
Reprinted from the 15th International Symposium on Principles and Practice of Declarative Programming (PPDP 2013)

Engineering Definitional Interpreters

Jan Midtgaard

Department of Computer Science
Aarhus University

jmi@cs.au.dk

Norman Ramsey

Department of Computer Science
Tufts University

nr@cs.tufts.edu

Bradford Larsen

Veracode

blarsen@veracode.com

Abstract

A definitional interpreter should be clear and easy to write, but it
may run 4–10 times slower than a well-crafted bytecode interpreter.
In a case study focused on implementation choices, we explore
ways of making definitional interpreters faster without expending
much programming effort. We implement, in OCaml, interpreters
based on three semantics for a simple subset of Lua. We com-
pile the OCaml to x86 native code, and we systematically inves-
tigate hundreds of combinations of algorithms and data structures.
In this experimental context, our fastest interpreters are based on
natural semantics; good algorithms and data structures make them
2–3 times faster than naı̈ve interpreters. Our best interpreter, cre-
ated using only modest effort, runs only 1.5 times slower than a
mature bytecode interpreter implemented in C.

Categories and Subject Descriptors D.3.4 [Processors]: Inter-
preters

General Terms Algorithms, Languages, Performance, Theory

Keywords Interpreters, semantics, language implementation

1. Introduction

In early days, McCarthy (1960) defined LISP by writing an in-
terpreter. Then Reynolds (1972) showed us that an interpreter is
a leaky abstraction: the metalanguage can influence the semantics
of the language we are trying to define. Eventually, we found bet-
ter ways of defining languages, using formalisms from Strachey
and Scott (Stoy 1977), Plotkin (1981), Kahn (1987), and Felleisen
(1987). If you like declarative languages, you understand that in any
of these styles, a definition can be translated pretty directly into an
interpreter, which we might still call “definitional.” Danvy (2006)
even showed how relationships between semantics and interpreters
can be derived through transformation.

But did you ever wonder if this kind of definitional interpreter could
be more than just a toy? More than a teaching tool? If you could do
more with it than just get insight? If you could write interesting
programs, then use a definitional interpreter to run them? We did.

To address these questions, we created and studied 644 interpreters,
which use a couple of dozen variations on each of 23 basic ideas,
each of which is based on one of three language definitions. We es-
timated both performance and programming effort.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PPDP ’13, September 16–18, 2013, Madrid, Spain.
Copyright c© 2013 ACM 978-1-4503-2154-9/13/09. . . $15.00.
http://dx.doi.org/10.1145/2505879.2505894Reprinted from PPDP ’13, [Unknown
Proceedings], September 16–18, 2013, Madrid, Spain, pp. 121–132.

In detail, we make the following contributions:

• We investigate three styles of semantics, each of which leads to
a family of definitional interpreters. A “family” is characterized
by its representation of control contexts. Our best-performing
interpreter, which arises from a natural semantics, represents
control contexts using control contexts of the metalanguage.

• We evaluate other implementation choices: how names are rep-
resented, how environments are represented, whether the inter-
preter has a separate “compilation” step, where intermediate re-
sults are stored, and how loops are implemented.

• We identify combinations of implementation choices that work
well together. For example, if you do not want to bother writing
a distinct compilation step, you should intern each name in the
abstract-syntax tree so that it has a constant-time equality test.
This choice, together with a simple association list for local
variables, performs as well as some interpreters that do have
a distinct compilation step (Section 10).

Because our performance measurements use only OCaml 3.10.2
compiling to x86 native code, conclusions about performance are
necessarily preliminary. But it might not be too hard to engineer a
definitional interpreter that you would be willing to use in practice:
our best-performing implementation is nearly as easy to create
and change as a naı̈ve implementation, yet on this one platform,
it performs about 3 times better than a naı̈ve definitional interpreter
and only 1.5 times worse than a mature bytecode interpreter.

The value of this work lies in a systematic method of engineering
interpreters. We focus on the path from semantics to implementa-
tion, on the most easily implemented ideas for reducing interpretive
overhead, and on the most salient problems that arise.

• We begin with semantic starting points. A semantics typically
describes a core calculus, but even microbenchmarks require
a bigger programming language. Because we want to compare
our implementations with a mature, production bytecode inter-
preter, we define µLua, a subset of Lua 2.5 (Section 2).

• We describe a common infrastructure shared by all our in-
terpreters, including some fundamental representation choices
which we arrange in a “string cube” (Section 3). Using this in-
frastructure, we present direct implementations of natural se-
mantics, denotational semantics, and abstract machines, using
the functional language OCaml (Section 4).

• We improve performance by adding a “compilation step” to
two of our three definitional interpreters. A compilation step
analyzes abstract syntax and looks up local variables just once,
then returns a first-class function that can be applied (Section 5).

We quantify performance as we go along, and from the examples
we present, you should be able to estimate programming effort.
In Section 10, as another measure of programming effort, we show
the sizes of the most interesting interpreters.

121

2. Experimental framework

Reynolds (1998) observes that a definitional interpreter is “stylisti-
cally similar” to a semantic definition. Our data show that simple
changes to a definitional interpreter can improve average run-time
performance by a factor of 4 or more. The improvement depends on
what kind of semantic definition you start with. We explore natural
semantics (Kahn 1987); abstract machines that use explicit con-
texts (Landin 1964; Felleisen, Findler, and Flatt 2009); and a deno-
tational semantics that uses continuations (Stoy 1977). We consid-
ered a small-step structural operational semantics without explicit
contexts (Plotkin 1981), but the time and effort required to find a
redex deep in an abstract-syntax tree, then splice in a new subterm,
seemed likely to be prohibitive.

We compare simple definitional interpreters with a mature bytecode
interpreter. As the bytecode interpreter, we have chosen version 2.5
of the Lua programming language (Ierusalimschy, de Figueiredo,
and Celes 2007). Among popular interpreted language implemen-
tations, including Perl, Python, and Ruby, Lua not only performs
best (Bagley 2002) but also has the smallest implementation.

Lua 2.5 is mature enough to be taken seriously but small enough
that writing multiple implementations (of a subset) is not an over-
whelming chore. Lua 2.5 required three years to develop, was no-
ticed in the academic literature, and was used for applications in
the petrochemical industry (Ierusalimschy, de Figueiredo, and Ce-
les 1996). Also, unlike Lua versions 3 and higher, Lua 2.5 does not
have nested functions. We have avoided first-class, nested functions
because all by themselves they would require a large study.

2.1 Summary of Lua 2.5

Lua 2.5 (hereafter just “Lua”) is a dynamically typed language
with six types: nil, string, number, function, table, and userdata.
Nil is a singleton type containing only the value nil. A table is a
mutable hash table in which any value except nil may be used as
a key. Userdata is an opaque type which enables a client program
to add new data abstractions to the interpreter. Except for table, all
the built-in types are immutable; userdata may be mutable at the
client’s discretion (Ierusalimschy, de Figueiredo, and Celes 1996).

Lua’s abstract syntax has three significant syntactic categories: top-
level declaration, statement, and expression. Functions are declared
only at top level; Lua 2.5 has first-class, non-nested functions.

A name stands for a mutable location containing a value. Lua is
statically scoped; each name is bound either to a global variable or
to a local variable of the statement sequence in which it appears.
(A formal parameter of a function has the same status as a local
variable of the function’s body.) Each local variable must be ex-
plicitly declared and can be mapped to a location at compile time.
Because the name space of global variables can be extended dy-
namically, referring to a global variable involves a run-time lookup.

Even Lua 2.5 is a relatively large language, and as part of our
study we have implemented 23 core evaluators. To keep this task
manageable, we have devised an even smaller language we call
µLua (pronounced “micro-Lua”). Throughout this paper, we refer
to µLua as our object language.

2.2 Syntax and semantics of µLua

µLua exists only to be the subject of experiments. Its role in our ex-
perimental study is analogous to the role of a core calculus in a the-
oretical study. Compared with Lua 2.5, µLua omits a little syntax
(and/or/repeat), multiple return values, about 40 predefined func-
tions, and Lua 2.5’s fallback mechanism for capturing erroneous
run-time events. The former two are expressible by desugaring and
the latter two by modest extensions to the interpreter infrastructure.
In addition, µLua evaluates arguments from left to right. (Lua does

program ⇒
{

declaration
}

declaration ⇒ statement

| function lvalue (
[

name
{

, name
}]

)
{

statement
}

end

statement ⇒ lvalue = exp

| local name = exp

| while exp do
{

statement
}

end

| if exp then
{

statement
}

else
{

statement
}

end

| return exp

| exp (
[

exp
{

, exp
}]

) -- Call

exp ⇒ name

| value

| exp[exp] -- Table access

| exp (
[

exp
{

, exp
}]

) -- Call

lvalue ⇒ name
∣

∣ exp[exp]

Figure 1. Concrete syntax of µLua

value ⇒ number
∣

∣ nil
∣

∣ string
∣

∣ table
∣

∣ function

Figure 2. Values of µLua

not specify an order.) µLua is expressive enough that we have been
able to port most of Bagley’s (2002) benchmarks. µLua’s syntax is
shown in Figure 1; its semantics are sketched below. (Our goal is
not to give a complete semantics to µLua but to illustrate connec-
tions between semantics and implementations.)

