Grammar for Beginning Student Language [Intermezzo 1]

Level 1: Beginning student (lists and trees)

Beginning students learn to work with data descriptions that refer
to themselves and so cannot be completely defined before they are
used. The most common such data are lists and trees.

• Defining and consuming lists using empty, cons, first, rest,
and empty? [Section 9, design recipe Fig 26 page 132]

• Producing lists; lists of structures [Section 10]
• Peano numerals; zero?, sub1 [Section 11]
• Problem-solving; auxiliary functions [Section 12]
• List abbreviations [Intermezzo 2]

• Trees, nested lists (using existing structure and list primitives)
[Section 14]

• Groups of mutually referential data definitions [Section 15,
design recipe Fig 43 page 218]

• Problem-solving: iterative refinement [Section 16]
• Forms of case analysis with multiple complex arguments [Sec-

tion 17]

Level 2: Intermediate student (abstraction)

Intermediate students learn a key technique of computer science:
abstraction.

• local definitions of variables and functions; lexical scope [In-
termezzo 3]

• Don’t Repeat Yourself: abstracting similar functions and similar
data definitions [Section 19]

• Functions are values: filter1, map, sort, parametric poly-
morphism; “loops” [Section 20]

• How to design abstractions; single point of control; clone and
modify considered harmful [Section 21]

• Designing abstractions with 1st-class functions [Section 22]
• Examples: sequences, series, graphing [Section 23]
• Anonymous functions with lambda [Intermezzo 4]

Level 3: Recursive reasoner

Recursive reasoners have the insight to find a recursive decomposi-
tion even when the decomposition is not there in the data. And they
can write recursive algorithms that remember past actions.

• Generative recursion; quicksort [Section 25]
• Problem-solving: algorithm design; termination [Section 26]
• Extended examples: fractals, files, Newton’s method, Gaussian

elimination [Section 27]

• Input via state machines [No book coverage]
• Remembering the past with accumulating parameters [Sections

30, 31, 32]
• Graph algorithms and search [Section 28]

Level 4: Cost container (costs)

Cost containers can reason about costs.

• Cost modeling, vectors, big O notation [Section 29]
• Inexact (floating-point) numbers [Intermezzo 6]

Level 5: Memory mutator (mutation)

Memory mutators cut costs by using mutable state.

• Mutable variables and mutation (set!) [Sections 34 to 37]
• Syntax and semantics of Advanced Scheme [Intermezzo 7]
• Abstraction with mutable state [Section 39]
• Mutable structures and vectors [Section 40]
• Mutating elements (atomic or structured) [Section 41]
• Extensional and intensional equality [Section 42]
• Mutation practicum: quicksort, cyclic structures [Section 43]

C Curricular constraints at Tufts
Curricular decisions are local. To put my decisions into their proper
context, I highlight our most salient local constraints.

• Our department has historically favored the teaching of pro-
gramming; we are not pressured to teach “computational think-
ing” or a new kind of science or anything else. We believe that
if students learn good methods of programming, they will also
learn good methods of thinking.

• We admire and respect the work that Bob Sedgewick has done
at Princeton, which I characterize as a combination of “com-

putation as a science” and “computation in service to the sci-
ences.” But for our own students, we are more interested in
an engineering approach that emphasizes solving problems and
building artifacts.

• Our programming courses emphasize “projects.” A project is a
relatively large programming assignment, done primarily out-
side of class, where the assignment is focused on a problem in
the world rather than a lesson in the class. Students either build
the entire project themselves or use a well-designed, general-
purpose library like that of Hanson (1996). We work hard to
avoid the trap in which an instructor designs the project and
students “fill in holes.”
Examples of project problems we have used in the first four
semesters of instruction include “Identify the natural language
of this web page,” “Search a database of song lyrics,” “Com-
press and decompress images,” and “Implement full integers
using machine integers.” These projects are connected to real-
world technology (Google Translate, Google Search, JPEG, and
bignums). We also like projects that are connected to what Tufts
calls “active citizenship” (a form of public service), to “big
data,” and to scientific applications.

• Our department is very concerned to serve and retain members
of underrepresented groups, including, e.g., women and first-
generation university students. We work hard to avoid creating
courses that offer advantages to students who have a special
affinity for mathematics or to students who have tinkered with
computers for many years. Many of our students have no prior
experience, and we want the playing field to be level. For this
reason, we minimize the amount of student work devoted to
games and puzzles; we feel that students who are drawn to
games and puzzles are already overrepresented in computer sci-
ence. In particular, the video-game examples in How to Design
Programs would be considered a poor choice for our students.

• Our central administration has articulated that, as a strategic
goal, Tufts should provide transformative educational experi-

ences. This goal helps support the choice of unusual technolo-
gies (such as functional programming) in the classroom. It also
means that we can ask students to work hard.

