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Abstract — We present an interactive framework for exploring space-time relationships in databases of experimentally collected high-
resolution biomechanical data. These data describe complex 3D motions (chewing, walking, flying, etc.) performed by animals and
humans and captured via high-speed imaging technologies, such as biplane fluoroscopy. In analyzing these 3D biomechanical mo-
tions, interactive 3D visualizations are important, in particular, for supporting spatial analysis. However, as researchers in information
visualization have pointed out, 2D visual representations of motion are also effective for trend analysis, especially for long and com-
plex animation sequences. Our approach, therefore, combines techniques from both 3D and 2D visualizations. Specifically, it utilizes
a multi-view visualization strategy including a small multiples view of motion sequences, a parallel coordinates view, and detailed 3D
inspection views. The resulting framework follows an overview first, zoom and filter, then details-on-demand style of analysis, and it
explicitly targets a limitation of current tools, namely, supporting analysis and comparison at the level of a collection of motions rather
than sequential analysis of a single or small number of motions. Scientific motion collections appropriate for this style of analysis
exist in clinical work in orthopedics and physical rehabilitation, in the study of functional morphology within evolutionary biology, and
other contexts. An application is described based on a collaboration with evolutionary biologists studying the mechanics of chewing
motions in pigs. Interactive exploration of data describing a collection of more than one hundred experimentally captured pig chewing
cycles is described.

Index Terms —Scientific visualization, information visualization, coordinated multiple views, biomechanics.

1 INTRODUCTION

Effective visualization of 3D motion is a complex problem, especially
as it relates to experimentally collected data in biomechanics. Imaging
modalities, such as biplane fluoroscopy combined with CT, are now
able to capture high-speed motion of the bones of a joint at rates of 250
to 500 frames per second with sub-millimeter accuracy [1, 22]. These
data allow for far more detailed study of a variety of complexmotions
in animals and humans than was previously possible. Severalimpor-
tant visualization challenges arise from working with motion data sets
collected with these technologies.

The first challenge in visualization and analysis of these data is un-
derstanding the complex spatial relationships that are present. This is
a 3D problem, in the sense that the bones exist in a 3D space and, in
many cases, the relationship between the 3D shape of the bones and
their function (functional morphology) is one of the primary scientific
research questions. Thus, effective 3D spatial understanding is an im-
portant feature of visualization systems appropriate for use with these
data.

The second challenge in analysis of these motion data is that, in
both clinical and experimental work, these data typically exist as part
of a large database. For example, when a scientist designs anexper-
iment to study chewing motions (the primary example used in this
paper) she will typically collect data on tens to hundreds ofchewing
cycles. Questions posed during analysis may be of the form, what is a
typical chewing motion as exhibited across the data? Or, they may be
of the form, how does chewing change based upon the amount of food
in the mouth, the type of food, or other variables? This styleof analy-
sis requires understanding the time-varying spatial data that describes
a single chewing motion, and, beyond that, it requires understanding
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trends and anomalies in this time-varying spatial data across databases
of numerous repeated motions.

Previous approaches to visualization of biomechanical motion data
have benefited from animated and interactively controlled 3D graph-
ics [8, 10, 21]. Our collaborators in evolutionary biology have also
had positive experiences with 3D visualization of their data. In fact,
several of them have found 3D views to be so useful that they have
taught themselves how to use a combination of Maya and Matlabto
produce their own 3D visualizations. In general, previous 3D visu-
alizations presented in the literature have provided useful capabilities
for investigating individual motions, but provided only limited capa-
bilities for analysis and comparison of a set of motions. We present
a framework that explicitly supports visualization of multiple related
motion sequences, an important scientific task in this context.

Visualization of trends in time-varying and multi-variatedata has
a rich history of study within theinformation visualizationcommu-
nity [16]. Our work is motivated by a desire to leverage the theories
and techniques resulting from this work and bring these to bear within
a system that targets time-varying 3D data. Since spatial relationships
in these data are so important, they have tended to be visualized in
the past with what have traditionally been termedscientific visual-
ization techniques, or 3D spatial layouts where the spatial arrange-
ment is pre-determined by the true 3D arrangement of bones inspace.
To observe motion over time, these 3D views have been animated,
and often additional data attributes are visualized via color, texture,
streamlines, and 3D data glyphs [8, 10, 21]. While these sophisticated
3D views are clearly valuable, evidence in the information visualiza-
tion literature suggests that, in general, understanding trends over time
through animation may not be the most effective strategy [16]. Based
on this insight and other promising results in information visualiza-
tion [3, 11, 15], we have been motivated to explore a new visualiza-
tion framework that combines the strengths of both information and
scientific visualization approaches and targets understanding of spa-
tially complex, time-varying motion data.

