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Abstract — We present an interactive framework for exploring space-time relationships in databases of experimentally collected high-
resolution biomechanical data. These data describe complex 3D motions (chewing, walking, flying, etc.) performed by animals and
humans and captured via high-speed imaging technologies, such as biplane fluoroscopy. In analyzing these 3D biomechanical mo-
tions, interactive 3D visualizations are important, in particular, for supporting spatial analysis. However, as researchers in information
visualization have pointed out, 2D visual representations of motion are also effective for trend analysis, especially for long and com-
plex animation sequences. Our approach, therefore, combines techniques from both 3D and 2D visualizations. Specifically, it utilizes
a multi-view visualization strategy including a small multiples view of motion sequences, a parallel coordinates view, and detailed 3D
inspection views. The resulting framework follows an overview first, zoom and filter, then details-on-demand style of analysis, and it
explicitly targets a limitation of current tools, namely, supporting analysis and comparison at the level of a collection of motions rather
than sequential analysis of a single or small number of motions. Scientific motion collections appropriate for this style of analysis
exist in clinical work in orthopedics and physical rehabilitation, in the study of functional morphology within evolutionary biology, and
other contexts. An application is described based on a collaboration with evolutionary biologists studying the mechanics of chewing
motions in pigs. Interactive exploration of data describing a collection of more than one hundred experimentally captured pig chewing
cycles is described.

Index Terms —Scientific visualization, information visualization, coordinated multiple views, biomechanics.
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1 INTRODUCTION

trends and anomalies in this time-varying spatial datasscdatabases
of numerous repeated motions.
Previous approaches to visualization of biomechanicalanatata

Effective visualization of 3D motion is a complex problemapecially
as it relates to experimentally collected data in biomeidsanmaging
modalities, such as biplane fluoroscopy combined with C&,rew

able to capture high-speed motion of the bones of a jointes iaf 250
to 500 frames per second with sub-millimeter accuracy [1, PRese
data allow for far more detailed study of a variety of compiestions
in animals and humans than was previously possible. Sewvepalr-
tant visualization challenges arise from working with roatidata sets
collected with these technologies.

The first challenge in visualization and analysis of thega @aun-
derstanding the complex spatial relationships that areemte This is

have benefited from animated and interactively controllBdgBaph-
ics [8, 10, 21]. Our collaborators in evolutionary biologgve also
had positive experiences with 3D visualization of theiradaln fact,
several of them have found 3D views to be so useful that theg ha
taught themselves how to use a combination of Maya and Matlab
produce their own 3D visualizations. In general, previols\8su-
alizations presented in the literature have provided Uisefpabilities
for investigating individual motions, but provided onlynlited capa-

a 3D problem, in the sense that the bones exist in a 3D spagénandbilities for analysis and comparison of a set of motions. \Wesent

many cases, the relationship between the 3D shape of thes laome
their function (functional morphology) is one of the primacientific
research questions. Thus, effective 3D spatial understgrisian im-
portant feature of visualization systems appropriate fa&r with these
data.

a framework that explicitly supports visualization of nipie related
motion sequences, an important scientific task in this etnte
Visualization of trends in time-varying and multi-variadata has
a rich history of study within thénformation visualizatiorcommu-
nity [16]. Our work is motivated by a desire to leverage theotties

The second challenge in analysis of these motion data isithat and techniques resulting from this work and bring these & taéthin

both clinical and experimental work, these data typicaXigteas part
of a large database. For example, when a scientist desigespen-

a system that targets time-varying 3D data. Since spatatioaships
in these data are so important, they have tended to be dsdailn

iment to study chewing motions (the primary example usechis t the past with what have traditionally been ternmeaientific visual-
paper) she will typically collect data on tens to hundredshawing ization techniques, or 3D spatial layouts where the spatial arrange
cycles. Questions posed during analysis may be of the folmatis a ment is pre-determined by the true 3D arrangement of bongsaice.
typical chewing motion as exhibited across the data? Oy, ithey be To observe motion over time, these 3D views have been aninate
of the form, how does chewing change based upon the amounodf f and often additional data attributes are visualized viarcdexture,