Our semantic techniques are standard. We model the state of a
Lua interpreter as a global environment ξ, which maps a name
to a mutable cell containing a value, plus a store σ, which gives
the contents of each mutable cell. In addition, each activation of
a Lua function has a local environment ρ, which maps names to
mutable cells. There is also a “local” environment ρt associated
with the top-level sequence of declarations. Variables bound in ρt
are visible only in declarations, not inside functions.

For simplicity, we model ξ as an infinite environment that maps
each name to a distinct mutable cell, which in the initial σ con-
tains nil. The semantics may then treat ξ as immutable. In an im-
plementation, mutable cells are allocated to ξ on demand.

Figure 3 shows ρ and ξ and all the other metavariables we use in
our semantics, as well as our list notation, which is ML notation.
Figure 4 shows semantic functions, and Figures 5 and 6 show our
first semantics, which is a natural semantics (Kahn 1987). Figure 1
is organized top-down, with statements before expressions, but both
the semantics and later the code are easier to understand if we
present expressions before statements.

The figures use these formal judgments:

• The judgment 〈e, ρ, σ〉 ⇓ 〈v, σ′〉 means that if we evaluate
expression e with local environment ρ and store σ, evaluation
terminates, producing a value v and a new store σ′.

• The judgment 〈ss, ρ, σ〉 ⇓ σ′ means that if we evaluate a
sequence of statements ss in local environment ρ and with
store σ, evaluation terminates, producing a new store σ′.

• The judgment 〈ss, ρ, σ〉 ⇓ 〈v, σ′〉 means that if we evaluate
a sequence of statements ss in local environment ρ and with
store σ, evaluation ends in a return, producing a value v and
a new store σ′.

When possible, Figure 6 combines the statement forms: to avoid
near-duplicate rules, we use the metavariable o to stand either for a
termination outcome σ′ or a return outcome 〈v, σ′〉.

122

x A name

l A location

e An expression

• A hole (in an evaluation context)

v A value

ss A sequence of statements

ρ An environment mapping local variables to locations

ξ An environment mapping global variables to locations

σ A machine state mapping locations to values

S A stack of evaluation contexts (also e :: S)

o An outcome of evaluating a statement: either σ or 〈v, σ〉
θ A continuation mapping states to answers

κ An expression continuation mapping values to continuations

κr The return continuation

s :: ss A cons cell: statement followed by statements

ss @ ss ′ Appended lists

[s1, . . . , sn] A literal list

Figure 3. Metavariables and list notation

location This function implements Lua’s naming rule:

location(x, ρ, ξ) =

{

ρ(x), if x ∈ dom ρ
ξ(x), if x /∈ dom ρ

gettable Function gettable(vt, vk) looks up key vk in table vt.
It is defined iff vt is a table and vk 6= nil .

fresh In a denotational definition, fresh(σ) deterministically
identifies a location that is not in the domain of σ.

Figure 4. Semantic functions

〈e, ρ, σ〉 ⇓ 〈v, σ′〉

〈x, ρ, σ〉 ⇓ 〈σ(location(x, ρ, ξ)), σ〉
(VAR)

〈v, ρ, σ〉 ⇓ 〈v, σ〉
(LITERAL)

〈e1, ρ, σ〉 ⇓ 〈vt, σ
′′〉 vt is a table

〈e2, ρ, σ′′〉 ⇓ 〈vk, σ′〉 vk 6= nil

〈e1[e2], ρ, σ〉 ⇓ 〈gettable(vt, vk), σ′〉
(TABLEELEMENT)

〈ef , ρ, σ〉 ⇓ 〈function(x1, . . . , xn) ssf end, σ0〉

〈e1, ρ, σ0〉 ⇓ 〈v1, σ1〉 · · · 〈en, ρ, σn−1〉 ⇓ 〈vn, σn〉

li /∈ domσn, 1 ≤ i ≤ n
li 6= lj , 1 ≤ i < j ≤ n

ρf = {x1 7→ l1, . . . , xn 7→ ln}

σf = σn{l1 7→ v1, . . . , ln 7→ vn}

〈ssf @ [return nil], ρf , σf 〉 ⇓ 〈v, σ′〉

〈ef(e1, . . . ,en), ρ, σ〉 ⇓ 〈v, σ′〉
(CALLEXP)

Figure 5. Natural semantics of some µLua expressions
(Rules for infix binary operators are omitted.)

As an alternative to the natural semantics in Figures 5 and 6,
we considered small-step structural operational semantics. A clas-
sic small-step semantics rewrites abstract-syntax trees in place.
We believe that such a semantics is both tedious to implement and
likely to perform badly, so we have not investigated this alterna-
tive. But a small-step semantics can also be written as an abstract
machine, like the CESK machine, which holds the context of eval-

〈ss, ρ, σ〉 ⇓ σ′ 〈ss, ρ, σ〉 ⇓ 〈v, σ′〉

(To stand for a store σ′ or a pair 〈v, σ′〉, we use metavariable o.)

〈e, ρ, σ〉 ⇓ 〈v, σ′〉 〈ss, ρ, σ′{location(x, ρ, ξ) 7→ v}〉 ⇓ o

〈x = e :: ss, ρ, σ〉 ⇓ o
(ASSIGN)

〈e, ρ, σ〉 ⇓ 〈v, σ′〉 l /∈ domσ′ 〈ss, ρ{x 7→ l}, σ′{l 7→ v}〉 ⇓ o

〈local x = e :: ss, ρ, σ〉 ⇓ o
(LOCAL)

〈e, ρ, σ〉 ⇓ 〈v, σ′〉 v 6= nil 〈ss ′, ρ, σ′〉 ⇓ 〈v′, σ′′〉

〈(while e do ss ′ end) :: ss, ρ, σ〉 ⇓ 〈v′, σ′′〉
(WHILERETURN)

〈e, ρ, σ〉 ⇓ 〈v, σ′〉 v 6= nil 〈ss ′, ρ, σ′〉 ⇓ σ′′

〈(while e do ss ′ end) :: ss, ρ, σ′′〉 ⇓ o

〈(while e do ss ′ end) :: ss, ρ, σ〉 ⇓ o
(WHILETRUE)

〈e, ρ, σ〉 ⇓ 〈v, σ′〉 v = nil 〈ss, ρ, σ′〉 ⇓ o

〈(while e do ss ′ end) :: ss, ρ, σ〉 ⇓ o
(WHILEFALSE)

〈e, ρ, σ〉 ⇓ 〈v, σ′〉

〈return e :: ss, ρ, σ〉 ⇓ 〈v, σ′〉
(RETURN)

〈[], ρ, σ〉 ⇓ σ
(BLOCKEND)

Figure 6. Natural semantics of some µLua statements
(Rules for if, calls, and assignments to tables are omitted.)

〈e or v, S, ρ, σ〉 → 〈e′ or v′, S′, ρ′, σ′〉

〈x, S, ρ, σ〉 → 〈σ(location(x, ρ, ξ)), S, ρ, σ〉
〈e1[e2], S, ρ, σ〉 → 〈e1, •[e2] :: S, ρ, σ〉

〈v, [], ρ, σ〉 → v
〈v, •[e] :: S, ρ, σ〉 → 〈e, v[•] :: S, ρ, σ〉

〈vk, vt[•] :: S, ρ, σ〉 → 〈v, S, ρ, σ〉 where v = gettable(vt, vk)

Figure 7. Abstract machine transitions for some µLua expressions
(Rules for infix binary operators and for calls are omitted.)

uation in a data structure (Felleisen, Findler, and Flatt 2009, Part I).
The reduction rules in Figure 7 are inspired by this machine.

Finally, Figure 8 shows a denotational semantics that uses Scott
and Strachey’s approach (Stoy 1977). A sequence of statements,
in context, denotes a function from continuations to continuations.
(One might prefer to specify a single statement as the basic con-
struct and to define the denotation of a sequence by composition,
but the semantics of µLua statements is not compositional: a local
statement extends the environment ρ and so affects the context in
which the meanings of succeeding statements are determined.)

We have implemented all of the semantics above using the func-
tional language OCaml, which is our metalanguage. The tech-
niques we use should be easily portable to any metalanguage
that has first-class, nested functions and call-by-value semantics.
As noted by Reynolds (1972), using a call-by-name metalanguage
to implement a call-by-value object language requires more care.