Given these constraints, our department endorsed the creation of a
course in problem-solving by computer, where students will learn
to solve problems “starting from a blank page,” and that will be
available to every student who is motivated to work hard, regard-
less of background. We decided that our greatest opportunity for
success lay in adapting Program by Design for Tufts:

• We liked the tactical advantages of a mature course designed to
be adopted, with a substantial supporting infrastructure, includ-
ing both software and teaching workshops.

• Program by Design’s design process was the closest thing we
could find to a systematic method of software development
suitable for beginning students.

• We liked the thought of the DrRacket programming environ-
ment and its language levels, which had been proven to work
well with beginning students.

On revisiting our unpublished white paper, which can be found at
http://curriculum.cs.tufts.edu, I am sobered to see that
we understood almost nothing about the method.

Functional programming was never a goal; it was a means to an
end. We arrived at functional programming through this reasoning:

• What we want most from our first course is for students to learn
systematic methods of problem-solving and software develop-
ment.

• Such methods are the essence of Program by Design.
• Program by Design is most easily taught using functional pro-

gramming.
• Therefore, functional programming is a good choice for the

introductory course.

D Trivia and Ephemera
This section information that is too trivial to warrant space in
the body of the paper or that is likely to be invalidated by future
changes in How to Design Programs or in DrRacket. (The course
described in this paper was taught using both the first and sec-
ond editions of How to Design Programs and using DrRacket ver-
sion 5.3.6.)

D.1 Choosing an edition of the textbook

How to Design Programs is available in two editions. The first edi-
tion is complete, available in print from MIT Press, and also avail-
able online. The second edition is not only still unpublished; it is
not yet complete. But it contains many changes and improvements:
• It describes a function’s type as its “signature,” not its “con-

tract.”
• It introduces check-expect and related forms.
• It is much more explicit about the difference between designing

functions and designing programs.
• It contains new sections on designing programs in two model

families of programs (interactive graphics programs and batch
I/O programs).

• It explains the most up-to-date versions of the image and
universe libraries described by Felleisen et al. (2009).

• It contains new material on higher-order functions, the use of
abstractions, and effective use of wish lists.

• It contains myriad other small improvements (e.g., explic-
itly quantified type variables in polymorphic signatures, less
promiscuous use of else).

While I borrowed a number of ideas and terms from the second
edition, and I assigned a few readings from the second edition,
I required the first edition as the official textbook for my course.
While I find much to admire in the second edition, and I look
forward eagerly to its completion, I felt that, especially for a new

course, everyone concerned would be uncomfortable with the idea
of an incomplete textbook available only on the web, whereas
everyone would be very comfortable with a printed book that had
received the imprimatur of the MIT Press.

D.2 Complaints about the teaching languages

I have only very minor complaints: I frequently wished for “un-
equal” functions on various base types, and I wished there were no
struct? predicate. In a rational design process, I can identify no
place for the struct? predicate, and my students routinely mis-
used it.

I didn’t realize check-within could be used on any value—I had
thought it was limited to floating-point values. Also, not all my stu-
dents understood how to use its “epsilon” parameter. These students
sometimes wrote check-within forms that would pass tests even
if a computation was grossly inaccurate.

D.3 Pain points with DrRacket 5.3.6

First, I found it difficult to create libraries (“teachpacks”) for my
students’ use. There are two different, incompatible methods for
installing libraries, the simpler of which turns out to be irreversible
(there is no “uninstall”). Neither method was easy for me to learn.
I believe that these problems can be addressed easily enough by bet-
ter explaining Racket’s “collection” and “package” models, as well
as some other minor improvements in the documentation.

The second pain point is a component called the “handin server,”
which enables to submit programs from their own computers, be
they OSX, Windows, or Linux. The details are not worth recounting
here, but my systems staff and I spent a couple of full days each
getting it (mostly) working. What you need to know is that the
handin server exists, and that getting it working may take much
more time than you expect.

A third pain point seems almost silly, but it prevented one student
from submitting a working homework assignment, and none of my
course staff was able to diagnose the problem. The student had

somehow cut and pasted code containing a Unicode en dash or
em dash, and had tried to use the dash as a minus sign. To say
that the error message was baffling would be rank understatement.

D.4 Importing libraries

I must mention a minor pitfall connected to the universe library.
Both the second edition universe and the first edition world build
on an image library. But while there is only one universe library
and only one world library, there are two image libraries, and they
are incompatible. All libraries are chosen using DrRacket’s menus,
and unfortunately a number of my student chose the wrong image
library from the menus. This error took our course staff some
time to diagnose, and until we diagnosed it, it caused significant
unnecessary suffering and confusion. In the future, as noted in the
body of the paper, I will mandate that all libraries be imported not
using the graphical user interface but using an explicit statement in
the source code such as (require 2htdp/image). This procedure
will also have the advantage of putting my libraries on the same
footing as the book’s libraries.

