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Abstract

Haskell gives computational biologists the flexibility and rapid pro-
totyping of a scripting language, plus the performance of native
code. In our experience, higher-order functions, lazy evaluation,
and monads really worked, but profiling and debugging presented
obstacles. Also, Haskell libraries vary greatly: memoization com-
binators and parallel-evaluation strategies helped us a lot, but other,
nameless libraries mostly got in our way. Despite the obstacles and
the uncertain quality of some libraries, Haskell’s ecosystem made
it easy for us to develop new algorithms in computational biology.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; J.3 [Biology and genetics]

Keywords memoization, stochastic search, parallel strategies,
QuickCheck, remote homology detection

1. Introduction

Computational biologists write software that answers questions
about sequences of nucleic acids (genomic data) or sequences of
amino acids (proteomic data). When performance is paramount,
software is usually written in C or C++. When convenience, read-
ability, and productivity are more important, software is usually
written in a dynamically typed or domain-specific language like
Perl, Python, Ruby, SPSS, or R. In this paper, we report on experi-
ence using a third kind of language, Haskell:

• We had to reimplement an algorithm already implemented
in C++, and the Haskell code is slower. But the Haskell code
was easy to write, clearly implements the underlying mathe-
matics (Section 3.1), was easy to parallelize, and performs well
enough (Section 3.3). And our new tool solves a problem that
could not be solved by the C++ tool which preceded it.

• Higher-order functions made it unusually easy to create and ex-
periment with new stochastic-search algorithms (Section 3.2).

• Haskell slowed us down in only one area: understanding and
improving performance (Section 3.4).

• Although the first two authors are computational biologists with
little functional-programming experience, Haskell made it easy
for us to explore new research ideas. By contrast, our group’s
C++ code has made it hard to explore new ideas (Section 4).

• The Haskell community offers libraries and tools that promise
powerful abstractions. Some kept the promise, saved us lots of
effort, and were a pleasure to use. Others, not so much. We
couldn’t tell in advance which would be which (Section 5.2).
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2. The biology

Proteins, by interacting with one another and with other molecules,
carry out the functions of living cells: metabolism, regulation, sig-
naling, and so on. A protein’s function is determined by its struc-
ture, and its structure is determined by the sequence of amino acids
that form the protein. The amino-acid sequence is ultimately de-
termined by a sequence of nucleic acids in DNA, which we call a
gene. Given a gene, biologists wish to know the cellular function of
the protein the gene codes for. One of the best known methods of
discovering such function is to find other proteins of similar struc-
ture, which likely share similar function. Proteins that share struc-
ture and function are expected to be descended from a common
ancestor—in biological terms, homologous—and thus the problem
of identifying proteins similar to a query sequence is called homol-
ogy detection.

Computational biologists detect homologies by building algo-
rithms which, given a query sequence, compare it with known
proteins. When the known proteins have amino-acid sequences that
are not too different from the query sequence, homology can be
detected by a family of algorithms called hidden Markov mod-
els (Eddy 1998). But in real biological systems, proteins with sim-
ilar structure and function may be formed from significantly dif-
ferent amino-acid sequences, which are not close in edit distance.
Our research software, MRFy (pronounced “Murphy”), can detect
homologies in amino-acid sequences that are only distantly related.
MRFy is available at mrfy.cs.tufts.edu.

3. The software

Homology-detection software is most often used in one of two
ways: to test a hypothesis about the function of a single, newly
discovered protein, or to compare every protein in a genome against
a library of known protein structures. Either way, the software is
trained on a group of proteins that share function and structure.
These proteins are identified by a biologist, who puts their amino-
acid sequences into an alignment. This alignment relates individual
amino acids in a set of homologous proteins. An alignment may
be represented as a matrix in which each row corresponds to the
amino-acid sequence of a protein, and each column groups amino
acids that play similar roles in different proteins (Figure 1).

An alignment may contain gaps, which in Figure 1 are shown as
dashes. A gap in row 2, column j indicates that as proteins evolved,
either protein 2 lost its amino acid in position j, or other proteins
gained an amino acid in position j. If column j contains few gaps,
it is considered a consensus column, and the few proteins with gaps
probably lost amino acids via deletions. If column j contains mostly
gaps, it is considered a non-consensus column, and the few proteins
without gaps probably gained amino acids via insertions.