The idea of bringing information and scientific visualization to-
gether is not new [7, 14], and several compelling examples tied to real
scientific analysis now exist in the literature [12, 13, 19].However,
many challenges remain in this line of research, especiallyas it relates
to specific forms of data. Analysis of detailed 3D motion, forexam-
ple, raises the question of the most appropriate roles for animation,



Fig. 1. When data are first loaded into the visualization framework, an overview of the motion database is presented using three coordinated data
views: 1. A small multiples view generated from snapshots of 3D renderings (top-left window in the figure). 2. A parallel coordinates view (top-
right), data dimensions plotted in this example are: trial number, chew cycle number, cycle duration, average angular velocity for the cycle, average
translational velocity for the cycle, average distance of separation of the teeth for the cycle, then frame number and the same set of descriptive
statistics but calculated at the single frame level rather than as averages over a cycle. 3. A 2D plot of data values over time (bottom), here angular
velocity over time. All views are linked through both visual and interactive strategies. In this case, 108 chewing motions cycles from five different
trials are displayed in this overview.

comparison views, and techniques such as parallel coordinates, which
have been widely applied in general, but less so within the context of
biomechanical analysis.

Specific to analysis of 3D biomechanical motion data, integrating
3D and 2D visualization techniques, as in the overview visualization
of Figure 1, is particularly appealing because each brings aunique
strength that compensates for the other’s weakness. Analyzing motion
trends using only 3D visualization tools imposes a high cognitive load
on the user, since analysis often requires comparisons between mul-
tiple detailed motions that the user must keep in his workingmem-
ory [9, 16]. On the other hand, when analyzing motion using only 2D
visualizations, the abstract representations of the motion data do not
provide the necessary context for the user to understand the3D struc-
ture of the object or its movement in space. We propose that when the
two are integrated together in a tightly-coupled manner, the user gains
the benefit of both perspectives and can perform analysis of the motion
in both space and time.

The high-level contribution of our work is presenting an integrated
framework for 2D and 3D interactive visualization of experimentally
collected biomechanical motion data sets. To this end, specific con-
tributions of the work are: 1. The design of an overview technique
for visualization of hundreds of repeated cyclic motions. 2. Methods
for zooming, filtering, and exploring motion data via linked2D and
3D views, including the ability to pass data generated through inter-
action with 3D views on to linked 2D visualizations, and viceversa.
3. The design of side-by-side and overlay-style coordinated views for
comparison of the motion of bones in space and the resulting inter-
action between multiple bone surfaces. 4. A discussion of lessons
learned, current limitations, and future directions as motivated by a
driving real-world application.

In the following section, we provide some background on the data
and scientific application (analysis of pig chewing behavior) discussed
in this paper. This is followed by a discussion of related work in vi-
sualization. Then we present the motion visualization framework in
detail, followed by more specifics of the driving application and ini-

tial feedback from domain scientists. Finally, we present adiscussion
of lessons learned in developing this system, including limitations and
future directions.

2 BACKGROUND IN APPLICATION AREA AND DATA

The framework presented here is likely to apply to analysis of a num-
ber of experimentally-captured motions of interest to orthopedists,
physical therapists, and evolutionary biologists. The example applica-
tion driving the work in this paper comes from the field of evolutionary
biology, where our collaborators are studying masticationin minipigs
(Sinclair strain).

In general, the mechanics of the mandible, skull, and teeth work-
ing together in chewing motions are an interesting area of study, both
in humans [6], and in animals [8]. Pigs, in particular, follow an un-
usual chewing pattern, called bilateral chewing, that is characterized
by motion of the jaw up, then a food grinding motion to one side, then
down, then up again, then sideways food grinding motion to the other
side, then down again. This pattern repeats over several chewing cy-
cles. (The alternating grinding from side-to-side patterncan be seen
in the tracer paths in adjacent small multiples views in Figure 2.) This
characteristic motion has been visualized previously [8],but only for
investigating a single chewing motion at a time. Research questions re-
quire analysis of multiple instances of this motion (an important goal
of this framework). For example: Can we catalog a “typical” chewing
behavior? How does the movement of bones change over time based
upon the amount of food in the mouth or the type of food?