in the mouth, the type of food, or other variables? This stflanaly-
sis requires understanding the time-varying spatial detadescribes
a single chewing motion, and, beyond that, it requires wtdading
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streamlines, and 3D data glyphs [8, 10, 21]. While theseistipated
3D views are clearly valuable, evidence in the informati@ualiza-
tion literature suggests that, in general, understandergis over time
through animation may not be the most effective strategy. [Bésed
on this insight and other promising results in informatiasualiza-
tion [3, 11, 15], we have been motivated to explore a new lizara
tion framework that combines the strengths of both inforamand
scientific visualization approaches and targets undeistgrof spa-
tially complex, time-varying motion data.

The idea of bringing information and scientific visualipatito-
gether is not new [7, 14], and several compelling exampésstd real
scientific analysis now exist in the literature [12, 13, 18jowever,
many challenges remain in this line of research, espeasliyrelates
to specific forms of data. Analysis of detailed 3D motion, ésam-
ple, raises the question of the most appropriate roles fination,
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Fig. 1. When data are first loaded into the visualization framework, an overview of the motion database is presented using three coordinated data
views: 1. A small multiples view generated from snapshots of 3D renderings (top-left window in the figure). 2. A parallel coordinates view (top-
right), data dimensions plotted in this example are: trial number, chew cycle number, cycle duration, average angular velocity for the cycle, average
translational velocity for the cycle, average distance of separation of the teeth for the cycle, then frame number and the same set of descriptive
statistics but calculated at the single frame level rather than as averages over a cycle. 3. A 2D plot of data values over time (bottom), here angular
velocity over time. All views are linked through both visual and interactive strategies. In this case, 108 chewing motions cycles from five different

trials are displayed in this overview.

comparison views, and techniques such as parallel codedinahich
have been widely applied in general, but less so within theteoa of
biomechanical analysis.

Specific to analysis of 3D biomechanical motion data, irdtgg
3D and 2D visualization techniques, as in the overview \lizaton
of Figure 1, is particularly appealing because each bringsique
strength that compensates for the other’s weakness. Anglyzotion
trends using only 3D visualization tools imposes a high @¢ognload
on the user, since analysis often requires comparisonsekatmul-
tiple detailed motions that the user must keep in his workirgm-
ory [9, 16]. On the other hand, when analyzing motion usiny 2D
visualizations, the abstract representations of the matata do not
provide the necessary context for the user to understan@Distruc-
ture of the object or its movement in space. We propose thahvline
two are integrated together in a tightly-coupled manner uger gains
the benefit of both perspectives and can perform analysieahition
in both space and time.

The high-level contribution of our work is presenting aremgrated
framework for 2D and 3D interactive visualization of expeentally
collected biomechanical motion data sets. To this end,ifspeon-
tributions of the work are: 1. The design of an overview tégha
for visualization of hundreds of repeated cyclic motions M&thods
for zooming, filtering, and exploring motion data via linké® and
3D views, including the ability to pass data generated thinoter-
action with 3D views on to linked 2D visualizations, and vi@rsa.
3. The design of side-by-side and overlay-style coordohatews for
comparison of the motion of bones in space and the resultiteg-i
action between multiple bone surfaces. 4. A discussion s§des
learned, current limitations, and future directions asivated by a
driving real-world application.

In the following section, we provide some background on thad
and scientific application (analysis of pig chewing behguiliscussed
in this paper. This is followed by a discussion of related knior vi-
sualization. Then we present the motion visualization &aark in
detail, followed by more specifics of the driving applicatiand ini-

tial feedback from domain scientists. Finally, we presedisaussion
of lessons learned in developing this system, includingtditions and
future directions.

2 BACKGROUND IN APPLICATION AREA AND DATA

The framework presented here is likely to apply to analysis mum-
ber of experimentally-captured motions of interest to optdists,
physical therapists, and evolutionary biologists. Thewxa applica-
tion driving the work in this paper comes from the field of ex@nary
biology, where our collaborators are studying masticaitominipigs
(Sinclair strain).