Once a protein alignment is constructed, it is used to train a hidden
Markov model. A hidden Markov model is a probabilistic finite-
state machine which can assign a probability to any query se-
quence. A protein whose query sequence has a higher probability
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Figure 1. A structural alignment of four proteins (C = 12)

is more likely to be homologous to the proteins in the alignment.
We write a query sequence as x1, . . . , xN , where each xi is an
amino acid. The number of amino acids, N , can differ from the
number of columns in the alignment, C.

A hidden Markov model carries probabilities on some states and
on all state transitions. Both the probabilities and the states are
determined by the alignment:

• For each column j of the alignment, the hidden Markov model
has a match state Mj . The match state contains a table eMj

(x)
which gives the probability that a homologous protein has
amino acid x in column j.

• For each column j of the alignment, the hidden Markov model
has an insertion state Ij . The insertion state contains a table
eIj (x) which gives the probability that a homologous protein
has gained amino acid x by insertion at column j.

• For each column j of the alignment, the hidden Markov model
has a deletion stateDj . The deletion state determines the proba-
bility that a homologous protein has lost an amino acid by dele-
tion from column j.

The probabilities eMj
(x) and eIj (x) are emission probabilities.

A hidden Markov model also has distinguished “begin” and “end”
states. In our representation, each state contains a probability or a
table of probabilities, and it is also labeled with one of these labels:

data StateLabel = Mat | Ins | Del | Beg | End

We use the “Plan7” hidden Markov model, which forbids direct
transitions between insertion states and deletion states (Eddy 1998).
“Plan7” implies that there are exactly 7 possible transitions into the
states of any column j. Each transition has its own probability:

• A transition into a match state is more likely when column j
is a consensus column. Depending on the predecessor state,
the probability of such a transition is aMj−1Mj

, aIj−1Mj
,

or aDj−1Mj
.

• A transition into a deletion state is more likely when column j
is a non-consensus column. The probability of such a transition
is aMj−1Dj

or aDj−1Dj
.

• A transition into an insertion state is more likely when column j
is a non-consensus column. The probability of such a transition
is aMj−1Ij or aIj−1Ij .

3.1 Computing probabilities using perspicuous Haskell

Given a hidden Markov model, an established software package
called HMMER (pronounced “hammer”) can compute the proba-
bility that a new protein shares structure with the proteins used to
train the model. The computation finds the most likely path through
the hidden Markov model. To make best use of floating-point arith-
metic, the software computes the logarithm of the probability of

This model has begin and end states B and E, as well as four nodes,
each containing an insertion state I , a match state M , and a deletion
state D.

Figure 2. A hidden Markov model (C = 4)

each path, by summing the logs of the probabilities on the states
and edges of the path (Viterbi 1967). The path that maximizes the
log of the probability is the most likely path.

The computation is specified on the left-hand side of Figure 3.
A probability V M

j (i) represents the probability of the most likely
path of the first i amino acids in the query sequence, terminating
with placement of amino acid xi in state Mj . Probabilities V I

j (i)

and V D
j (i) are similar. The equations are explained very clearly by

Durbin et al. (1998, Chapter 5)

To be able to use Haskell, we had to reimplement the standard
algorithm for solving Viterbi’s equations. Haskell made it possible
for us to write code that looks like the math, which made the code
easy to write and gives us confidence that it is correct.

Our code represents a query sequence as an immutable array of
amino acids. In idiomatic Haskell, we might represent an individual
amino acid xi using a value of algebraic data type:

data Amino = Ala | Cys | Asp | Glu | ... -- not used

But our models use a legacy file format in which each amino acid
is a small integer used only to index arrays. We therefore chose

newtype AA = AA Int

Our legacy file format also negates the log of each probability,
making it a positive number. The negated logarithm of a probability
is called a score.

newtype Score = Score Double

Type Score has a limited Num instance which permits scores to be
added and subtracted but not multiplied.

In a real hidden Markov model, each probability is represented as
a score. Our code implements a transformed version of Viterbi’s
equations which operates on scores. The transformed equations are
shown on the right-hand side of Figure 3. They minimize the score
(the negated log probability) for each combination of column j,
amino acid xi, and state Mj , Ij , or Dj .