123

~S[[x = e :: ss]]ρξκrθ = E [[e]]ρξ(λv.λσ. ~S[[ss]]ρξκrθ(σ{location(x, ρ, ξ) 7→ v}))

~S[[local x = e :: ss]]ρξκrθ = E [[e]]ρξ(λv.λσ. ~S[[ss]]ρ{x 7→ ℓ}ξκrθ(σ{ℓ 7→ v})), where ℓ = fresh(σ)

~S[[while e do ss ′ end :: ss]]ρξκrθ = fix(λθ′.E [[e]]ρξ(λv.if v 6= nil then ~S[[ss ′]]ρξκrθ
′
else ~S[[ss]]ρξκrθ))

~S[[return e :: ss]]ρξκrθ = E [[e]]ρξκr

~S[[[]]]ρξκrθ = θ

E [[x]]ρξκ = λσ.κ(σ(location(x, ρ, ξ)))σ

E [[v]]ρξκ = κv

E [[e1[e2]]]ρξκ = E [[e1]]ρξ(λvt.E [[e2]]ρξ(λvk.κ(gettable(vt, vk))))

Figure 8. Continuation semantics of some µLua statements and expressions

2.3 Experimental method: Choice guided by measurement

By “engineering” a definitional interpreter, we mean choosing al-
gorithms and data structures in a way that is guided by measure-
ments. Measurement requires both a benchmark and a working in-
terpreter, which embody many choices. To quantify the effects of
any one choice, we average over the others.

Adding running times of different benchmarks is not meaningful,
so to average, we use the geometric mean of ratios of running times.
The geometric mean of n ratios is the nth root of their product. It is
also the exponent of the arithmetic mean of the logarithms of the
ratios.

To quantify the variation introduced by averaging, we use geomet-
ric standard deviation. This number is the exponent of the ordinary
standard deviation of the logarithms of a population. Using an ordi-
nary standard deviation, two-thirds of normally distributed data fall
within a distance of one standard deviation from the mean. Using
a geometric standard deviation, two-thirds of normally distributed
data fall within a factor of one standard deviation from the mean.

For example, the first choice we present below is what data struc-
ture to use to represent each name: an atom or a string? On average,
atoms are 1.57 times faster, and the geometric standard deviation
is 1.54. Therefore, if the data are normally distributed, then in two-
thirds of the other choices, comparing atoms to strings yields a ratio
of running times between 1.02 and 2.42. (In practice, the data are
not normally distributed, but the geometric standard deviation is
still an effective way to quantify variation.)

Ordinary standard deviations can be reported compactly using the
± operator. We have not found a standard, compact notation for
reporting geometric standard deviations—but we need one. Instead
of saying “atoms are 1.57 times faster than strings, with a geometric
standard deviation of 1.54,” we therefore report that atoms are
1.57 ×

÷ 1.54 times faster. (We also use ×

÷ with percentages.)

When are the results of a measurement statistically significant?
To judge significance, we use a paired t-test on logarithms of ratios.
The interpretation of t depends on the number of measurements,
but even for our smallest experiments a t value of 2.18 or more
indicates at least 95% confidence that the measured effect is not
the result of noise or random error. Additional explanations and
tables containing the results of many paired t-tests are available at
http://www.cs.tufts.edu/~nr/interps.html.

3. Representing semantic concepts

To create an interpreter from a semantics, we must choose repre-
sentations of semantic concepts. Some concepts have one clearly
optimal representation; others have several seemingly plausible po-

SSV
ASV

SAV AAV

SSN
ASN

SAN AAN

string atom
AST name

string

atom

String value

value

nam
e

G
lo

ba
l k

ey

uncompiled
competitive
with compiled
(Section 10)

expensive to create strings;
cheap to index

Figure 9. The string cube: representing names, strings, and ξ
(As described in the text, a vertex’s name encodes three choices.)

tential representations. Where we found plausible choices, we eval-
uated them experimentally. The most pervasive choices about rep-
resentation have to do with strings and names; three independent
choices form a string cube, which is shown in Figure 9.

3.1 Names, strings, and the global environment

Each leaf of an abstract-syntax tree is either a name or a literal
object-language value. The simplest representation of a name is
a string. But an important alternative is an atom. An atom is a
representation of strings that offers a constant-time equality test.
Converting a string to an atom, called interning, requires a lookup
in a data structure, typically a hash table. Representing names as
atoms costs more at parse time, but speeds name lookup at inter-
pretation time, especially if the environment ρ is represented by an
association list. In Figure 9, the left face of the string cube shows
names represented by strings, and the right face shows names rep-
resented by atoms. Even on the very worst benchmarks, atoms are
never more than 12% slower than strings. On average, atoms are
1.57 ×

÷ 1.54 times faster (t = 35.25). The advantage conferred by
atoms depends on the style in which the interpreter is written. Us-
ing atoms, the simple interpreters in Section 4 run 1.74×

÷1.50 times
faster (t = 22.18); interpreters that have a “compilation step” (Sec-
tion 5) run only 1.08 ×

÷ 1.24 times faster (t = 6.09).

Object-language string values may also be represented either by
metalanguage strings or by atoms. In Figure 9, the bottom face of

124

http://www.cs.tufts.edu/~nr/interps.html

the string cube shows µLua strings represented by OCaml strings,
and the top face shows µLua strings represented by atoms. To three
significant digits, the average performance of the two faces is
identical; whatever difference exists is not statistically significant
(t = 0.15). But depending on the choice of benchmark, there is a
lot of variation (×÷1.5). The top face is expensive for benchmarks
that create many object-language strings but do not reuse them.
The top face is cheap for benchmarks that use a few string values
to index into many tables. These results are as we expect: If a µLua
string is represented by an atom, it costs more to create, but its hash
code is stored as part of the atom, so it is cheap to use as an index.
If a µLua string is represented by an OCaml string, then every time
the string is used as an index, its hash code is recomputed.

Given finite maps, implementing atoms requires little programming
effort; our interface and implementation total 30 lines of OCaml.

The third choice on the string cube is more subtle: the represen-
tation of the keys that index the global environment ξ. Full Lua
indexes ξ using general object-language values, as shown on the
front face of the string cube. But µLua, like most other languages,
uses only names to index into ξ. We can eliminate a level of indirec-
tion by using a representation of ξ which admits only of indexing
by names and does not admit of indexing by more general values.
This choice is shown on the back face of the string cube. The ef-
fect of this choice is small but statistically significant: on average,
values are 1.02 ×

÷ 1.28 times faster than names (t = 2.72).

We refer to each vertex of the string cube using a three-character
code: for example, the back lower-right vertex, which uses atoms
to represent names, OCaml strings to represent µLua strings, and
µLua names to index into ξ, is coded ASN. As another exam-
ple, the choices made in Lua 2.5, which uses atoms for strings
and names, and which uses general values to index into ξ, are
coded AAV. Averaged over all interpreters and benchmarks, ver-
tex AAV is 2.54 ×

÷ 1.58 times slower than Lua 2.5 (t = 34.27).
The best vertex is ASN, which is 2.39 ×

÷ 1.93 times slower than
Lua 2.5 (t = 22.49); the worst is SAN, which is 4.47 ×

÷ 2.21 times
slower than Lua 2.5 (t = 31.98).

Figure 9 hides another implementation choice: a strong atom per-
sists for the lifetime of the program, but a weak atom may be
garbage collected if only the atom data structure points to it. When
used to represent names, strong and weak atoms perform the same
on average (t = 1.89, indicating no statistically significant dif-
ference). When used to represent strings, strong atoms run 1.06 ×

÷

1.13 times faster than weak atoms (t = 10.64).

Having strong and weak atoms adds six more vertices to Figure 9,
raising the number of representation choices to 14. (The two ver-
tices on the lower left edge, which use no atoms, are unaffected.)
For each choice, we replicated each interpreter described below.

3.2 Metalanguage and object-language functions

All interpreters share one external interface; each interpreter ex-
ports this function:

val func : name list (* formal parameters *)
-> stmt list (* body *)
-> globals (* global names & state *)
-> value list (* actual parameters *)
-> value (* result *)

Our infrastructure partially applies func to syntax and globals,
then applies the metalanguage Function constructor (Figure 11)
to the resulting metalanguage value of type value list -> value.
The resulting value is stored in the global environment and reused
every time the function is called.

To apply an object-language function, we call

val to_func : value -> (value list -> value)

which strips the Function constructor off its argument. Similarly,
to apply a binary operator, we call

val binop : op -> (value -> value -> value)

3.3 State and environments

A machine state σ has only one efficient representation: we store
the mutable parts of µLua’s machine state in mutable reference
cells and arrays provided by OCaml. Representing object-language
state using an explicit functional data structure in the metalanguage
is possible, but it would add a level of indirection and would require
us to implement a garbage collector, decreasing performance and
increasing programming effort.