Evolutionary biologists began their study by collecting data from
multiple experimental trials in the lab. The trials captured motion from
a number of different chewing-related behaviors, including food gath-
ering, feeding on pig chow, and feeding on hard nuts (in the shell).
Data were captured and processed using the X-Ray Reconstruction
of Moving Morphology (XROMM) methodology [1], in which high-
speed biplane fluoroscopy is used to capture motion data during the
experiment and a CT scan captured separately is used to reconstruct



Fig. 2. A small multiples display setup interactively by a user. To tune the display, the user zooms in to one of the small views, making an interactive
3D rendering of it fill the window. Then, he adjusts visualization and camera settings in the zoomed in view. When he returns to the small multiples
view, each of the multiples is re-rendered using the new visualization settings. In this case, the user added a tracer curve to the visualization to
trace out the path of the pig’s front tooth. Then, he zoomed in on the location of the tooth and made the bones invisible. The characteristic bilateral
chewing motion of the pig may be seen in many of the adjacent images. Look for a tracer that begins (black end of the curve) on one side, moves
up, then comes down on the other side. In the image immediately to the left or right of this one, you are likely to find a tracer exhibits a similar
pattern, but moving in the opposite direction. Cycles that capture food gathering behavior can also be identified in the display, characterized by
tracers that are more compact than the elongated chewing motions. The background color for each multiple is set to encode the trial from which
the data are drawn; the colors correspond to those used in the 2D time plot at the bottom of the screen (see Figure 1). Note: to better understand
how the tracers were created, see the 3D view in Figure 3, which shows the bones together with a tracer placed in the same position as was used
to generate these small multiples renderings.

the 3D geometry of the bones and teeth. Computational tools are uti-
lized to register the two sources together to reconstruct high-speed 3D
motion data. These data are the source for the visualizations presented
here. For this study, they include more than one hundred chewing mo-
tions (up-down motions of the jaw) collected during five experimental
trials.

3 RELATED WORK

In this section, we relate our work to relevant research in evaluat-
ing animated visualization as a tool for trend analysis, visualizing 3D
biomechanics, designing coordinated multi-view visualizations, and
combining scientific and information visualization strategies.

3.1 Trend Analysis and Animated Visualization

In recent work, Robertson et al. examined the effectivenessof ani-
mation for visualizing trends in data [16]. While animationis often
attractive for presentation purposes, the results of this work suggest
that static small multiples views and static traces of trendlines over
time may be more effective than animation in analysis of trends over
time.

These findings have far reaching implications for visualizations
of motion data, which are, nearly by default, viewed as animations.
While viewing an animated visualization of the motion of an animal
does seem natural and intuitive (after all the data are collected over
time) the question is raised, are animated visualizations the right tool
for analyzingthese motion data?

Based upon our experience with collaborators and the results of
previous animated 3D visualizations in biomechanics, we believe in-
teractive/animated 3D visualizations do play some important role in

analysis. However, the findings of Robertson et al. highlight the po-
tential importance of alternative complimentary techniques and raise
the issue of identifying the right mix of animated and staticviews for
motion visualization. Our framework explores these issuesand builds
upon the static representations demonstrated by Robertsonet al. A
key component of our initial motion overview visualizationis a small
multiples visualization [20], which we have often found useful to con-
struct as a set of tracer lines (See Figure 2), following in the style of
the small multiples traces presented in [16].

3.2 3D Biomechanics Visualization

Several systems for 3D visualization of biomechanics data exist in the
literature [2, 8, 10, 21]. A primary function of these tools is provid-
ing a view of anatomical features (bones, ligaments, etc.) positioned
appropriately in 3D space. Almost all of these systems also support
some form of motion playback, often with some interactive support
for adjusting camera parameters and playback speed.