A model is represented as a sequence of nodes; node j includes
states Mj , Ij , and Dj , as well as the probabilities of transitions
out of that node. Each node contains tables of emission scores
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Figure 3. Viterbi’s equations, in original and negated forms

e′Mj
and e′Ij . These tables are read by function eScore, whose

specification is eScore s j i = e′sj (xi). We place the transition
probabilities into a record in which each field is labeled s ŝ, where
s and ŝ form one of the 7 permissible pairs of state labels:

newtype TProb = TProb { logProbability :: Score }
data TProbs = TProbs

{ m_m :: TProb, m_i :: TProb, m_d :: TProb
, i_m :: TProb, i_i :: TProb
, d_m :: TProb, d_d :: TProb }

These scores are read by function aScore, whose specification is
aScore s ŝ (j − 1) = asj−1ŝj .

Scores can be usefully attached to many types of values, so we have
defined a small abstraction:

data Scored a = Scored { unScored :: !a, scoreOf :: !Score}
(/+/) :: Score -> Scored a -> Scored a

Think of a value of type Scored a as a container holding an “a”
with a score written on the side. The /+/ function adds to the score
without touching the container. Function fmap is also defined;
it applies a function to a container’s contents. Finally, we made
Scored an instance of Ord. Containers are ordered by score alone,
so applying minimum to a list of scored things chooses the thing
with the smallest (and therefore best) score.

Armed with our models and with the Scored abstraction, we at-
tacked Viterbi’s equations. The probability in each state is a func-
tion of the probabilities in its predecessor states, and all probabili-
ties can be computed by a classic dynamic-programming algorithm.
This algorithm starts at the begin state, computes probabilites in
nodes 1 through C in succession, and terminates at the end state.
One of us implemented this algorithm, storing the probabilities in
an array. The cost was O(|N | × |C|); in MRFy, C and N range
from several hundred to a few thousand.

Another of us was curious to try coding Viterbi’s equations di-
rectly as recursive functions. Like a recursive Fibonacci function,
Viterbi’s functions, when implemented naı̈vely, take exponential
time. But like the Fibonacci function, Viterbi’s functions can be
memoized. For example, to compute V ′M

j (i) using the equation at
the top right of Figure 3, we define vee’ Mat j i. The equation
adds e′Mj

(xi), computed with eScore, to a minimum of sums.

The sum of an a′

sŝ term and a V ′s
j−1(i − 1) term is computed by

function avSum, in which the terms are computed by aScore and
vee’’, respectively:

vee’ Mat j i = fmap (Mat ‘cons‘) $
eScore Mat j i /+/ minimum (map avSum [Mat, Ins, Del])

where avSum prev =
aScore prev Mat (j-1) /+/ vee’’ prev (j-1) (i-1)

What about the call to fmap (Mat ‘cons‘)? This call performs a
computation not shown in Figure 3: MRFy computes not only the
probability of the most likely path but also the path itself. Function
(Mat ‘cons‘) adds M to a path; we avoid (Mat :) for reasons
explained in Section 3.3 below.

Function vee’’ is the memoized version of vee’. Calling vee’’
produces the same result as calling vee’, but faster:

vee’’ = Memo.memo3 (Memo.arrayRange (Mat, End))
(Memo.arrayRange (0, numNodes))
(Memo.arrayRange (-1, seqlen))
vee’

Functions Memo.memo3 and Memo.arrayRange come from Luke
Palmer’s Data.MemoCombinators package. The value numNodes
represents C, and seqlen represents N .

Memoization makes vee’ perform as well as our classic dynamic-
programming code. And the call to Memo.memo3 is the only part
of the code devoted to dynamic programming. By contrast, stan-
dard implementations of Viterbi’s algorithm, such as in HMMER,
spend much of their code managing dynamic-programming tables.
Haskell enabled us write simple, performant code with little effort.
Because the memoized version so faithfully resembles the equa-
tions in Figure 3, we retired the classic version.

3.2 Exploring new algorithms using higher-order functions

We use Viterbi’s algorithm to help detect homologies in proteins
with specific kinds of structure. When a real protein folds in three
dimensions, amino acids that are far away in the one-dimensional
sequence can be adjacent in three-dimensional space. Some groups
of such acids are called beta strands. Beta strands can be hydrogen-
bonded to each other, making them “stuck together.” These beta
strands help identify groups of homologous proteins. MRFy detects
homologous proteins that include hydrogen-bonded beta strands;
using prior methods, many instances of this problem are intractable.