In general, the mechanics of the mandible, skull, and teettk-w
ing together in chewing motions are an interesting areaunfysthoth
in humans [6], and in animals [8]. Pigs, in particular, fallan un-
usual chewing pattern, called bilateral chewing, that israbterized
by motion of the jaw up, then a food grinding motion to one stten
down, then up again, then sideways food grinding motion écotiner
side, then down again. This pattern repeats over severaliogpey-
cles. (The alternating grinding from side-to-side patteain be seen
in the tracer paths in adjacent small multiples views in Fég2i) This
characteristic motion has been visualized previously§8,only for
investigating a single chewing motion at a time. Researelsiipns re-
quire analysis of multiple instances of this motion (an imait goal
of this framework). For example: Can we catalog a “typicdléwing
behavior? How does the movement of bones change over tineel bas
upon the amount of food in the mouth or the type of food?

Evolutionary biologists began their study by collectingad&om
multiple experimental trials in the lab. The trials captiineotion from
a number of different chewing-related behaviors, inclgdimod gath-
ering, feeding on pig chow, and feeding on hard nuts (in thalsh
Data were captured and processed using the X-Ray Recamstruc
of Moving Morphology (XROMM) methodology [1], in which high
speed biplane fluoroscopy is used to capture motion datagltine
experiment and a CT scan captured separately is used tosteooin
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Fig. 2. A small multiples display setup interactively by a user. To tune the display, the user zooms in to one of the small views, making an interactive
3D rendering of it fill the window. Then, he adjusts visualization and camera settings in the zoomed in view. When he returns to the small multiples
view, each of the multiples is re-rendered using the new visualization settings. In this case, the user added a tracer curve to the visualization to
trace out the path of the pig’s front tooth. Then, he zoomed in on the location of the tooth and made the bones invisible. The characteristic bilateral
chewing motion of the pig may be seen in many of the adjacent images. Look for a tracer that begins (black end of the curve) on one side, moves
up, then comes down on the other side. In the image immediately to the left or right of this one, you are likely to find a tracer exhibits a similar
pattern, but moving in the opposite direction. Cycles that capture food gathering behavior can also be identified in the display, characterized by
tracers that are more compact than the elongated chewing motions. The background color for each multiple is set to encode the trial from which
the data are drawn; the colors correspond to those used in the 2D time plot at the bottom of the screen (see Figure 1). Note: to better understand
how the tracers were created, see the 3D view in Figure 3, which shows the bones together with a tracer placed in the same position as was used

to generate these small multiples renderings.

the 3D geometry of the bones and teeth. Computational toelsta
lized to register the two sources together to reconstrggtt-speed 3D
motion data. These data are the source for the visualizatimsented
here. For this study, they include more than one hundred icigemwo-
tions (up-down motions of the jaw) collected during five expental
trials.

3 RELATED WORK

In this section, we relate our work to relevant research mluat-
ing animated visualization as a tool for trend analysis,afiging 3D
biomechanics, designing coordinated multi-view viswalans, and
combining scientific and information visualization stigitss.

3.1 Trend Analysis and Animated Visualization

In recent work, Robertson et al. examined the effectivenésmi-
mation for visualizing trends in data [16]. While animatisnoften
attractive for presentation purposes, the results of tligkvguggest
that static small multiples views and static traces of trines over
time may be more effective than animation in analysis ofdseover
time.

These findings have far reaching implications for visudiire
of motion data, which are, nearly by default, viewed as ationa.
While viewing an animated visualization of the motion of arinaal
does seem natural and intuitive (after all the data are aelteover
time) the question is raised, are animated visualizatibagight tool
for analyzingthese motion data?