Beyond simply replaying experimentally captured data, 3D visu-
alization systems also provide for visualization of derived data. For
example, computing helical (or screw) axes to describe the motion of
one bone relative to another is a technique that is gaining popularity
within the biomechanics community [4, 6]. Viewing the position of
this axis in space relative to anatomical landmarks in a 3D visualiza-
tion can provide insight into the rotation and translational components
of a complex motion [8, 21]. Other examples of 3D visualization of
these data include applying color maps to bone surfaces to indicate the
distance from one bone to another [10], and drawing 3D tracercurves
to indicate the path some anatomical feature takes through space over
time [2]. Our 3D visualizations employ each of these techniques. The



focus of our investigation is not on the introduction of novel 3D visu-
alization techniques, but rather on how a state-of-the-art3D visualiza-
tion of biomechanics may be leveraged within a system that interac-
tively links it with complimentary 2D visualizations.

3.3 Multi-View and “Scientific-Information” Visualizatio n
The benefits of using multiple coordinated 2D visualizations for data
analysis have been well documented [3, 11, 15].

Our approach relates most closely to multi-view techniquesthat
employ a combination of 2D and 3D views to investigate data that
follow a pre-defined spatial distribution, thereby combining scientific
and information visualization techniques. Several visualization and
interaction techniques fitting this description have been documented
previously, for example, linking 2D and 3D scatterplots [13], brush-
ing over multiple dimensions in 2D views to identify 3D features [12],
and using parallel coordinates as an interface for exploratory volume
visualization [19]. Our work follows closely in the spirit of these tech-
niques, however, our overview visualization, coordinatedviews, and
use of animation and interaction are designed specifically to target
analysis of high-precision motion data sets. As such, we have a spe-
cial emphasis on the role of animation within our framework,and we
have utilized specific properties of the data, such as its cyclic nature,
in designing several components of the framework, such as the small
multiples overview.

4 MOTION VISUALIZATION FRAMEWORK

In this section, we describe a novel framework for visualization of sci-
entific 3D motion data. Through a series of visual tools, the framework
supports the typical visual information seeking mantra: “Overview
first, zoom and filter, then details-on-demand” [17].

4.1 Small Multiples and Coordinated Views for a Motion
Database Overview

When a data set is first loaded, an overview of the data is displayed
using the three coordinated view windows seen in Figure 1: a small
multiples view, a parallel coordinates view, and a 2D plot ofdescrip-
tive statistics computed for each frame of the motion over time. These
three views have been carefully chosen for their analyticalcapabilities
in analyzing different aspects of a 3D motion sequence. The small
multiples view displays a representative motion snapshot for each mo-
tion sequence. The 2D xy-plot is chosen for its intuitive nature in
representing time, described by Ericson during his keynoteaddress in
the 2007 InfoVis conference [5]. Lastly, the parallel coordinates view
is used to reveal relationships between data dimensions based motion
statistics and derived quantities. Together, these views allow the user
to explore the 3D motion sequence in space, time, and at a dimensional
level.

4.1.1 3D Snapshot Small Multiples

The utility of small multiples displays for analysis of trends over time
has been demonstrated in a 2D data context [16], but several open
questions remain in developing a small multiples strategy for 3D mo-
tion data. Relevant full-scale 3D visualizations are typically interac-
tive and detailed. How do these translate to small scales? Ifthe in-
dividual multiples are to support the same style of interaction as in
normal visualization, then how do the interaction strategies change to
work within a much smaller window? Several questions that are spe-
cific to motion visualization also arise, including, how aremotions
assigned to a small multiple? One small multiple per frame ofthe mo-
tion data will result in far too many views to be useful. On theother
hand, if a single multiple stands in for a sequence of frames in the
data, then how does that single image best visually represent motion
over time?

Our approach to assigning motion to a particular small multiples
image is based upon a characteristic of our target data. The biolog-
ical motions we examine (chewing, walking, flying, etc.) arealmost
always cyclic. It is quite common to segment motions such as these
into cycles as a part of the analysis. In walking, the moment the foot
first touches the floor can be used as an indicator of the beginning and

end of a single stride. In the chewing examples presented here, the
motions are divided into segments of chewing patterns (a single up
and down motion of the jaw bone). One motion segment is assigned
to each small multiple image.