Unlike the state, an environment ρ has more than one plausible rep-
resentation. Our semantics use an immutable association list, which
we implement as a value of type ListEnv.env. The ListEnv in-
terface also exports operations that manipulate a mutable ξ of type
globals, as well as the (implicit) object-language state σ:

module ListEnv : sig
type env = (name * value ref) list
val from_lists : name list -> value list -> env
val lookup : name -> env -> globals -> value
val extend : name -> value -> env -> env
val rebind : name -> value -> env -> globals -> unit

end

Function from_lists creates a new environment which binds
each name to a newly allocated cell that is initialized with the
corresponding value. The other functions relate to the semantics
as follows:

lookup x ρ ξ = σ(location(x, ρ, ξ))
extend x v ρ = ρ{x 7→ ℓ}, updating ℓ := v, where ℓ = fresh(σ)
rebind x v ρ ξ mutates σ by ρ(x) := v or ξ(x) := v

Environments can be represented using many other data structures.
In Section 4.4, we experiment with mutable hash tables. We dis-
tinguish the representations by using the name IMMRHO for an in-
terpreter that uses association lists and MUTRHO for one that uses
hash tables.

3.4 Tables

Lua’s central data structure is the mutable hash table, and the
performance of hash tables determines the performance of many
Lua benchmarks. For the fairest possible comparison, we have tried
to replicate Lua’s hash-table implementation in OCaml. The replica
is not completely faithful; for example, the original uses an array
of unboxed pairs, but because OCaml cannot represent an array of
unboxed pairs, the replica uses instead a pair of arrays, each of
which contains unboxed scalars.

As a sanity check, we compared our replica with OCaml’s native
implementation. Averaged over all interpreters and all vertices of
the string cube, OCaml’s native hash table is 1.02 ×

÷ 1.22 times
slower (t = 7.79). We conclude that using the replica is reasonable.

4. Simple definitional interpreters

Unlike names, strings, tables, and environments, the abstract syntax
and values of µLua have canonical representations: algebraic data
types. Our representations are shown in Figures 10 and 11. The
Binop constructor subsumes the table-indexing expression shown
in Figure 1, as well as the other binary operators defined in type op.

125

type name (* representation varies *)
type stmt =

| Assign of lval * exp
| WhileDo of exp * stmt list
| If of exp * stmt list * stmt list
| Return of exp
| Callstmt of exp * exp list
| Local of name * exp

and lval =
| Lvar of name
| Lindex of exp * exp (* table element *)

and exp =
| Var of name
| Lit of value
| Binop of exp * op * exp
| Call of exp * exp list

and op =
| Plus | Minus | Times | Div | Pow
| Lt | Le | Gt | Ge | Eq | Ne
| Concat | Not | Index

Figure 10. Representation of µLua’s abstract syntax

type table (* mutable hash table; rep. varies *)
type lua_string (* immutable string; rep. varies *)
type value =

| Nil
| Number of float
| String of lua_string
| Function of value list -> value
| Table of table

and globals = table

Figure 11. Representation of µLua’s values

Both expressions and statements are evaluated in a context. We are
particularly interested in the control context, which tells where an
expression returns its value or what happens after a statement is
evaluated. The choices available for representing control contexts
depend on the semantics from which an interpreter is derived:

• An interpreter derived from a natural semantics works by struc-
tural recursion over abstract-syntax trees. The control context
of an expression or statement is represented by a control con-
text in the metalanguage—in other words, by the call stack in
the implementation language.

• An interpreter derived from an abstract machine runs a loop,
or more exactly, a pair of tail-recursive functions which keep
the abstract-machine state in parameters. The control context of
an expression or a statement is represented by a data structure
which is allocated on the heap.

• An interpreter derived from a continuation semantics uses
continuation-passing style (Reynolds 1972). Every control con-
text is represented by a first-class function.

We can also “hybridize” an interpreter by using one representation
for the control context of a statement and another for the control
context of an expression. Because hybridization triples the number
of potential interpreters, we hybridize only selected interpreters,
based on performance (Section 7).

To build a simple interpreter, then, we choose a representation of
control contexts, a representation of environments, and a vertex of
the string cube (representation of names, representation of strings,
representation of keys in ξ).

4.1 Using control contexts from the metalanguage

Our simplest interpreter uses structural recursion over abstract syn-
tax; to represent each control context in the object language, the in-

val exp : exp -> locals -> globals -> value
val body : stmt list -> locals -> globals -> unit

Figure 12. METACON-IMMRHO type signatures

let rec exp e rho xi = match e with
| Lit v -> v
| Var x -> ListEnv.lookup x rho xi
| Call (e, es) ->

let v = exp e rho xi in
let vs = List.map (fun e -> exp e rho xi) es in
to_func v vs

| Binop (e1, op, e2) ->
let v1 = exp e1 rho xi in
let v2 = exp e2 rho xi in
binop op v1 v2

Figure 13. METACON-IMMRHO expression interpreter

exception Returnx of value
let rec body ss rho xi =

let rec stmts = function
| [] -> ()
| s :: ss -> match s with

| Assign (Lvar x, e) ->
let v = exp e rho xi in
ListEnv.rebind x v rho xi;
stmts ss

| WhileDo (e, b) ->
while not_nil (exp e rho xi) do stmts b done;
stmts ss

| If (e, t, f) ->
if not_nil (exp e rho xi) then stmts t
else stmts f;
stmts ss

| Return e -> raise (Returnx (exp e rho xi))
| Local (x, e) ->

let v = exp e rho xi in
let rho’ = ListEnv.extend x v rho in
body ss rho’ xi

(* other cases not shown *)
in stmts ss

let func formals ss xi actuals =
try

body ss (ListEnv.from_lists formals actuals) xi; Nil
with Returnx v -> v

Figure 14. METACON-IMMRHO statement & function interpreters

terpreter uses a control context of the metalanguage. The interpreter
is named METACON-IMMRHO. Figures 12 to 14 show the types and
implementations of the metalanguage functions that interpret µLua
expressions, bodies, and functions.1 In exp, the context of every re-
cursive call is implicit in the metalanguage; the context is the right-
hand side of a let binding. (One of those bindings is in the library
function List.map.) Function exp should remind you of Figure 5:
if exp e ρ ξ is evaluated in metalanguage machine state σ, it re-
turns value v if and only if 〈e, ρ, σ〉 ⇓ 〈v, σ′〉, where σ′ represents
the metalanguage machine state after evaluation. (In the semantics,
we leave ξ implicit, but in the implementation, ξ must be explicit.)

In exp, OCaml’s List.map determines the order of evaluation of a
µLua Call. Attending to this kind of detail requires programming
effort that cannot be measured by counting lines of code.

In body, which in turn is implemented by stmts, we interpret
statements (Figure 14). The code should remind you of Figure 6.

1 Except for Figure 11, every code figure in this paper is automatically
extracted from our source code. Qualifications of some names are removed.

126

type econtext
type scontext
val exp : exp -> econtext -> locals -> globals -> value
val body :

stmt list -> locals -> globals -> scontext -> value

Figure 15. DATACON-IMMRHO type signatures

type eframe =
| BinLeft of op * exp
| BinRight of value * op

let rec exp e stk rho xi =
let rec eval e stk = match e with
| Var x -> produce (ListEnv.lookup x rho xi) stk
| Binop (e1, op, e2) -> eval e1 (BinLeft (op, e2) :: stk)
and produce v = function
| [] -> v
| BinLeft (op,e) :: stk -> eval e (BinRight (v,op) :: stk)
| BinRight(v1,op) :: stk -> produce (binop op v1 v) stk
in eval e []

Figure 16. DATACON-IMMRHO expression interpreter

type sframe =
| Block of stmt list
| Env of locals

let rec body ss rho xi =
let exp = fun e -> exp e [] rho xi in
let rec stmts ss stk = match ss with
| [] -> (match stk with

| [] -> Nil
| Block ss :: stk -> stmts ss stk
| Env oldrho :: stk -> body [] oldrho xi stk)

| s :: ss -> match s with
| WhileDo (e, b) ->

if not_nil (exp e) then
stmts b (Block (s::ss) :: stk)

else
stmts ss stk

| Return e -> exp e
| Local (x, e) ->

let v = exp e in
let rho’ = ListEnv.extend x v rho in
body ss rho’ xi (Env rho :: stk)

(* other cases not shown *)
in stmts ss

Figure 17. DATACON-IMMRHO statement interpreter

When the judgment 〈ss, ρ, σ〉 ⇓ σ′ is derivable, stmts ss changes
the metalanguage state from σ to σ′ and executes a metalan-
guage return. When the judgment 〈ss, ρ, σ〉 ⇓ 〈v, σ′〉 is deriv-
able, stmts ss changes the metalanguage state from σ to σ′ and
raises the metalanguage exception Returnx v. Each recursive call
to stmts provides an appropriate control context for the ordinary
return, when evaluation should continue with the next statement.
Function func sets up a metalanguage exception handler which
provides the proper control context for Return.