Based upon our experience with collaborators and the eesfilt
previous animated 3D visualizations in biomechanics, webe in-
teractive/animated 3D visualizations do play some impartale in

analysis. However, the findings of Robertson et al. highltgk po-
tential importance of alternative complimentary techesjand raise
the issue of identifying the right mix of animated and stat@ws for
motion visualization. Our framework explores these isaresbuilds
upon the static representations demonstrated by Robeetsah A
key component of our initial motion overview visualizatizna small
multiples visualization [20], which we have often found fus¢o con-
struct as a set of tracer lines (See Figure 2), following sdtyle of
the small multiples traces presented in [16].

3.2 3D Biomechanics Visualization

Several systems for 3D visualization of biomechanics detd & the
literature [2, 8, 10, 21]. A primary function of these toadsprovid-
ing a view of anatomical features (bones, ligaments, etasjtipned
appropriately in 3D space. Almost all of these systems alppart
some form of motion playback, often with some interactivppsart
for adjusting camera parameters and playback speed.

Beyond simply replaying experimentally captured data, 3&uv
alization systems also provide for visualization of dedivdata. For
example, computing helical (or screw) axes to describe thigom of
one bone relative to another is a technique that is gainimpulpoity
within the biomechanics community [4, 6]. Viewing the pasit of
this axis in space relative to anatomical landmarks in a 3Daliza-
tion can provide insight into the rotation and translatiamponents
of a complex motion [8, 21]. Other examples of 3D visualiaatof
these data include applying color maps to bone surfaceslicaite the
distance from one bone to another [10], and drawing 3D trageres
to indicate the path some anatomical feature takes throp@tesover
time [2]. Our 3D visualizations employ each of these techesy The



focus of our investigation is not on the introduction of nlo8® visu-
alization techniques, but rather on how a state-of-th&Ranisualiza-
tion of biomechanics may be leveraged within a system thatao-
tively links it with complimentary 2D visualizations.

3.3 Multi-View and “Scientific-Information” Visualizatio n

The benefits of using multiple coordinated 2D visualizagifor data
analysis have been well documented [3, 11, 15].
Our approach relates most closely to multi-view technignes

end of a single stride. In the chewing examples presentes] liee
motions are divided into segments of chewing patterns (glssiap
and down motion of the jaw bone). One motion segment is asdign
to each small multiple image.

The image displayed for each small multiple is a snapshot3i a
visualization generated using our typical 3D renderingremgnd then
texture mapped onto a small rectangle to produce the arrayutif-
ples. The default view when data are first loaded into theesyss
shown in Figure 1. Here, each multiple is a snapshot of a 3Daen

employ a combination of 2D and 3D views to investigate daga thing of the bones posed during the initial frame of each maegment.

follow a pre-defined spatial distribution, thereby combinscientific
and information visualization techniques. Several viigadion and
interaction techniques fitting this description have beecudhented
previously, for example, linking 2D and 3D scatterplots][1&ush-
ing over multiple dimensions in 2D views to identify 3D fegds [12],
and using parallel coordinates as an interface for expoyatolume
visualization [19]. Our work follows closely in the spirif these tech-
niques, however, our overview visualization, coordinatesvs, and
use of animation and interaction are designed specificalltatget
analysis of high-precision motion data sets. As such, we laaspe-
cial emphasis on the role of animation within our framewathd we
have utilized specific properties of the data, such as itccypature,
in designing several components of the framework, suchesttiall
multiples overview.

4  MOTION VISUALIZATION FRAMEWORK

In this section, we describe a novel framework for visuaitraof sci-
entific 3D motion data. Through a series of visual tools, thetework
supports the typical visual information seeking mantra:vé@iew
first, zoom and filter, then details-on-demand” [17].

4.1 Small Multiples and Coordinated Views for a Motion
Database Overview

When a data set is first loaded, an overview of the data isaiispl
using the three coordinated view windows seen in Figure Imalls
multiples view, a parallel coordinates view, and a 2D plotescrip-
tive statistics computed for each frame of the motion ovaetiThese
three views have been carefully chosen for their analytaphbilities
in analyzing different aspects of a 3D motion sequence. Thalls
multiples view displays a representative motion snapsratdch mo-
tion sequence. The 2D xy-plot is chosen for its intuitiveunatin

representing time, described by Ericson during his keyadtiess in
the 2007 InfoVis conference [5]. Lastly, the parallel canades view
is used to reveal relationships between data dimensioresibrastion
statistics and derived quantities. Together, these vidiew ghe user
to explore the 3D motion sequence in space, time, and at andiorel

level.