D.5 Two of my minor oversights

70% of my students were freshmen in their first semester at uni-
versity. Many of them were expecting an “introduction to com-
puter science,” and I did not manage their expectations about what
“introduction” means to a computer scientist. Many students were
shocked to learn that an introductory course would require weekly
lab exercises and weekly programming assignments. Most of these
students dropped the course.

Students were very curious to know about full Racket and how it is
used in real life. I was not prepared to answer.

E Design guidelines for world programs
This section reproduces a handout I created to help my students
design world programs.

The second edition says:

Your task is to develop a data representation for all possible
states of the world.

This is the hardest part of designing a world program. Some ideas:

• Draw scenes that the program might display. (Imagine you film
the program in operation. What are the key still images you
would put on a storyboard to show the program at work?)

• What data do you need to draw your scenes and images?
• What data remains the same in every scene? Things that don’t

change shouldn’t be part of the world state. Such things should
instead be made named constants using define.

• What data changes? That data becomes part of the data defini-
tion for the world state. Here are some general ideas:

A very simple program might have just one item of atomic
data as its world state.

A scene with multiple elements might have a structure as its
world state (definition by parts).

A program with multiple kinds of scenes, each with its own
set of elements, might have a set of variants as its world state
(definition by choices on top of definition by parts).

Protip: It is also possible to define the world state using
definition by parts on top of definition by choice, or even
definition by parts on top of definition by choice on top of
definition by parts. This is one of the deepest tricks in the
business, and we’ll talk about it in class.

• What datum is needed to draw the very first scene? This datum
is a world state; in fact, it is the initial state of the world. It is
sometimes called “world 0.”

• A world is full of events such as mouse movement, button
presses, key presses, and the passage of time. What events cause
changes in scenes? One way to answer this question is with a

state-transition diagram that shows a box for each choice of
state and and arrows connecting related states.
If you can answer this question, and you can say how the events
affect the state, then you’re ready to finish your data description
and move on to your order list.

E.1 Developing an order list for world programs

Questions to ask about any world program:

1. Does it need to draw anything?
Yes. You will need to define a function to pass to to-draw. That
function will need a name; in the example below, it is called
render.

2. Does it need to respond to the mouse?
If so, you will need to define a function to pass to on-mouse.
That function will need a name; in the example below, it is
called mouse-event-handler.

3. Does it need to respond to the keyboard?
If so, you will need to define a function to pass to on-key. That
function will need a name; in the example below, it is called
key-stroke-handler.

4. Do things need to happen as time passes, even if the mouse and
keyboard are untouched?
If so, you will need to define a function to pass to on-tick.
That function will need a name; in the example below, it is
called clock-tick-handler.

5. Does the program run indefinitely (or until killed)?
If not, you will need to define a function to pass to stop-when.
That function will need a name (which should end in a question
mark); in the example below, it is called end?.

; WorldState : a data definition of your choice
; data that represent the state of the world

; render :
; WorldState -> Image
; big-bang evaluates (render cw) to obtain image of
; current world cw

; clock-tick-handler :
; WorldState -> WorldState
; for each tick of the clock, big-bang evaluates
; (clock-tick-handler cw) for current world cw
; to obtain new world

; key-stroke-handler :
; WorldState String -> WorldState
; for each key stroke, big-bang evaluates
; (key-stroke-handler cw ke) for current world cw and
; key stroke ke to obtain new world

; mouse-event-handler :
; WorldState Number Number String -> WorldState
; for each key stroke, big-bang evaluates
; (mouse-event-handler cw x y me) for current
; world cw, ; coordinates x and y, and mouse event me
; to obtain new world

; end? :
; WorldState -> Boolean
; after an event, big-bang evaluates (end? cw)
; for current world cw to see if the program stops

Figure 2: Signatures of world functions (reproduced, with minor
formatting changes, from Figure 10 of How to Design Programs,
second edition)

The signatures for all these functions are explained in Section 2.6
(Designing World Programs) of the second edition textbook. Fig-
ure 2 reproduces the key figure from that section.

Here is an example call to big-bang:

(big-bang first-world-state
(on-tick clock-tick-handler)
(on-key key-stroke-handler)
(on-mouse mouse-event-handler)
(to-draw render)
(stop-when end?)
...)

Here is another example that uses shorter names for some of your
functions:

(big-bang w0
(on-tick tock)
(on-key ke-h)
(on-mouse me-h)
(to-draw render)
(stop-when end?)
...)

E.2 Resources

The Racket Documentation is not the best way to learn big-bang.
The best way is to consult Part One of the second edition:

• Section 2.4.2 (Interactive Programs) presents some simple
big-bang examples, but it does not explain systematically
what big-bang does.

• Section 3.6 (Designing World Programs), especially Figure 10
(which is reproduced above), systematically outlines the struc-
ture of every program that uses big-bang, and it explains what
big-bang does with each piece of this structure.

• Section 3.7 (A Note on Mice and Characters) explains mouse-
event handlers and keystroke handlers.