When names and string values are represented as strings, which is
the simplest implementation, this interpreter runs 4.44×

÷2.12 times
slower than Lua 2.5 (t = 7.17). When names in the abstract syntax
are represented as atoms, performance doubles: on average, the
interpreter is only 2.19×

÷1.84 times slower than Lua 2.5 (t = 4.64).

4.2 Using control contexts represented by data structures

Figures 15 to 17 show fragments of an interpreter that represents
object-language control contexts as metalanguage data structures.
The interpreter is named DATACON-IMMRHO. Figure 16 shows an

implementation of the abstract machine in Figure 7. Function eval
deals with machine states 〈e, S, ρ, σ〉 in which the first element
is abstract syntax; function produce deals with machine states
〈v, S, ρ, σ〉 in which the first element is a value.

On average, a DATACON interpreter runs 10% ×

÷ 1.07 slower than
its corresponding METACON interpreter (t = 19.92)—and it re-
quires more than twice as much code. Figures 16 and 17 show only
half of the contexts (constructors of type eframe) used to evalu-
ate expressions; our implementation uses four contexts for expres-
sions and two for statements. And our code does not use explicit
representations of the six contexts in which an expression appears
inside a statement; because the common infrastructure we set up
in Section 3 represents object-language functions as metalanguage
functions of type value list -> value, we cannot pass an ex-
plicit representation of a calling context as a parameter.

Eliminating the expression-in-statement contexts does not compro-
mise the advantages of explicit contexts. These advantages accrue
when implementing control operations like exceptions or continu-
ations (Felleisen 1987) and when finding roots for garbage collec-
tion. Since µLua’s only control operator is return, no µLua pro-
gram can transfer control between calling contexts. And as noted
above, our interpreters are garbage collected by the metalanguage.
Making all the contexts available as metalanguage data structures
would mean extra work and no implementation advantage.

4.3 Using control contexts represented by functions

Our third and final simple interpreter, in Figures 18 to 20, represents
each control context as a metalanguage function; it follows the
continuation semantics sketched in Figure 8. The interpreter is
named FUNCON-IMMRHO.

Although the state σ is implemented using the mutable state of the
metalanguage, we define the type of continuations ’a cont using
an abstract type state, and we pass values of that type. Without
arguments of state type, it is too easy to get order of evaluation
wrong. For example, sigma controls order of evaluation for the
cases of Var in Figure 19 and Assign in Figure 20. Type state is
defined to be unit, so sigma is passed without run-time overhead.

Because the FUNCON-IMMRHO interpreter represents control con-
texts as functions, a context can be introduced with a lambda and
eliminated by function application. There is no need for datatype
declarations, named constructors, or case analysis; a full and faith-
ful implementation of the semantics is almost effortless.

The FUNCON-IMMRHO interpreter is the worst-performing of the
naı̈ve definitional interpreters, performing 16% ×

÷ 1.09 slower than
the fastest one, METACON-IMMRHO (t = 23.38). We believe the
problem is with allocation—dynamically, almost every call to exp
requires the allocation of a fresh continuation closure.

4.4 Changing the representation of local environments

We do not expect an immutable association list to be an efficient
data structure for looking up names. In OCaml, the standard finite
map provided by the OCaml library is a mutable hash table. Lua 2.5
also uses mutable hash tables. Accordingly, we modified each of
the interpreters above to use mutable hash tables. The modified
variants are called METACON-MUTRHO, DATACON-MUTRHO, and
FUNCON-MUTRHO. In each interpreter, the MUTRHO variant differs
from the IMMRHO variant at only three points: the implementations
of Var, Assign, and Local.

The new implementations of Var and Assign do exactly the same
thing as the old ones, only using a different abstraction of environ-
ments. The new implementations of Local have more work to do:
unlike the immutable environments of the IMMRHO interpreters,

127

type state
type ’a cont = state -> ’a
type ’a kont = value -> ’a cont
val exp : exp -> locals -> globals

-> ’a kont -> ’a cont
val body : stmt list -> locals -> globals

-> ’a kont -> ’a cont -> ’a cont

Figure 18. FUNCON-IMMRHO type signatures

let exp e rho xi k =
let rec eval e k = match e with
| Lit v -> k v
| Var x ->

(fun sigma -> k (ListEnv.lookup x rho xi) sigma)
| Binop (e1, op, e2) -> eval e1 (fun v1 ->

eval e2 (fun v2 ->
k (binop op v1 v2)))

(* case for Call not shown *)
in eval e k

Figure 19. FUNCON-IMMRHO expression interpreter

let rec body ss rho xi k_r =
let eval e k = exp e rho xi k in
let rec stmt ss theta = match ss with
| [] -> theta
| Assign (Lvar x, e) :: ss ->

eval e (fun v sigma ->
ListEnv.rebind x v rho xi;
stmt ss theta sigma)

| WhileDo (e, b) :: ss ->
fix (fun theta’ ->

eval e (fun v ->
if not_nil v
then stmt b theta’
else stmt ss theta))

| Return e :: ss -> eval e k_r
| Local (x, e) :: ss ->

eval e (fun v ->
body ss (ListEnv.extend x v rho) xi k_r theta)

(* other cases not shown *)
in stmt ss

Figure 20. FUNCON-IMMRHO statement interpreter

the mutable hash tables are not copied. Instead, when a Local dec-
laration introduces a new binding for x, the code mutates ρ in place.
Additional code associated with a Local declaration ensures that
when x goes out of scope, its previous value is restored.

Mutable environments make the interpreters run 1.84 ×

÷ 1.33 times
slower than immutable environments (t = 28.65). Profiling does
not reveal an obvious reason, but the MUTRHO versions make
30% more calls to primitive equality, and they make 25% more
calls to caml_page_table_lookup in the memory-management
subsystem. Because standard profiling tools do not cope well with
mutual recursion (Spivey 2004), it is difficult to track the sources
of the calls, but the hash table is the obvious suspect.

5. Interpretation after a compilation step

Each simple interpreter above does case analysis of abstract syntax
and lookup of local variables every time a function is called or the
body of a loop is executed. Our first performance improvement is
to stage the computation so that when we apply func (page 125)
to syntax and ξ, all case analysis and local-variable lookup is
done immediately, and the resulting anonymous function of type
value list -> value does not repeat that overhead. We call the
first stage of the computation the compilation step; we call the
second stage the run step.

type locals = value array
type compiled_exp = locals -> value
type compiled_stmt = locals -> unit
val exp : exp -> env -> globals -> compiled_exp
val body : stmt list -> env -> globals -> compiled_stmt

Figure 21. METACON-LETTMP type signatures

let rec exp e rho xi = match e with
| Lit v -> (fun sigma -> v)
| Var x -> (match lookup x rho with

| Global -> let s = global_key_of_name x in
(fun sigma -> getenvtable xi s)

| Local n -> (fun sigma -> getlocal sigma n))
| Binop (e1, op, e2) ->

let eval1 = exp e1 rho xi in
let eval2 = exp e2 rho xi in
let meta_op = binop op in
(fun sigma -> let v1 = eval1 sigma in

let v2 = eval2 sigma in
meta_op v1 v2)

(* case for Call not shown *)

Figure 22. METACON-LETTMP compile & run steps (expressions)

let body ss rho xi =
let rec stmts ss rho = match ss with
| [] -> (fun sigma -> ())
| s :: ss ->

let eval_s = stmt s rho in
let eval_ss = stmts ss (newrho rho s) in
(fun sigma -> eval_s sigma; eval_ss sigma)

and stmt s rho =
let eval e = exp e rho xi in
match s with
| WhileDo (e, b) ->

let evale = eval e in
let evalb = stmts b rho in
(fun sigma ->
while not_nil (evale sigma) do evalb sigma done)

| Local (x, e) ->
let eval_e = eval e in
let n = List.length rho in
(fun sigma -> setlocal sigma n (eval_e sigma))

(* other cases not shown *)
in stmts ss rho

Figure 23. METACON-LETTMP compile & run steps (statements)

In every interpreter, we use the same compilation strategy:

• In the run step, every formal parameter and local variable is
stored in an array (type locals in Figure 21).

• In the compilation step, every formal parameter and local vari-
able is mapped, by type env, to an integer position in the local
array.

• Function func allocates the local array for an activation, and it
initializes the array with the values of the actual parameters.

