
Knowledge-oriented Refactoring in Visualization

Dong Hyun Jeong, Wenwen Dou, William Ribarsky, and Remco Chang

Abstract—In the past, many visualization applications are designed by visualization experts. Although most of them are useful and
well designed to address people’s needs in visualization, a refactoring process is often considered to enhance their visualization
applications. However, the refactoring process in visualization is different from the process used in software-engineering. In this
paper, we explain the refactoring process in visualization. Based on understanding the process in visualization, we propose a new
approach (knowledge-oriented refactoring) that focuses on adopting user’s personalized knowledge when redesigning visualization
applications.

1 INTRODUCTION

Many successful visualization applications in recent years have been
developed by visualization experts collaborating with domain experts.
With a well-designed visualization application, users are able to un-
derstand and analyze complex datasets, and as the need of the end
users changes or increases in using the visualization tools, the visu-
alization designers would modify and update the system accordingly.
In cases when the foundations of the visualization are inadequate in
supporting the users’ needs, the visualization would need to be re-
designed and re-implemented all together. Typically, such a redesign-
ing process emphasizes supporting additional features (visualization
techniques), speed-up calculations (performance improvements), new
hardware systems (graphics cards), etc.

In software-engineering literature, however, researchers have stud-
ied restructuring and refactoring the existing software for more than a
decade [7]. The restructuring is defined as “the transformation from
one representation form to another at the same relative abstraction
level, while preserving the subject system’s external behavior (func-
tionality and semantics) [3]” and the refactoring is regarded as the
object-oriented variant of restructuring. Specifically, the refactoring
focuses on altering not the external behavior, but the internal behav-
ior of the code [4]. The main idea of the refactoring is to redistribute
classes, variables, and methods to facilitate future adaptations and ex-
tensions [7].

Although both the restructuring and refactoring are important and
should be considered, these processes have not been major research
areas in the visualization community. Instead, researchers in visu-
alization typically focus on redesigning existing visualization appli-
cations in an efficient and useful way. In this paper, we propose a
knowledge-oriented refactoring process that performs the refactoring
process based on adopting users’ personalized knowledge or domain-
specific knowledge.

In recent, several researchers consider adopting knowledge in vi-
sualization. Chen et al. [2] propose knowledge-assisted visualization
based on the differentiation of data, information, and knowledge in vi-
sualization, in which both existing and users’ personalized knowledge
are used to design a visualization application. While their system has
been shown to be novel and effective, it is not clear how such a design
paradigm could be broadened to the refactoring process in visualiza-
tion In this paper, we extend the spirit of incorporating knowledge
into visualizations and propose such a knowledge-oriented approach
to refactoring visualization systems. We propose that with our refac-
toring method, existing visualization application(s) could be extended
in useful ways.

• Dong Hyun Jeong, Wenwen Dou, William Ribarsky, and Remco Chang are
with Charlotte Visualization Center at UNC Charlotte, E-Mail:{dhjeong,
wdou1, ribarsky, rchang}@uncc.edu.

2 REFACTORING PROCESS IN VISUALIZATION

Designing a visualization application is similar to the software-
engineering process. However, the goals of two research domains are
distinctive in that visualization designs primarily focus on the exter-
nal structure (visual representation) of the application, and software-
engineering concentrates on the internal structure of the software (the
structure of the source code). Because of this distinction, the refac-
toring process in visualization needs to be considered differently. In
this section, we propose the features that should be supported when
redesigning a visualization application.

Fig. 1. A diagram that represents visualization pipelines.

In visualization, creating a visual imagery is a complicated process.
Figure 1 shows this process as a diagram that represents the visualiza-
tion pipelines. Once data are entered into the visualization pipeline,
algorithms are applied to the data in order to either (or both) filter out
unnecessary information or extract important and useful information.
With the processed data, visualization techniques are then applied to
create visual representations as images.