Beta strands require new equations and richer models of protein
structure. When column j of an alignment is part of a beta strand
and is paired with another column π(j), the probability of finding
amino acid xi in column j depends on the amino acid x′ in col-
umn π(i). If x′ is in position i′ in the query sequence, Viterbi’s

equations are altered; for example, V ′M
j (i) depends not only on

V ′M
j−1(i−1) but also on V ′M

π(j)(i
′). The distance between j and π(j)

can be as small as a few columns or as large as a few hundreds of
columns. Because V ′M

j (i) depends not only on nearby values but

also on V ′M
π(j)(i

′), dynamic programming cannot compute the max-
imum likelihood quickly (Menke et al. 2010; Daniels et al. 2012).

The new equations are accompanied by a new model. Within a
beta strand, amino acids are not inserted or deleted, so a bonded
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Each shaded node represents a beta-strand position. Nodes con-
nected by dashed edges are hydrogen-bonded.

Figure 4. A Markov random field with two beta-strand pairs

pair of beta strands is modeled by a pair of sequences of match
states. Between beta strands, the model is structured as before.
The combined model, an example of which is shown in Figure 4, is
called a Markov random field.

MRFy treats the beta strands in the model as “beads” which can
slide along the query sequence. A positioning of the beta strands is
called a placement. A placement’s likelihood is computed based on
frequencies of amino-acid pairs observed in hydrogen-bonded beta
strands (Cowen et al. 2002). Given a placement, the maximum like-
lihood of the rest of the query sequence, between and around beta
strands, is computed quickly and exactly using Viterbi’s algorithm.
This likelihood is conditioned on the placement.

MRFy searches for likely placements stochastically. MRFy imple-
ments random hill climbing, simulated annealing, multistart sim-
ulated annealing, and a genetic algorithm. These algorithms share
much code, and MRFy implements them using higher-order func-
tions, existentially quantified types, and lazy evaluation.

We describe MRFy’s search abstractly: MRFy computes a se-
quence of points in a search space. The type of point is existentially
quantified, but it is typically a single placement or perhaps a popu-
lation of placements. Each point also has a Score; MRFy looks for
points with good scores.

Ideally, MRFy would use the now-classic, lazy, modular technique
advocated by Hughes (1989), in which one function computes an
infinite sequence of points, and another function uses a finite prefix
to decide on an approximation. But because MRFy’s search is
stochastic, making MRFy’s search modular is not so easy.

To illustrate the difficulties, we discuss our simplest search: random
hill climbing. From any given point in the search space, this search
moves a random distance in a random direction. If the move leads
to a better point, we call it useful; otherwise it is useless.

data Utility a = Useful a | Useless

(We also use Useful and Useless to tag points.) With luck,
an infinite sequence of useful moves converges at a local optimum.

MRFy’s search path follows only useful moves; if a move is use-
less, MRFy abandons it and moves again (in a new random direc-
tion) from the previous point. Ideally, MRFy would search by com-
posing a generator that produces an infinite sequence of moves,
a filter that selects the useful moves, and a test function that enu-
merates finitely many useful moves and returns the final destina-
tion. But a generator may produce an infinite sequence of useless
moves. (For example, if MRFy should stumble upon a global op-
timum, every move from that point would be useless.) Given an

infinite sequence of useless inputs, a filter would not produce any
values, and the search would diverge.

We address this problem by combining “generate and filter” into
a single abstraction, which has type SearchGen pt r. Type vari-
able pt is a point in the search space, and r is a random-number
generator. Rand r is a lazy monad of stochastic computations:

data SearchGen pt r =
SG { pt0 :: Rand r (Scored pt)

, nextPt :: Scored pt -> Rand r (Scored pt)
, utility :: Move pt -> Rand r (Utility (Scored pt))
}

The monadic computation pt0 randomly selects a starting point
for search; nextPt produces a new point from an existing point.
Because scoring can be expensive, both pt0 and nextPt use scored
points, and they can reuse scores from previous points.

To tell if a point returned by nextPt is useful, we call the utility
function, which scrutinizes a move represented as follows:

data Move pt = Move { older :: Scored pt
, younger :: Scored pt
, youngerCCost :: CCost }

The decision about utility uses not only a source of randomness
but also the cumulative cost of the point, which we define to be
the number of points explored previously. The cumulative cost of
the current point is also the age of the search, and in simulated
annealing, for example, as the search ages, the utility function
becomes less likely to accept a move that worsens the score.