4.1.1 3D Snapshot Small Multiples
The utility of small multiples displays for analysis of tsover time

The user may change the frame that represents this view bgingsu
over a frame number along the x-axis of the 2D plot, or hidfilitg
a specific marker in the same 2D plot, or he may change the 3 vie
by clicking on a particular small multiple, which enlargée trender-
ing to fill its parent window, hiding the other small multiple At a
larger size, the 3D view is now easier to manipulate. Thelayspow
switches into an interactive 3D rendering mode and actvatgical
mouse and keyboard-based interaction widgets for camengpmia-
tion, showing and hiding particular bones within the vieng @adding
visualization glyphs such as axes of rotation and tracesslito the
view. After some manipulation of these viewing paramettirs,user
escapes from this interactive view and is returned to thdlsmati-
ples display, which is then re-rendered so that all of thevsimatch
the camera and visualization settings set by the user imtbeaictive
mode. The background color of each multiple is set to encoel¢rail
from which the data come; the colors correspond to thosear2ih
time plot (see bottom of Figure 1).

Figure 2 shows a small multiples display generated in thig Wa
the interactive mode, the user attached a tracer to thetfotit on the
jaw, zoomed the camera in to focus on the tooth, turned offehder-
ing of the bones, and then returned to the small multiplgsals

4.1.2 Integrated Time-Plots and Parallel Coordinates Views

Accompanying the small multiples display in the overviewualiza-
tion are two 2D views: a parallel coordinates visualizationd a 2D
plot of motion data over time. The three views are linked thge
via interactive brushing and highlighting. For examplettes mouse
moves over the time plot the corresponding small multipswhigh-

lights. Conversely, moving the mouse over a small multiphage
highlights the corresponding section of the time plot. Ehoh in

the parallel coordinates view corresponds to a frame ofanatiata.
Brushing over data in the parallel coordinates view hidftighe cor-
responding frames and data values in the time plot. The yabited

on the Y axis of the time plot may be changed interactively &prto
any data attribute that may be calculated for each frameefitia.
In practice, values such as angular or translational vigidar a par-
ticular bone are useful. The angular velocity of the rotatid the
mandible is plotted over time in the view shown in Figure 1.

4.2 Filtering to Generate Zoomed-In Coordinated Views

has been demonstrated in a 2D data context [16], but sevpeal o Following Shneiderman’s mantra “overview first, zoom anigfjlthen

guestions remain in developing a small multiples strategydD mo-
tion data. Relevant full-scale 3D visualizations are tgficinterac-
tive and detailed. How do these translate to small scalesRelfn-
dividual multiples are to support the same style of intéoacas in
normal visualization, then how do the interaction stragsgihange to
work within a much smaller window? Several questions thatspe-
cific to motion visualization also arise, including, how anetions
assigned to a small multiple? One small multiple per framta@imo-
tion data will result in far too many views to be useful. On titker
hand, if a single multiple stands in for a sequence of framethe
data, then how does that single image best visually repre@setion
over time?

Our approach to assigning motion to a particular small rpligls
image is based upon a characteristic of our target data. thegb
ical motions we examine (chewing, walking, flying, etc.) ahmost
always cyclic. It is quite common to segment motions sucthasd
into cycles as a part of the analysis. In walking, the momleatdot
first touches the floor can be used as an indicator of the biegirmmd

details-on-demand,” the system supports filtering dowpezsic seg-
ments or time ranges of the motion sequence. In the smaliptadt
overview, a right mouse click on an image activates a menuchwh
is used to create a new coordinated view filtered to display e
segment of the motion that corresponds to the small multiSieni-
larly, after brushing with the mouse to select a portion &f data in
the time plot view, a right click and menu selection sendss#iected
data to a new multi-view zoomed-in window. Figure 3 shows tiaw
zoomed-in window.