Using metalanguage control contexts, func is as follows:

let func formals ss xi =
let rho = List.rev formals in
let b = body ss rho xi in
let n = local_slots_needed rho ss in
fun actuals ->

let sigma = Array.make n Nil in
setlocals sigma 0 actuals;
try (b sigma; Nil) with Returnx v -> v

Function local_slots_needed walks the abstract syntax to com-
pute the maximum number of formal parameters and local variables
in scope at any given point; it is 10 lines of OCaml.

128

We have implemented compilation steps for the METACON family,
which represents object-language control contexts using the control
contexts of the metalanguage, and for the FUNCON family, which
uses first-class functions.

For the DATACON family, we were less ambitious. A compilation
step for DATACON converts a syntactic control context to a meta-
language function, and given that we can create metalanguage func-
tions directly, without a syntactic intermediary, we were skepti-
cal that such a conversion would perform well. We did implement
a compilation step for statements, which we compared with the
FUNCON compilation step discussed in Section 5.2 below. The re-
sults confirmed our skepticism: on average, the DATACON version
is 1.58 ×

÷ 1.58 times slower when names are strings (t = 8.87)
and 1.33 ×

÷ 1.43 times slower when names are atoms (t = 5.70).
Worse, the DATACON compilation step exhibits the same difficulty
with while loops described in Section 5.2 below, and it cannot be
improved by the backpatching technique described in that section.

5.1 Using control contexts from the metalanguage

Our first compiled interpreter uses metalanguage control contexts.
Figure 22 shows both the compilation step and the run step for
expressions; to judge the additional programming effort required,
compare Figure 22 with Figure 13. The compilation step is imple-
mented by function exp: it includes case analysis of the expression,
recursive “compilation” of all subexpressions, and all lookups in
the environment rho. Function lookup is new: given a local vari-
able, it reports that variable’s position in the locals array; other-
wise it identifies the variable as global.

The run step comprises all code under (fun sigma -> . . .): it in-
cludes lookup of global variables in ξ, lookup of local variables
in σ, computation of the values v1 and v2 of subexpressions, and
application of operators. In our experiments, getlocal is a syn-
onym for Array.unsafe_get.

The most instructive case is for Binop. (Function call is similar
to Binop and is not shown.) Metalanguage functions eval1 and
eval2 are the compiled versions of subexpressions e1 and e2.
The run step applies each of these functions to the given local-
variable array sigma, then applies the operator to the results.
The temporary intermediate results v1 and v2 are stored in let-
bound variables of the metalanguage, giving this interpreter its
name: METACON-LETTMP.

The structure of the exp code in Figure 22 is quite like the struc-
ture of the uncompiled version in Figure 13. The body code in Fig-
ure 23 is much less similar to its progenitor in Figure 14. To sim-
plify the introduction of the compilation step and the extension of
the environment by a Local statement, we split the body code
into three pieces: stmts compiles a sequence of statements, ex-
tending the environment as needed; newrho (not shown) com-
putes the environment that follows a statement; and stmt compiles
an individual statement. Only the cases for WhileDo and Local
are shown. Because we are using metalanguage control contexts,
we can implement WhileDo using a metalanguage while. And
setlocal, similarly to its counterpart getlocal, is a synonym for
Array.unsafe_set.

The benefits of compilation depend on the cost of name lookup.
On average, when names are strings, METACON-LETTMP runs
2.75 ×

÷ 1.73 times faster than its uncompiled counterpart, META-
CON-IMMRHO (t = 16.28). But when names are atoms, which are
compared for equality in constant time, METACON-LETTMP runs
only 1.33×

÷1.18 times faster than METACON-IMMRHO (t = 12.36).
Averaged over all vertices of the string cube, METACON-LETTMP

runs 1.82×

÷1.69 times faster than METACON-IMMRHO (t = 15.40).

type locals = value array
type ’a cont = locals -> ’a
type ’a compiled_stmt = value cont -> value cont
type ’a kont = value -> ’a cont
type ’a compiled_exp = ’a kont -> locals -> ’a
val exp : exp -> env -> globals -> ’a compiled_exp
val body : stmt list -> env -> globals -> ’a compiled_stmt

Figure 24. FUNCON-CLOTMP type signatures

let exp e rho xi =
let rec eval e = match e with
| Lit v -> (fun k -> k v)
| Binop (e1, op, e2) ->

let op = binop op in
let eval1 = eval e1 in
let eval2 = eval e2 in
(fun k ->
eval1 (fun v1 ->

eval2 (fun v2 ->
k (op v1 v2))))

in eval e

Figure 25. FUNCON-CLOTMP compile & run steps (expressions)

let body ss rho xi =
let rec stmts ss rho theta = match ss with
| [] -> theta
| s :: ss ->

let eval e = exp e rho xi in
match s with
| If (e, t, f) ->

let theta = stmts ss rho theta in
let t = stmts t rho theta in
let f = stmts f rho theta in
eval e (fun v -> if not_nil v then t else f)

| Return e -> eval e (fun v sigma -> v)
| WhileDo (e, b) ->

let theta = stmts ss rho theta in
let eval_e = eval e in
fix (fun theta’ ->

let b = stmts b rho theta’ in
eval_e (fun v ->

if not_nil v then b else theta))
(* other cases not shown *)

in stmts ss rho

Figure 26. FUNCON-CLOTMP compile & run steps (statements)

Function stmts in Figure 23 allocates a closure for every statement
in a sequence. As an alternative, we implemented a function that
instead allocates a list of compiled statements, plus a single closure
for the whole sequence. This alternative implementation of stmts
is 1% ×

÷ 1.04 slower (t = 4.72).

5.2 Using control contexts represented by functions

Continuation-passing style, as used in Figure 19, already maps syn-
tax and an environment to a function from state to value. You might
hope that all we need to do is to change the state type from unit
to value array and we would have our compilation and run steps.
For statements, this tactic almost works, but for expressions, it does
not work at all. The problem with expressions is that an expression
continuation expects a value, and values are not available until run
time. In code like the Binop case in Figure 19, we need to lift the
call to eval e2 out of the continuation; otherwise eval e2 will
not be called until v1 is available, in the run step. We therefore
have to change exp so that it does not receive a continuation during
the compilation step. As compiler writers, we find this restriction
odd, because we are accustomed to thinking of a continuation as a

129

let body ss rho xi =
let rec stmts ss rho theta = match ss with
| [] -> theta
| s :: ss ->

let eval e = exp e rho xi in
match s with
| WhileDo (e, b) ->

let theta’_ref = ref (fun _ -> assert false) in
let compiled_b =

stmts b rho (fun sigma -> !theta’_ref sigma) in
let compiled_e = eval e in
let theta = stmts ss rho theta in
let theta’ =

compiled_e (fun v sigma ->
if not_nil v
then compiled_b sigma
else theta sigma) in

theta’_ref := theta’; (* backpatch *)
theta’

(* other cases not shown *)
in stmts ss rho

Figure 27. Loop compilation by backpatching
(Control contexts are represented by functions)

compile-time entity, but as shown in Figures 24 to 26, the imple-
mentation is not bad.

Figure 24 shows the type signatures, and Figure 25 shows some of
the code used to compile expressions. The key idea is that the ex-
pression continuation k is not supplied until the run step. As usual,
the Binop case illustrates the interesting points: to analyze the ab-
stract syntax, we make recursive calls to op and to eval; the run
step receives a continuation and then proceeds very much as in the
uncompiled Figure 19. The code for variables is roughly similar to
Figure 22 and is omitted.

The compilation of statements is simpler, because we can supply
statement continuations in the compilation step. Figure 26 shows
the code, in which we have taken one liberty: because κr is always
λv.λσ.v, we have inlined κr , and we do not pass it as a parame-
ter. In the cases for If and Return, it is easy to visit all the ab-
stract syntax in the compilation step. The same is not true of the
WhileDo loop: the fixed-point operator delays the recursive call
stmts rho b theta’. As a result, the body of a while loop is
recompiled on each run.

When names are represented as strings, which is where the uncom-
piled counterpart FUNCON-IMMRHO performs less well, FUNCON-
CLOTMP runs 1% ×

÷ 1.28 faster than FUNCON-IMMRHO (t = 0.14).
But when names are represented as atoms, FUNCON-CLOTMP runs
12% ×

÷ 1.29 slower than FUNCON-IMMRHO (t = 1.63). Neither
of these differences is statistically significant. Because FUNCON-
CLOTMP does not compile the bodies of loops, adding a compila-
tion step does not improve performance. We address the problem
by eliminating the fixed-point operator.