In most cases, when a visualization application is redesigned, the
changes take place in the “visualization techniques” and the “visual
representation” parts of the pipeline (Figure 1) to support additional
features, remove unnecessary features, improve visual representations,
etc. The refactoring process therefore often involves adopting pre-
viously designed visualization techniques and visual representations.
This refactoring process works well in improving visualization appli-
cations, but it is potentially limiting because the refactoring is per-
formed without a clear understanding of the “data” or the “filtering and
extracting” steps. In visualization, most visualization applications are
well designed by visualization experts, but understanding the data and
the domain knowledge necessary for the appropriate filtering and ex-
tracting algorithms are often beyond the expertise of the visualization
designer. Collaboration with domain experts alleviates some of these
shortcomings, but often the domain experts’ knowledge cannot easily
be transferred and directly integrated into the visualizations (some-
times referred to as the “communication gap” [8]). Therefore, the
refactoring process in visualization is only limited to support either
additional visualization techniques or redesigning visualization repre-
sentations. We propose that with a more conscious focus on the other
two steps in the visualization pipeline during a redesign, the result-
ing visualization will be enhanced not just visually, but also in actual
use for solving domain specific tasks. In next section, we explain our
approach, the knowledge-oriented refactoring process.

3 KNOWLEDGE-ORIENTED REFACTORING IN VISUALIZATION

In general, the refactoring process in visualization is only considered
when a visualization application has a limitation to represent data effi-



(a) (b) (c)

Fig. 2. Examples of knowledge-oriented refactoring in visualization. (a) A network traffic analysis system [10] is enhanced by adopting users’
discoveries. In here, a color representation technique is used to represent each network traffic pattern such as mail (green), DNS (blue), scan
(red), etc. (b) A genomic visualization application (GVis) [5] is extended based on adopting existing biological classification that mapped with
each individual color. (c) From a financial visualization application (WireVis [1]), users’ analyzing processes (e.g. semantic-level interactions) are
captured and used to redesign the existing visualization application.

ciently. But the knowledge-oriented refactoring process is applicable
to not just imperfectly designed visualization applications, but also
well formed visualization applications. Some researchers consider ap-
plying knowledge into visualization applications to enhance their vi-
sual representations. Xiao et al. [10], for instance, present a network
traffic analysis system that reuses users’ knowledge (discoveries - the
meanings of each network traffic pattern) to change the visual repre-
sentation in a meaningful way (Figure 2(a)). With limited knowledge
about each network traffic pattern, the visually represented network
traffic patterns do not have enough information explaining what each
pattern means. If the application is modified by adopting users’ knowl-
edge, detecting and understanding the meanings of each network traf-
fic pattern become a trivial but meaningful task. Also our genomic vi-
sualization application (called GVis [5]) shows how the existing visu-
alization application can be redesigned to incorporate domain knowl-
edge and enhance the understanding of complex genomic data and
finding useful information (Figure 2(b)). The initial version of the
application has been designed to represent genomic data and to ad-
dress biological analysis processes. It has been extended with known
biological knowledge structures such as general biological classifica-
tion and biological taxonomy structure from NCBI (National Center
for Biotechnology Information) to enhance understanding biological
categorization.

Adopting knowledge into visualizations is important and useful for
finding important information. However, identifying relevant and ap-
propriate knowledge that could be applied to a visualization applica-
tion is difficult. One possible source of knowledge could be extracted
from experts’ analysis. For example, work by Dou et al. have shown
that analysts’ analytical processes, strategies, methods, and findings,
can be recovered through only the examination of analysts’ interac-
tion log [9]. In the study, 10 analysts’ interactions of analyzing fi-
nancial fraud detection tasks were captured in a financial visual an-
alytics application (called WireVis [1]) and analyzed by four coders
(Figure 2(c)). The studied showed that up to 80% of the findings
could be recovered from the interaction logs through the use of specif-
ically designed visual analytical tools [6]. This finding suggests that
users’ interaction logs (e.g. semantic-level interactions such as key-
words, accounts, and transactions) embed users’ reasoning processes.
The knowledge-oriented refactoring process therefore may include
the users’ reasoning processes to enhance understanding and analyz-
ing data through a visualization application that considers and incor-
porates users’ interactions. The financial visualization (WireVis) is
viewed as a well designed application that preserves the analytical pro-
cedures in the financial data. However, with a limited understanding
about the financial fraud analysis, such a useful visualization cannot
be efficiently used to solve complex analytical tasks. In such a com-
plicated visualization application, the knowledge-oriented refactoring
should be performed by adopting experts’ reasoning processes.