Using these pieces, function everyPt produces an infinite se-
quence containing a mix of useful and useless moves:

everyPt :: RandomGen r
=> SearchGen pt r -> CCost -> Scored pt
-> Rand r [CCosted (Utility (Scored pt))]

everyPt sg cost startPt = do
successors <- mapM (nextPt sg) (repeat startPt)
tagged <- zipWithM costedUtility successors [succ cost..]
let (useless, CCosted (Useful newPt) newCost : _) =

span (isUseless . unCCosted) tagged
(++) (CCosted (Useful startPt) cost : useless) <$>

everyPt sg newCost newPt
where costedUtility pt cost =

utility sg move >>= \u -> return $ CCosted u cost
where move = Move { older = startPt, younger = pt

, youngerCCost = cost }

Both nextPt and utility are monadic, but we can still exploit
laziness: from its starting point, everyPt produces an infinite list
of randomly chosen successor points, then calls costedUtility
to tag each one with a cumulative cost and a utility. We hope that
if you look carefully at how successors is computed, you will
understand why we separate pt0 from nextPt instead of using a
single function that produces an infinite list: We don’t want the
infinite list that would result from applying nextPt to many points
in succession; we want the infinite list that results from applying
nextPt to startPt many times in succession, each time with a
different source of randomness.

Once the successors have been computed and tagged, span finds
the first useful successor. In case there is no successor, everyPt
also returns all the useless successors. If we do find a useful suc-
cessor, we start searching anew from that point, with a recursive
call to everyPt. (Because everyPt is monadic, the points accu-
mulated so far are appended to its result using the <$> operator.)
The most informative part of everyPt is last expression of the do
block, which shows that the result begins with a useful point, is fol-
lowed by a (possibly infinite, possibly empty) list of useless points,
and then continues recursively with another call to everyPt.
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The rest of the search uses Hughes’s classic composition of gen-
erator and test function. Because our code is monadic, we use the
monadic composition operator =<<, which is the bind operator with
its arguments swapped:

search :: RandomGen r => SearchGen pt r -> SearchStop pt
-> Rand r (History pt)

search strat test =
return . test =<< everyPt strat 0 =<< pt0 strat

The test function has type SearchStop pt:

type SearchStop pt =
[CCosted (Utility (Scored pt))] -> History pt

Type History pt retains only the useful points. (Internally, MRFy
needs only the final useful point, but because we want to study how
different search algorithms behave, we keep all the useful points.)

The definition of SearchStop reveals two forms of non-modularity
which are inherent in MRFy’s search algorithm. First, we need
Utility, because if we omit the useless states, search might not
terminate. Second, we need CCosted, because some of our test
functions decide to terminate based either on the cumulative cost
of the most recent point or on the difference between costs of
successive useful points.

Despite these non-modular aspects, the search interface provides
ample scope for experiments. Random hill climbing took 50 lines
of code and one day to implement. Simulated annealing required
only a new utility function, which took 15 lines of code and
half an hour to implement. (Hill climbing accepts a point if and
only if it scores better than its predecessor; simulated annealing
may accept a point that scores worse.) Our genetic algorithm uses
very similar functions, except for nextPt: recombination of par-
ent placements took forty lines of code and a full day to imple-
ment.

We’re not entirely happy with the way we’re writing all the indi-
vidual functions. In particular, SearchStop functions aren’t com-
posable; we can’t, for example, combine two functions to say that
we’d like to stop if scores aren’t improving or if we’ve tried a thou-
sand points, whichever comes first. Eventually, we’d like to have
combinator libraries for SearchStop and nextPt, at least.

3.3 Performance

At each point in its search, MRFy calls vee’ several times.
Our vee’ function computes a Scored [StateLabel], that is,
an optimal path and its score. But at intermediate points in MRFy’s
search, MRFy uses only the score. Even though Haskell evalua-
tion is lazy, vee’ still allocates thunks that could compute paths.
To measure the relevant overhead, we cloned vee’ and modified it
to compute only a score, with no path. This change improved run
time by nearly 50%.