In a call-by-value metalanguage, a fixed-point operator requires an
explicit lambda-abstraction, which prevents the compilation step
from reaching the bodies of loops. In the following definition,
adapted from Figure 8, we replace the explicit fixed-point operator
with a recursion equation for θ′:

S[[while e do ss]]θ = θ′

where θ′ = E [[e]](λv.if v 6= nil then ~S[[ss]]θ′ else θ)

A compiler writer would solve this equation by backpatching: emit
a fresh assembly-language label L, compile the loop under the as-
sumption that L represents θ′, and emit the compiled code imme-
diately after L. In our compilation step, we allocate a fresh mutable
reference cell, compute θ′ under the assumption that the reference

cell contains θ′, and finally update the cell to hold θ′. Figure 27
shows the code. The resulting interpreter, FUNCON-BACKPATCH,
runs 1.92 ×

÷ 1.62 times faster than the uncompiled FUNCON-
IMMRHO (t = 18.36), and it is just 1.83 ×

÷ 1.50 times slower
than Lua 2.5 (t = 20.18). It is 10% ×

÷ 1.07 slower than our other
compiled interpreter, METACON-LETTMP (t = 18.29).

6. A stack machine and a register machine

In our METACON and FUNCON interpreters, each intermediate re-
sult from eval is let-bound or lambda-bound. We have also emu-
lated classic bytecode interpreters, which put intermediate results
elsewhere:

• On a stack (interpreter FUNCON-STKTMP)

• In the local-variable array (interpreter FUNCON-ARRTMP-
CLOIDX)

These choices correspond roughly to the “stack machine” and “reg-
ister machine” of traditional bytecode interpreters. Unfortunately,
in a safe functional language, simple imitations of stack machines
and register machines do not tell us much. For this reason, and to
make more space for presentation of other experimental results, we
say little about these two families of interpreters.

Interpreter FUNCON-STKTMP uses an explicit stack of intermedi-
ate values, plus the backpatched loops from Figure 27. But the
stack is implemented using heap-allocated cons cells, and it makes
little difference to performance: on average, FUNCON-STKTMP is
4% ×

÷ 1.07 slower than FUNCON-BACKPATCH (t = 7.57).

We also implemented an alternative that stores intermediate results
in the array that holds the values of local variables. No dynamic al-
location is required, which sounds promising. But using the local-
variable array is 13% to 21% slower than using a heap-allocated
stack (geometric standard deviation at most 1.2; t ≥ 2.18). Profil-
ing shows hot spots in functions caml_page_table_lookup and
caml_modify. Function caml_modify implements a write barrier,
and we conclude that the cost of getting local-variable assignments
past the write barrier outweighs any gains we might have made by
avoiding allocation.

7. Hybrid interpreters

As noted in Section 4, there is no reason to believe that a single
representation of control contexts will perform best for both ex-
pressions and statements—especially since statements have a con-
trol operator and expressions do not. In this section, we report on
the performance of some “hybrid” interpreters.

We built an uncompiled META/DATA-IMMRHO hybrid using the
METACON expression code in Figure 13 and statement code sim-
ilar to the DATACON code in Figure 17. The average performance
of this interpreter is 1% ×

÷ 1.05 slower of that of the non-hybrid
METACON-IMMRHO interpreter (t = 2.16), and on average, us-
ing compact contexts makes no statistically significant difference
(t = 1.89). We also built a hybrid META/DATA-MUTRHO with a
mutable ρ. On average, it runs 1% ×

÷ 1.05 faster than METACON-
MUTRHO (t = 2.25). Finally, we built an uncompiled META/FUN-
IMMRHO hybrid. On average it is 4%×

÷1.08 slower than the META-
CON-IMMRHO interpreter (t = 6.35) but 12%×

÷1.09 faster than the
FUNCON-IMMRHO interpreter (t = 17.31).

To hybridize interpreters that have a compilation step, we started
with the expression code from METACON-LETTMP in Figure 22.
This code is a clear winner: the run step does no case analysis
and allocates no data structures or closures, and intermediate val-
ues are fetched directly from closures at known offsets. We used
this code together with a statement interpreter that uses first-class

130

functions as control contexts, backpatching loop compilation (Fig-
ure 27), and no metalanguage exceptions. The resulting hybrid in-
terpreter, META/FUN-LETTMP, reminds us of threaded code (Bell
1973). And unlike the code in Figure 23, the hybrid interpreter
uses a different indirect-branch instruction to return from each syn-
tactic form, giving hardware branch prediction an opportunity to
do a better job (Ertl and Gregg 2003). On average, this hybrid
performs as well as the simpler METACON-LETTMP interpreter,
only 1.67 ×

÷ 1.54 times slower than Lua 2.5 (t = 15.99). But on
the top-performing ASN vertex of the string cube, the hybrid is
4% ×

÷ 1.12 slower than METACON-LETTMP on average, albeit with
no statistical significance (t = 1.19).

We did one more experiment with hybrid interpreters. Because
backpatching can be tricky, we tried using a metalanguage control
context for the body of a WhileDo loop, as in Figure 23, while us-
ing first-class functions as contexts for the other statements. Using
this alternative, we had to revert to an exception handler—another
metalanguage control context—to implement Return. The exper-
iment did not pay off: averaged over all benchmarks, the hybrid is
4% ×

÷ 1.12 slower than META/FUN-LETTMP (t = 4.21). The exact
numbers vary slightly for each vertex of the string cube.

8. Benchmarking details

We compiled our interpreters to native x86 code using OCaml
version 3.10.2 with default options. We measured elapsed time on
a lightly loaded AMD Phenom 9850 Black Edition CPU running at
2.5GHz with 4GB of RAM. Each benchmark run took over eight
hours.

Bagley (2002) provides 15 microbenchmarks for Lua; we do not
enumerate them here. Two of the benchmarks (lists and hash)
trigger pathological behavior in Lua 2.5’s hashing algorithm. Both
benchmarks create hash tables containing over 100,000 elements.
In the lists benchmark, the pathology appears in Lua 2.5 itself;
between 35,000 and 36,000 elements, run time suddenly quadru-
ples. Our reimplementation is unaffected, with the result that our
code runs up to 20 times faster. In the hash benchmark, both
Lua 2.5 and our representation behave anomalously, in that run-
ning time does not increase monotonically with the number of op-
erations performed. Both are anomalous, but our reimplementation
is pathological: starting around 38,000 elements, every additional
8,000 elements doubles the running time.

We investigated Lua 3.0, and we found that it uses a different hash-
ing algorithm which exhibits neither anomalies nor pathologies.
But Lua 3.0 supports a form of first-class, nested functions with
closures, and we were not confident that using it would constitute
a fair, apples-to-apples comparison. In the future, we hope to back-
port Lua 3.0’s hashing algorithm to Lua 2.5, and also to reimple-
ment it in OCaml. For the present, we have omitted the lists and
hash benchmarks from all results presented in this paper.

9. Related work

The value of using atoms instead of strings is well known. The tech-
nique of interning strings has its roots in Lisp (McCarthy 1960),
where symbols, a distinguished set of atoms, are built into the lan-
guage. In the Lua community, Mascarenhas (2009) has combined
interning with type inference to enable Lua programs to run quickly
on Microsoft’s Common Language Runtime.

Reynolds (1972) transformed a definitional interpreter to free the
object language from properties (evaluation order and first-class
functions) of the metalanguage. Ager et al. (2003) have applied this
functional correspondence to interderive semantics in which con-
trol contexts are represented using metalanguage contexts (evalua-

tors), first-class functions (continuations), and data (defunctional-
ized continuations). Danvy’s (2006) larger research program sug-
gests that all three families of interpreters can be interderived as
well. Our work complements this work; even when implementa-
tions can be derived systematically, it is helpful to know how dif-
ferent implementations can be expected to perform and how their
performance depends on low-level representations.

Most work on improving definitional interpreters uses sophisti-
cated program-transformation tools or sophisticated programming
languages. Among the earliest and most often used techniques is
partial evaluation (Jones, Sestoft, and Søndergaard 1985). A more
recent technique, type-directed partial evaluation (Danvy 1996),
scales up to an imperative language with block structure, subtyp-
ing, and higher-order functions (Danvy and Vestergaard 1996).

Pašalic, Taha, and Sheard (2002) present another strategy for im-
proving a simple definitional interpreter: they describe an inter-
preter with a compilation step and a run step, but the run step is
lifted using a staged programming language. Their paper uses a
statically typed object language, and it focuses on eliminating the
tags on datatypes such as our value type in Figure 10. The results
are achieved using dependent types. Remarkably, Carette, Kise-
lyov, and Shan (2009) solve the same problem without resorting
to dependent types, staging, or any other fancy language extension.
Their insight is to encode object-language terms using combinator
functions, not algebraic data types.

Our techniques do not begin to approach the sophistication of
most of the techniques described above. But in compensation, our
techniques require only simple tools, languages, and encodings.

10. Discussion and conclusion

Table 28 summarizes the performance of the most interesting inter-
preters in the paper, as well as the effort required to create them.
An interpreter’s performance is the ratio of its running time to
the running time of the mature bytecode interpreter for Lua 2.5.
We show the ratio at the best-performing vertex of the string cube,
ASN, plus an average over all vertices. Smaller ratios are better.