The image displayed for each small multiple is a snapshot of a3D
visualization generated using our typical 3D rendering engine and then
texture mapped onto a small rectangle to produce the array ofmulti-
ples. The default view when data are first loaded into the system is
shown in Figure 1. Here, each multiple is a snapshot of a 3D render-
ing of the bones posed during the initial frame of each motionsegment.
The user may change the frame that represents this view by mousing-
over a frame number along the x-axis of the 2D plot, or highlighting
a specific marker in the same 2D plot, or he may change the 3D view
by clicking on a particular small multiple, which enlarges the render-
ing to fill its parent window, hiding the other small multiples. At a
larger size, the 3D view is now easier to manipulate. The display now
switches into an interactive 3D rendering mode and activates typical
mouse and keyboard-based interaction widgets for camera manipula-
tion, showing and hiding particular bones within the view, and adding
visualization glyphs such as axes of rotation and tracer lines to the
view. After some manipulation of these viewing parameters,the user
escapes from this interactive view and is returned to the small multi-
ples display, which is then re-rendered so that all of the views match
the camera and visualization settings set by the user in the interactive
mode. The background color of each multiple is set to encode the trail
from which the data come; the colors correspond to those in the 2D
time plot (see bottom of Figure 1).

Figure 2 shows a small multiples display generated in this way. In
the interactive mode, the user attached a tracer to the fronttooth on the
jaw, zoomed the camera in to focus on the tooth, turned off therender-
ing of the bones, and then returned to the small multiples display.

4.1.2 Integrated Time-Plots and Parallel Coordinates Views

Accompanying the small multiples display in the overview visualiza-
tion are two 2D views: a parallel coordinates visualizationand a 2D
plot of motion data over time. The three views are linked together
via interactive brushing and highlighting. For example, asthe mouse
moves over the time plot the corresponding small multiple view high-
lights. Conversely, moving the mouse over a small multiple image
highlights the corresponding section of the time plot. Eachline in
the parallel coordinates view corresponds to a frame of motion data.
Brushing over data in the parallel coordinates view highlights the cor-
responding frames and data values in the time plot. The valueplotted
on the Y axis of the time plot may be changed interactively to map to
any data attribute that may be calculated for each frame of the data.
In practice, values such as angular or translational velocity for a par-
ticular bone are useful. The angular velocity of the rotation of the
mandible is plotted over time in the view shown in Figure 1.

4.2 Filtering to Generate Zoomed-In Coordinated Views

Following Shneiderman’s mantra “overview first, zoom and filter, then
details-on-demand,” the system supports filtering down to specific seg-
ments or time ranges of the motion sequence. In the small multiples
overview, a right mouse click on an image activates a menu, which
is used to create a new coordinated view filtered to display just the
segment of the motion that corresponds to the small multiple. Simi-
larly, after brushing with the mouse to select a portion of the data in
the time plot view, a right click and menu selection sends theselected
data to a new multi-view zoomed-in window. Figure 3 shows this new
zoomed-in window.

4.2.1 Interaction Between Views

The zoomed-in window contains three data views: the parallel coor-
dinates plot, 2D time plot, and a new interactive 3D view. Both 2D
views are similar to the overview versions with the exception that the
data visualized is a subset of the original data. The 3D view is differ-
ent from the overview. Rather than a small multiples representation,
spatial trends are now depicted via a real-time 3D renderingof the
data that is responsive to mouse and keyboard controls for adjusting



Fig. 3. A coordinated multiple view window created by zooming in on a
portion of the larger data set.

viewing and visualization parameters. All views are linkedvisually
and interactively. For example, the 3D view may be animated either
through interaction in the 3D view or by mousing over the 2D time
plot. In either case, the views advance together to display the active
data frame as the animation plays. The 2D plot is not restricted to de-
picting time on the X axis. Other plots, for example, angularvelocity
vs. distance between bones, are also useful.

4.2.2 Generating and Visualizing Data through Exploration

A more interesting example of the tight linkage between these multi-
ple views is the ability to seed new visualizations from datagenerated
during analysis. Figure 4 illustrates an example of this. The user first
filtered the data from the original overview to zoom in to a sequence
of four main chewing patterns. Then, while interacting withthe 3D
view window, a tracer was created to mark the path of a point onthe
left condyle of the mandible. The path that this point travels through
space is calculated and stored in a coordinate system relative to the
pig’s skull. The 3D points that make up the path then become avail-
able as a data source for the linked 2D views. In this example,the user
brushed over high positive values for the vertical position(relative to
the pig’s skull) of the tracer using the parallel coordinates view. The
white lines in this view show the highlighted data points. Since the
views are linked, these values also highlight in yellow within the plot
below of average distance between the teeth over time. The visualiza-
tion shows that during jaw closing, the selected point on thecondyle
rotates backward and downward. At its low point, there is some side-
to-side motion of the jaw as the teeth come together to grind food. The
sideways motion is visible in the in the tracer shown in the 3Dview.