Could we keep the improvement without maintaining two versions
of vee’? In Lisp or Ruby we would have used macros or metapro-
gramming, but we were not confident of our ability to use Tem-
plate Haskell. Instead, we used higher-order functions. As shown
in Section 3.1, vee’ does not use primitive (:) but instead uses
an unknown function cons, which is passed in. To get a path, we
pass in primitive (:); to get just a score, we pass in \_ _ -> [].
This trick is simple and easy to implement, and it provides the same
speedup as the cloned and modified code. But we worry that it may
work only because of undocumented properties of GHC’s inliner,
which may change.

Even with this trick, MRFy’s implementation of Viterbi’s algo-
rithm is much slower than the C++ version in MRFy’s predeces-
sor, SMURF. For example, on a microbenchmark that searches for
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Figure 5. MRFy’s parallel speedup on an 8-bladed beta propeller

a structural motif of 343 nodes in a protein of 2000 amino acids us-
ing only Viterbi’s algorithm and no beta-strand information, MRFy
takes 2.32 seconds and SMURF takes 0.29 seconds.

But MRFy’s job is not to run Viterbi’s algorithm on large models;
MRFy’s job is to detect homologies to structures for which both
Viterbi’s algorithm and SMURF’s more complex algorithm are un-
suited. MRFy can solve problems that SMURF cannot. For ex-
ample, we tried both programs on a complex, 12-stranded “beta
sandwich” model. The model contains 252 nodes, 97 of which ap-
pear in the 12 beta strands. MRFy computes an alignment in under
a minute, but SMURF allocates over 16GB of memory and does
not terminate even after eight hours.

We also benchmarked MRFy using a model of an “8-bladed beta
propeller.” The model has 343 nodes, of which 178 appear in
40 beta strands. The segments between beta strands typically have
at most 10 nodes. We used a query sequence of 592 amino acids, but
each placement breaks the sequence into 41 pieces, each of which
typically has at most 20 amino acids. Because MRFy can solve the
models between the beta strands independently, this benchmark has
a lot of parallelism, which Haskell made it easy to exploit. Using
Control.Parallel, parallelizing the computation was as easy
as substituting parmap rseq for map. Figure 5 shows speedups
when using from 1 to 48 of the cores on a 48-core, 2.3GHz AMD
Opteron 6176 system. Errors are estimated from 5 runs. After about
12 cores, where MRFy runs 6 times as fast as sequential code,
speedup rolls off. By running 4 instances of MRFy in parallel on
different searches, we hope to be able to use all 48 cores with about
50% efficiency.

3.4 Awkward debugging and testing

Our experience writing code and trying new ideas was excel-
lent, as was the ease of parallelizing MRFy. Higher-order func-
tions, memoization, laziness, and parallel strategies really worked.
But we also encountered obstacles that prevented functional pro-
gramming from working as well as we would have liked. The most
significant obstacles were in debugging and testing.

We had a hard time diagnosing run-time errors. We expected some
run-time errors; our group’s legacy file format is poorly docu-
mented and hard to deal with. (When beta strands overlap and
are doubly paired, even the invariants of the format are unclear.)
But using Haskell, we found the errors hard to diagnose. Calls to
trace littered our code, even when relegated to wrapper functions.
We didn’t know about the backtrace feature of GHC’s profiler, and
even after we learned about it, it didn’t help: the profiler can be used
only on very small test cases, which didn’t always trigger the errors.
This same limitation affected GHCi’s debugger; in GHCi, our vee’
function is too slow to be runnable on nontrivial inputs. Moreover,
GHCi’s debugger can set breakpoints only at top-level functions or
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at specific column/line positions, which made debugging the mem-
oized vee’’ function impractical. In August 2011, Lennart Au-
gustsson said that the biggest advantage of Strict Haskell is getting
a stack trace on error, and Simon Marlow said that he may have
figured out how to track call stacks properly in a lazy functional
language. We can’t wait.

Our difficulties with debugging led to internal disagreements.
The junior members of our team wanted to apply the debugging
skills they had honed through years of imperative programming.
But these skills did not transfer well to Haskell. The senior mem-
ber of the team kept repeating that a proper approach to debugging
Haskell code should involve QuickCheck. But mere exhortation
was unhelpful.

Only the senior member of our team was able to use QuickCheck
easily. In retrospect, we have identified some obstacles that pre-
vented the junior people from using QuickCheck.