The knowledge-oriented refactoring process can be applied to vi-
sualization applications in two possible ways: integrating knowledge
into the applications or completely redesign the applications using
a knowledge-oriented design. Visualization applications such as the
network traffic analysis system and the genomic visualization are re-
designed by integrating knowledge into the existing visualization ap-

plications. In this case, the overall visual representation does not need
to be greatly altered. Instead, existing visualization techniques are
simply adopted to emphasize the importance within the visualizations.
For the financial visualization, we are in the process of redesigning the
application based on users’ reasoning processes. The two knowledge-
oriented refactoring processes need to be carefully considered because
the redesigning process is as difficult as building a new one in compli-
cated visualization applications.

Of course, the knowledge-oriented refactoring looks somewhat sim-
ilar to knowledge-assisted visualization (KaV) [2]. However, the main
focus of the knowledge-oriented refactoring is to redesign any existing
visualization applications by adopting experts’ reasoning processes.

4 CONCLUSION AND FUTURE WORK

The question “what is the best visual representation?” is typically
difficult to answer because visualization applications are designed by
adopting different visualization techniques depending on the types of
the datasets. However, the final goal for many visualization applica-
tions, in particular visual analytical systems, should be the usefulness
of the system to perform analysis. In these types of systems, a goal-
oriented refactoring process should be considered as an important step
when upgrading or refining the visualization. In this paper, we pro-
pose a new approach, knowledge-oriented refactoring, which focuses
on redesigning existing visualization applications by adopting domain
specific knowledge. Our proposed approach is based on the examina-
tion of the visualization pipeline, and we show that visualizations that
are redesigned or refactored with integration of knowledge in mind,
the resulting systems demonstrate significant improvement.

REFERENCES

[1] R. Chang et al. Wirevis: Visualization of categorical, time-varying data
from financial transactions. In VAST 2007. IEEE Symposium on, pages
155–162, 30 2007-Nov. 1 2007.

[2] M. Chen et al. Data, information, and knowledge in visualization. IEEE
Comput. Graph. Appl., 29(1):12–19, 2009.

[3] E. J. Chikofsky and J. H. Cross II. Reverse engineering and design recov-
ery: A taxonomy. IEEE Softw., 7(1):13–17, 1990.

[4] M. Fowler. Refactoring: Improving the Design of Existing Programs.
Addison-Wesley, 1999.

[5] J. Hong et al. Gvis: A scalable visualization framework for genomic data.
In EuroVis 2005, pages 191–198. Eurographics Association, 2005.

[6] D. H. Jeong et al. Evaluating the relationship between user interaction
and financial visual analysis. In VAST ’08. IEEE Symposium on, pages
83–90, Oct. 2008.

[7] T. Mens and T. Tourwe. A survey of software refactoring. IEEE Trans.
Softw. Eng., 30(2):126–139, February 2004.

[8] A. J. Pretorius and J. J. van Wijk. Bridging the semantic gap: Visualiz-
ing transition graphs with user-defined diagrams. IEEE Comput. Graph.
Appl., 27(5):58–66, 2007.

[9] D. Wenwen et al. Recovering reasoning processes from user interactions.
IEEE Comput. Graph. Appl., 29(3):52–61, 2009.

[10] L. Xiao, J. Gerth, and P. Hanrahan. Enhancing visual analysis of network
traffic using a knowledge representation. In VAST 2006 IEEE Symposium
On, pages 107–114, 31 2006-Nov. 2 2006.