Other 3D visualization systems have exported data generated dur-
ing exploration to tools that may then be used to generate related 2D
plots [8]. Important differences in the strategy describedhere are the
tight coupling of the multiple views and the ability to buildnew views
based upon data generated during exploration. A tracer placed in one
view may generate data that are then used for exploration viainterac-
tive brushing and ultimately for a new filtering strategy. Then, based
on this new filtering, a second zoomed-in coordinated view may be
created.

Fig. 4. The tracer created in the 3D view window generates new data
(x,y,z points over time) that become available for display in the other
linked views.

4.3 Overlays and Side-by-Sides for Detailed Comparisons

Visual comparison of motion sequences occurs at all levels of the
framework, and as the focus narrows, the method of visual comparison
changes. As noted by Robertson et al. [16], small multiples (or side-
by-side windows) and overlays each have advantages in comparing
motion. The advantage in using overlays is that “counter trends” are
easily detectable, but overlays often suffer from visual clutter. On the
other hand, side-by-side comparisons are less sensitive tovisual clut-
ter, but require more visual real estate to represent the same amount of
information and require more time in visual scanning of all the win-
dows. In this framework, the choice of the most appropriate mix of
these styles of comparison is left to the user.

In motion overlay views, data for multiple sequences are plotted
and rendered together. Figure 5 shows an example. Note that,even
in the 3D view, the pig is rendered with two overlayed jaw bones, one
corresponding to each of the motion sequences that is being visualized.

Side-by-side comparisons may be established informally bysim-
ply arranging zoomed-in coordinated views side-by-side onthe screen.
Alternatively, data selected in a time plot within the motion overview
or any zoomed-in window may also be sent to an existing window,
which then resizes to arrange the views appropriately for a side-by-
side comparison, as in Figure 7.

5 APPLICATION TO EXPERIMENTALLY COLLECTED B IOME-
CHANICS DATA

This section describes application-specific implementation details, ini-
tial findings, and feedback from domain scientists for the study of pig
chewing behavior introduced in section 2.

5.1 Processing Motion Data

Before loading the pig chewing motion data into the visualization
framework, a simple Matlab script was prepared to segment the motion
into cycles. While, more advanced time series analysis could certainly
be utilized in this step, the approach taken here is quite simple. The
angular velocity of the jaw bone is already calculated for these data
in a preprocessing step. Using this information, a sign change from
negative to positive in the angular velocity is detected. This occurs



Fig. 5. Detailed motion comparisons are supported via overlay-style vi-
sualization applied to each of the coordinated views. Data from multiple
motion segments are plotted on the same axes and in the same regis-
tered 3D space to produce these visualizations.

regularly at the bottom of a chewing motion when the jaw stopsopen-
ing and begins to close. The data frames where this occurs aresaved to
a file and loaded into the visualization system to seed the techniques,
such as the small multiples display, that work based on segments of
the motion data. In all, data from five different trials are loaded into
the system resulting in 108 motion segments identified in this manner.
All this data can be seen in the motion overview in Figure 1. Note that
not all of the sequences correspond to a chewing cycle, some refer to
food gathering. The small multiples traces view in Figure 2 provide a
visual means for distinguishing chewing and food gatheringpatterns.

5.2 Identifying Spatial Relationships and Surface Interac -
tions

Many biomechanical analyses require investigation of patterns in the
interaction of surfaces, particularly bone-to-bone surface interaction
within joints [10]. Chewing motions are interesting in thisregard in
that there are three areas of surface-to-surface interaction: the attach-
ment of the jaw to the skull on the left and on the right, and theteeth.
The occlusion and grinding patterns of the teeth are of particular in-
terest. Figure 6 shows a series of zoomed-in data views setupas a
side-by-side comparison. The vertical distance between the teeth has
been calculated and plotted directly on the 3D view as a colormap
textured to the tooth geometry. These distance data are calculated for
each frame of the motion in a preprocessing step and are rendered in-
teractively in the 3D views using a texture-based color map implemen-
tation. Within this framework, these data may be viewed bothin the
3D visualization and in 2D plots, where the average distancebetween
the two sets of teeth is a useful variable to explore.