• The examples and tutorials we found focused predominantly
on writing and testing properties using data types that al-
ready implemented class Arbitrary. We didn’t understand the
Arbitrary class very well, perhaps because the overloaded
arbitrary value is not a function. (For programmers accus-
tomed to object-oriented dispatch on arguments, it is hard to
grasp how Haskell’s type-class system can find the proper ver-
sion of arbitrary using only the type of a value.)

• Our difficulties were compounded by a weak understanding of
monads. We were too baffled by QuickCheck’s Gen monad to
grasp its importance.

• We continually overlooked the critical role of shrinking. As a
result, on the one or two occasions we did use QuickCheck, the
counterexamples were too large to be informative.

Because of these obstacles, we wrote thousands of lines of code
without ever defining an instance of Arbitrary and therefore
without looking hard at QuickCheck. After the fact, we were over-
whelmed by the work involved in writing and testing instances of
Arbitrary. The work got done only when the whole team pitched
in to meet the deadlines for this paper.

At the last minute, QuickCheck did find a bug in our implementa-
tion of Viterbi’s algorithm: we had omitted the score for the tran-
sition from the final node of the hidden Markov model to the spe-
cial “end” state. Without QuickCheck, we probably wouldn’t have
known anything was wrong.

4. Our previous experience compared

Our Haskell code for hidden Markov models and Viterbi’s algo-
rithm solves the same problems as existing C++ code. Other re-
searchers using Haskell may also have to reimplement code, but in
computational biology, reimplementing existing algorithms is un-
remarkable. For example, both SMURF and HMMER also contain
new implementations of hidden Markov models and Viterbi’s algo-
rithm.

When performance has mattered, members of our group, like other
computational biologists, have used C++. To compare our Haskell
experience with our C++ experience, we discuss three tools:

• Matt (Menke et al. 2008) is used to create alignments like that
shown in Figure 1. It comprises about 12,000 lines of C++. The
only external tools or libraries it uses are zlib and OpenMP, and
its initial development took two years.

• SMURF (Menke et al. 2010) is used to detect homologous
proteins in the presence of paired beta strands. It comprises
about 9,000 lines of C++, of which about 1,000 lines are shared

with Matt. It uses no external tools or libraries, and its initial
development took a year and a half. It uses multidimensional
dynamic programming to exactly compute the alignments for
which MRFy relies on stochastic search. As a result, in the
presence of complex beta-strand topologies, SMURF is com-
putationally intractable.

• MRFy is used to detect homologous proteins in the presence
of paired beta strands; it effectively supplants SMURF. It com-
prises about 2,500 lines of Haskell, about 500 of which are
devoted to tests, QuickCheck properties, and generators. Nei-
ther Matt nor SMURF includes test code. MRFy uses sev-
eral external tools and libraries, of which the most notable
are Parsec, the BioHaskell bioinformatics library, and the li-
braries Data.MemoCombinators, Control.Parallel, and
Data.Vector. MRFy’s initial development took about three
months.

Like much research software, all three tools were written in haste.
We have experience modifying the older tools.

We modified Matt to use information about sequences as well
as structure. The modification added 2,000 lines of code, and it
calls external sequence aligners that we did not write. We thought
the modification would take three months, but it took most of
a year. Matt uses such data structures as mutable oct-trees, vec-
tors, and arrays. It uses clever pointer arithmetic. The mutable
data structures were difficult to repurpose, and the pointer arith-
metic was too clever: nearly every change resulted in new seg-
faults.

We had hoped to extend Matt further, with support for partial align-
ments, which we expected to require only a cosmetic manipulation
of the output. But this feature wound up requiring deep information
about Matt’s data structures, and we had to give up. We believe we
could write an equivalent tool in Haskell, with most of Matt’s per-
formance, in at most nine months.

Our most painful experience was adding “simulated evolution”
to SMURF (Daniels et al. 2012). Although simulated evolution
represents a relatively minor enhancement, just understanding the
existing code took several months.

We built MRFy quickly, and we expect that higher-order functions
will make MRFy easy to extend. Each new addition to MRFy’s
stochastic search has taken at most a day to implement.

Haskell encourages hasty programmers to slow down. We have to
get the types right, which makes it hard to write very large func-
tions. To get the code to typecheck, we have to write type sig-
natures, which also serve as documentation. And once the types
are accepted by the compiler, it is not much more work to write
contracts for important functions. MRFy is still hasty work. Many
types could be simplified; we’re sure we’ve missed opportunities
for abstraction; and we know that MRFy’s decomposition into
modules could be improved. But despite being hasty program-
mers, we produced code that is easy to understand and easy to ex-
tend. Our hastily written Haskell beats our hastily written Ruby
and C++.