Programming effort is best evaluated by studying code, but we
also count source lines. Table 28 shows sizes of the exp and body
functions excerpted in the paper; it also shows total line counts,
which include func.

Compared with the amount of code needed to get a complete,
working interpreter, the interpreter cores are tiny: around 100 lines
or less. The initial basis and operators of µLua take 270 lines;
a lexer and parser take 580 lines. Common support shared among
compilation steps takes 60 lines, and other essential code totals
160 lines. In addition, we spent about 1000 lines on replicating
Lua 2.5’s hashing algorithm and on experimental scaffolding.

Table 28 suggests that introducing a compilation step might dou-
ble the size of a simple interpreter core. More elaborate compila-
tion strategies take more code. From the examples, you can judge
for yourself whether interpreters with compilation steps are signif-
icantly harder to understand.

In conclusion, if there are not too many control operators, inter-
preters based on natural semantics are both fast and easy to write.
When there are control operators, a continuation semantics is prob-
ably easier to implement, but in our very limited experiments, the
resulting interpreter doesn’t perform as well as one based on a
natural semantics. Using a compilation step, it is easy to build a
virtual machine in which each instruction is just another closure,
but it is not easy to make every control transfer a proper tail call.
And although a compilation step doubles the speed of many inter-

131

Ratio at vertex Lines of code
Interpreter ASN (Avg.) exp body Total

Simple interpreters

METACON-IMMRHO 2.04 (3.04) 11a 28 43

DATACON-IMMRHO 2.31 (3.34) 22 35 59

FUNCON-IMMRHO 2.47 (3.52) 18 29 50

Simple interpreters (mutable ρ)

METACON-MUTRHO 3.90 (6.08) 11b 31 45

DATACON-MUTRHO 4.01 (6.27) 22 38 62

FUNCON-MUTRHO 4.27 (6.49) 17 31 51

With compilation steps

METACON-LETTMP 1.52 (1.67) 27d 50 85

FUNCON-CLOTMP 2.78 (3.77) 35g 46 89

FUNCON-BACKPATCH 1.67 (1.83) 35g 52 95

FUNCON-STKTMP (“stack”) 1.82 (1.90) 35 67e 110

FUNCON-ARRTMP- 2.15 (2.25) 33 67e 108

CLOIDX (“register”)

Simple hybrids

META/DATA-IMMRHO 2.07 (3.06) 11a 30 43

META/FUN-IMMRHO-COMPACT 2.06 (3.06) 11a 33 46

Hybrids with compilation

META/FUN-LETTMP 1.58 (1.67) 27d 67e 102

META/FUN-LETTMP-METAWHILE 1.61 (1.73) 27d 54 89

Table 28. Run times and line counts of selected interpreter cores

“Ratios” are ratios of run time to that of Lua 2.5; smaller
is better. Line counts with identical superscripts represent
identical code; a count with a unique superscript represents
a duplicate of a function in an interpreter that is not shown.
“Totals” include counts for func, which are not shown.

preters, when names are represented as atoms the average speedup
is only 23%. Finally, in a functional language, register-based and
stack-based virtual machines are not such good ideas: a register-
based machine is slowed by write barriers, and allocating a value
stack on the metalanguage heap has no benefits.

Using different benchmarks, a different version of OCaml, or a
different target architecture would change our quantitative conclu-
sions. We hope that the future will afford opportunities to add more
modern benchmarks and to evaluate similar interpreters written in
Standard ML, for which several compilers are available.

Acknowledgments

We thank Julie Farago and Gregory Price for their contributions to
the early development of our interpreters. And we thank the anony-
mous reviewers for their helpful observations, especially about pro-
gramming effort.

References

Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. 2003
(August). A functional correspondence between evaluators and abstract
machines. In Proceedings of the 5th ACM-SIGPLAN International

Conference on Principles and Practice of Declarative Programming,
pages 8–19.

Doug Bagley. 2002. The great computer language shootout. Originally at
http://www.bagley.org/~doug/shootout/, some of this material
is archived at http://web.archive.org/.

James R. Bell. 1973 (June). Threaded code. Communications of the ACM,
16(6):370–372.

Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. 2009. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler typed
languages. Journal of Functional Programming, 19(5):509–543.

Olivier Danvy. 1996. Type-directed partial evaluation. In Conference

Record of the 23rd Annual ACM Symposium on Principles of Program-

ming Languages, pages 242–257.

Olivier Danvy. 2006 (October). An Analytical Approach to Programs as

Data Objects. DSc thesis, Department of Computer Science, University
of Aarhus, Aarhus, Denmark.

Olivier Danvy and René Vestergaard. 1996. Semantics-based compiling: A
case study in type-directed partial evaluation. Lecture Notes in Computer

Science, 1140:182–197.

M. Anton Ertl and David Gregg. 2003. The structure and performance of
efficient interpreters. Journal of Instruction-Level Parallelism, 5:1–25.

Matthias Felleisen. 1987. The Calculi of Lambda-v-cs Conversion: A Syn-

tactic Theory of Control and State in Imperative Higher-Order Program-

ming Languages. PhD thesis, Indiana University. The author now prefers
the revised theory presented by Felleisen and Hieb (1992).

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Seman-

tics engineering with PLT Redex. MIT Press.

Matthias Felleisen and Robert Hieb. 1992. The revised report on the
syntactic theories of sequential control and state. Theoretical Computer

Science, 103:235–271.

Roberto Ierusalimschy, Luiz H. de Figueiredo, and Waldemar Celes. 1996
(June). Lua — an extensible extension language. Software—Practice &

Experience, 26(6):635–652.

Roberto Ierusalimschy, Luiz H. de Figueiredo, and Waldemar Celes. 2007
(June). The evolution of Lua. In Proceedings of the third ACM SIGPLAN

conference on History of Programming Languages, pages 2-1–2-26.

Neil D. Jones, Peter Sestoft, and Harald Søndergaard. 1985. An experiment
in partial evaluation: The generation of a compiler generator. In Rewrit-

ing Techniques and Applications, First International Conference, LNCS

volume 202, pages 124–140. Springer.

Gilles Kahn. 1987. Natural semantics. In Proceedings of the Symposium on

Theoretical Aspects of Computer Science (STACS), LNCS volume 247,
pages 22–39. Springer-Verlag.

Peter J. Landin. 1964 (January). The mechanical evaluation of expressions.
Computer Journal, 6(4):308–320.

Fabio Mascarenhas. 2009 (September). Optimized Compilation of a

Dynamic Language to a Managed Runtime Environment. PhD thesis,
Department of Computer Science, PUC-Rio, Rio de Janeiro, Brazil.

John McCarthy. 1960 (April). Recursive functions of symbolic expressions
and their computation by machine, part I. Communications of the ACM,
3(4):184–195.

Emir Pašalic, Walid Taha, and Tim Sheard. 2002 (September). Tagless
staged interpreters for typed languages. Proceedings of the Seventh

ACM SIGPLAN International Conference on Functional Programming,

in SIGPLAN Notices, 37:218–229.

Gordon D. Plotkin. 1981 (September). A structural approach to operational
semantics. Technical Report DAIMI FN-19, Department of Computer
Science, Aarhus University, Aarhus, Denmark.

John Reynolds. 1972 (August). Definitional interpreters for higher-order
programming languages. In Proceedings of the 25th ACM National

Conference, pages 717–740. ACM.

John C. Reynolds. 1998 (December). Definitional interpreters revisited.
Higher-Order and Symbolic Computation, 11(4):355–361.

J. Michael Spivey. 2004 (March). Fast, accurate call graph profiling.
Software—Practice & Experience, 34:249–264.

Joseph E. Stoy. 1977. Denotational Semantics: The Scott-Strachey Ap-

proach to Programming Language Theory. MIT Press.

Source code and other supplementary material is available from
http://www.cs.tufts.edu/~nr/interps.html.

132

http://www.bagley.org/~doug/shootout/
http://web.archive.org/
http://www.cs.tufts.edu/~nr/interps.html

	Introduction
	Experimental framework
	Summary of Lua 2.5
	Syntax and semantics of uLua
	Experimental method: Choice guided by measurement

	Representing semantic concepts
	Names, strings, and the global environment
	Metalanguage and object-language functions
	State and environments
	Tables

	Simple definitional interpreters
	Using control contexts from the metalanguage
	Using control contexts represented by data structures
	Using control contexts represented by functions
	Changing the representation of local environments

	Interpretation after a compilation step
	Using control contexts from the metalanguage
	Using control contexts represented by functions

	A stack machine and a register machine
	Hybrid interpreters
	Benchmarking details
	Related work
	Discussion and conclusion