5.3 Identifying Clusters of Related Motion Sequences

Figure 7 demonstrates the use of multiple linked views for identify-
ing and characterizing related motion sequences. The user has filtered
down to a subset of the data (eleven chew sequences) that are visible
in the parallel coordinates view and the 2D plot of average distance
between teeth vs. frame number. The 2D plot has been arrangedto
overlay the chewing sequences, starting each at frame zero on the left
side of the plot. In this arrangement, two similar clusters of motions
are easily distinguishable, with an outlier that does not clearly fit into
either pattern. Each cluster is likely to correspond to a different chew-
ing behavior, for example, chewing and food gathering. Using the 2D
views, we can clearly identify the two clusters and also explore the
amount of variance within each cluster for different data variables.

5.4 Feedback from Domain Scientists

While we have yet to perform an extended analysis of the use ofthis
framework by domain scientists, we have collected some initial feed-
back from our collaborators based on our current implementation. Two
high-level points of feedback are: first, there is widespread agreement
that new analysis strategies are needed for working with these data,
and second, the framework presented here is a drastic departure from
current practice in fields such as evolutionary biology and orthope-
dics. A key point of departure is the notion that it may be possible
to look at all of the data from an experiment at once via the overview
visualization methods. During a feedback session with our collabora-
tors, this point sparked considerable discussion, including discussion
of the use of tracer lines within the small multiples views and the po-
tential to extend this concept to more sophisticated “tracers” that also
encode velocity, rotation angle, or other variables through color cod-
ing or other visual means. This feedback reinforces the importance of
exploring the design space of potential small multiples views that are
appropriate for motion visualization. During the same session, we also
confirmed several characteristic features of pig chewing motions and
investigated differences in the motion based upon the type of food (pig
chow vs. nuts) through interactive exploration using this framework.

6 DISCUSSION

In this section we discuss current limitations and future research direc-
tions suggested by this work.

6.1 Scalability of Small Multiples

One question raised by the current framework is, how will thetech-
niques scale to databases of various sizes? The initial overview visual-
ization, including the small multiples view, is perhaps themost inter-
esting aspect of the framework to discuss with scalability in mind. One
answer to the question is that the utility of the small multiples visual-
ization scales with the skill and creativity of the user in constructing
a useful small multiples display. The display in Figure 2 is useful
for discerning some trends across 108 related motion sequences. With
fewer motion sequences, alternative views, including those that feature
the bones prominently may be useful. With more motion sequences,
this layout and others may still be useful, but certainly at some point,
the utility of a small multiples display crafted from snapshots of 3D
renderings will reach a limit.

A complimentary technique to address the scalability of this small
multiples motion overview may be the use of filtering within the small
multiples view or within new instances of it in separate windows.
Currently this display functions as a complete overview of the entire
database, however, such an overview may also be appropriatefor a
subset of the original data. We have discussed this idea, buthave not
yet developed an implementation of it. Several interestinguser inter-
face issues remain in developing an interactive display of this form
that supports fluid, interactive exploration.

6.2 Scalability and Interactivity

Adding 3D renderings to a multi-window information visualization
system requires special design to maintain interactive framerates.
While the 2D graphics utilized in typical information visualization



Fig. 6. A sequence of side-by-side visualizations that demonstrate how the teeth slide against each other. The 3D view has been rotated so that
we are looking up at the top rows of teeth, and the mandible has been hidden from view. A color map has been texture mapped onto the forms of
the teeth to encode the vertical distance (defined by the principle axes of the skull) separating the teeth. The chewing sequence advances in time
across the views from left to right. A 3D instantaneous helical axis describing the motion of the mandible relative to the skull is also displayed.

techniques are relatively fast to render, 3D scientific visualizations of-
ten utilize the full extent of the rendering power provided by current
graphics hardware, just to render a single view of the data.