Looking beyond our research group to computational biology more
broadly, our experience with other software is better. Little of it is
written in functional languages, but much of the software shared by
the community is excellent. MRFy’s training component was de-
rived from that of HMMER, and working with the HMMER code-
base was pleasant; data structures and their mutators are well docu-
mented. There is a BioHaskell library, part of which we use, but it is
not nearly as complete as BioPython or BioRuby, which are heav-
ily used in the community. We hope that tools for computational
biology in Haskell continue to mature.
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5. What can you learn from our experience?

If you are a computational biologist and you are interested in func-
tional programming, you don’t need extensive preparation to be
productive in Haskell. Two of us (Daniels and Gallant) are graduate
students. Daniels has taken a seminar in functional programming,
which included some Haskell; Gallant has taken a programming-
languages course which included significant functional program-
ming but no Haskell. Ramsey is a professor who has used Haskell
for medium-sized projects, but his contributions to MRFy have
been limited, mostly to post hoc refactoring and testing.

5.1 Obstacles to be overcome

We had quite some difficulty profiling, but we hope that this diffi-
culty may be mitigated by new profiling tools released early in 2012
with GHC 7.4. GHC assigns costs to “cost centers” (Sansom and
Peyton Jones 1997), and in GHC 7.0, which we used for most
of MRFy’s development, cost-center annotations had to be added
manually to nested functions. Although these annotations made our
code so ugly that we felt compelled to remove them, they did enable
us to improve the performance of vee’ as discussed in Section 3.3.
GHC 7.4 provides more sophisticated profiling tools, which we
look forward to using. Difficulties using Cabal to enable profiling
of installed libraries may remain.

Like other functional programmers, we have found that once we
have our types right, our code is often right. But MRFy computes
with arrays and array indices, and in that domain, types don’t help
much. Bounds violations lead to run-time errors, which we have
not been able to identify any systematic way to debug. GHC’s
profiler can provide stack traces, but we found this information
difficult to discover, and as noted above, there are obstacles to
profiling. We’re aware that debugging lazy functional programs has
been a topic of some research, but one of the biggest obstacles we
encountered to using Haskell is that we have had to abandon our
old approaches to debugging.

Ideally we would use QuickCheck to find bugs, but as we mention
in Section 3.4, we found obstacles. We have now overcome these
obstacles, but we sorely regret not doing so earlier. In light of
our experience, we will institute a new programming practice:
whenever we introduce a new data type, we will write the instance
of Arbitrary right away, while relevant invariants are still fresh
in memory. When invariants are not enforced by Haskell’s static
type system, we will write them as Haskell predicates. We can then
immediately run QuickCheck on each predicate, to verify that our
Arbitrary instance agrees with the predicate. For each predicate p
we can also check fmap (all p . shrink) arbitrary.

5.2 Information that will help you succeed

If you want to use Haskell in your research, we believe that you
must have enough experience with functional programming that
you can build all the code you need, not only the code that is
easy to write in a functional language. Implementing Viterbi’s
equations in Haskell was pure joy. Writing an iterative search in
purely functional style was easy. Transforming data in the HMMER
file format, without using mutable state the way the C++ code does,
was difficult.

While the Haskell community offers many enticing tools, libraries,
and packages, not all of them are worth using. Some are not ready
for prime time, and some were once great but are no longer main-
tained. The great packages, like Data.MemoCombinators and Par-
allel Strategies, are truly great. But for amateurs, it’s not always
easy to tell the great packages from the wannabes and the has-
beens. And even some of the great packages could be better docu-
mented, with more examples.

As in any endeavor, access to experts helps. We would have been
better off if our in-house expert had been an enthusiastic student
and not a busy professor. But we have been surprised and pleased
by the help available from faraway experts on Stack Overflow and
on Haskell mailing lists. Although a local expert makes things
easier, one is not absolutely necessary.

6. Conclusion

A little knowledge of and a lot of love for functional program-
ming enabled us to carry out a successful research project in a lan-
guage that computational biologists seldom use. If you want to use
Haskell—or one of your graduate students wants to use Haskell—
you can succeed.
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