Working with the data set described here, our current implementa-
tion maintains interactive framerates, depending on the view options
set, while rendering on the order of five instances the 3D scene in the
filtered and comparison views. This seems to be a minimum level of
performance for reasonable analysis using the framework. To extend
the framework to applications that involve more intensive 3D render-
ing, new strategies for addressing multi-view 3D renderingwill be
required. One potential direction for this research is to use a prior-
itized rendering scheme, directing more rendering resources to the
views that are actively being manipulated. Since the viewer’s atten-
tion is divided between several views in multi-view systems, artifacts
in some views may be almost unnoticeable from a perceptual stand-
point. An example would be the use of image warping [18] to support
linked camera manipulation in several 3D windows. The view in the
window that the user is actually manipulating might be rendered as a
true 3D scene, while other (lower priority) views might update in an
approximate fashion using a faster rendering technique.

6.3 Alternative Visual Representations for Motion

Previously demonstrated 3D animated small multiples displays have
supported rendering just a handful of multiples [2], which give them a
very different visual character than the display in Figure 2. With addi-
tional technical work to address rendering speed, it shouldbe possible
to develop animated 3D small multiples displays of tens to hundreds
of animated 3D scenes. This raises the question of whether such a
display would be useful in analysis of 3D motions. Our current work
was motivated by the finding that static views may outperformani-
mation in analysis of trends [16]. Based on this notion, adding even
more animation seems to have more potential to distract thanto clar-
ify. Nevertheless, it would be interesting to investigate whether certain
classes of 3D motion trends may be discernible through visualization
in large-scale animated small multiples displays.

Currently, the most useful static small multiple representations for
motion that we have discovered are of the form seen in Figure 2,
simple geometric representations that describe motion from multiple

frames of data in a single image. In addition to tracers, other visuals
commonly found in 3D motion visualization applications mayalso be
useful as small multiple images. Examples beyond tracer particles that
fit this description include the average axis of rotation or the ruled sur-
face swept out by an instantaneous axis of rotation over a sequence of
frames of motion.

6.4 New Data Sources

In applying this framework to other data sets, one of the important
next issues to address is handling biomechanical systems containing
more than two bones, such as the spine or the wrist. The skull and jaw
system is a special, rather complicated, case for a two-bonesystem, in
that the jaw has multiple attachment points to the skull (theTMJ on
both sides), and the two bones also interact as the teeth cometogether.
Thus, many of the strategies employed here (interacting with 3D views
to establish spatial points of interest, using multiple windows to focus
on multiple points of interest, etc.) are likely to be relevant to analysis
in complex systems with more than two rigid bodies in motion.

7 CONCLUSION

As new high-speed, high-resolution imaging capabilities see increased
use in fields such as orthopedics, physical therapy, and evolutionary
biology; scientists will face considerable challenges in analyzing the
wealth of complex, 3D, time-varying data that result from these sys-
tems. The framework presented here is specifically geared toward ad-
dressing many of the new challenges posed by these data. Comparative
analysis across large sets of experimentally collected data is facilitated
by integrating 2D and 3D interactive visualization tools tosupport an
overview first, zoom and filter, then details-on-demand style of analy-
sis. This work contributes a new interactive approach to constructing
small multiples overview visualizations, which we demonstrate using
a collection of more than one hundred repeated cyclic motions. Spe-
cific interactive links that may be made between 2D and 3D visualiza-
tions to facilitate zooming, filtering, and exploring motion data are also
presented. These links include the use of data generated “onthe fly”
during analysis, as seen in Figure 4, where the path of a 3D tracer curve
generated by the user acts as a filtering variable within coordinated 2D
views. Two methods (overlays and side-by-sides) are presented for



Fig. 7. Clusters of motion cycles can be identified using a combination
of the 2D plot and the parallel coordinates.

detailed motion analysis using coordinated multi-view visualization.
Each utilizes sophisticated 3D views that incorporate features, such as
visualization of surface-to-surface distances via texture-mapped color
coding, along with interactive 2D views, such as parallel coordinates
plots that are non-traditional in this domain. Many challenges remain
in this line of research, including scalability, refinementof visual rep-
resentations, and extending this framework to new data sources. Our
initial feedback from domain scientists confirms both the need for new
analysis strategies, and the novelty of this framework compared to cur-
rent practice in their fields. Our collaborators expressed considerable
interest in the overview visualization component of the framework and
in future work designed to extend the small multiples tracerviews to
depict additional data. These findings contribute to a growing body
of knowledge of the topic of coordinated, multi-view visualization
systems that reinterpret and recombine techniques from scientific and
information visualization to address driving scientific analysis chal-
lenges.
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