4.2.1 Interaction Between Views

The zoomed-in window contains three data views: the paratier-
dinates plot, 2D time plot, and a new interactive 3D view. IBaD
views are similar to the overview versions with the exceptitat the
data visualized is a subset of the original data. The 3D véediffer-
ent from the overview. Rather than a small multiples repregion,
spatial trends are now depicted via a real-time 3D rendesinthe
data that is responsive to mouse and keyboard controls fostaty



Fig. 3. A coordinated multiple view window created by zooming in on a
portion of the larger data set.

viewing and visualization parameters. All views are linkasually
and interactively. For example, the 3D view may be animattcee
through interaction in the 3D view or by mousing over the 2D
plot. In either case, the views advance together to dispiayattive
data frame as the animation plays. The 2D plot is not resttitt de-
picting time on the X axis. Other plots, for example, anguiglocity
vs. distance between bones, are also useful.

4.2.2 Generating and Visualizing Data through Exploration

A more interesting example of the tight linkage betweenehasilti-
ple views is the ability to seed new visualizations from dggaerated
during analysis. Figure 4 illustrates an example of thise Tiker first
filtered the data from the original overview to zoom in to alsstre
of four main chewing patterns. Then, while interacting wtitle 3D
view window, a tracer was created to mark the path of a poirthen
left condyle of the mandible. The path that this point trawbrough
space is calculated and stored in a coordinate systemveelatithe

Fig. 4. The tracer created in the 3D view window generates new data
(x,y,z points over time) that become available for display in the other
linked views.

4.3 Overlays and Side-by-Sides for Detailed Comparisons

Visual comparison of motion sequences occurs at all levelh®
framework, and as the focus narrows, the method of visuapesison
changes. As noted by Robertson et al. [16], small multippesside-
by-side windows) and overlays each have advantages in aorgpa
motion. The advantage in using overlays is that “counterdse are
easily detectable, but overlays often suffer from visuatter. On the
other hand, side-by-side comparisons are less sensitivisual clut-
ter, but require more visual real estate to represent the samount of
information and require more time in visual scanning of laé tin-
dows. In this framework, the choice of the most appropriabe of
these styles of comparison is left to the user.

In motion overlay views, data for multiple sequences ardt@tb
and rendered together. Figure 5 shows an example. Noteetren,
in the 3D view, the pig is rendered with two overlayed jaw tmrane
corresponding to each of the motion sequences that is besnglized.

Side-by-side comparisons may be established informallgiby

pig’s skull. The 3D points that make up the path then beconaé-av ply arranging zoomed-in coordinated views side-by-sid&herscreen.

able as a data source for the linked 2D views. In this exantipdeliser
brushed over high positive values for the vertical positi@tative to
the pig’s skull) of the tracer using the parallel coordisatéew. The
white lines in this view show the highlighted data pointsnc®i the
views are linked, these values also highlight in yellow witthe plot
below of average distance between the teeth over time. Buahza-
tion shows that during jaw closing, the selected point onctredyle
rotates backward and downward. At its low point, there issaide-
to-side motion of the jaw as the teeth come together to gond fThe
sideways motion is visible in the in the tracer shown in theva&v.

Other 3D visualization systems have exported data gemecabe
ing exploration to tools that may then be used to generasted2D
plots [8]. Important differences in the strategy describece are the
tight coupling of the multiple views and the ability to buitéw views
based upon data generated during exploration. A traceeglacone
view may generate data that are then used for exploratiomtgeac-
tive brushing and ultimately for a new filtering strategy.enhbased
on this new filtering, a second zoomed-in coordinated view iva
created.

Alternatively, data selected in a time plot within the matioverview
or any zoomed-in window may also be sent to an existing window
which then resizes to arrange the views appropriately fadexlsy-
side comparison, as in Figure 7.

5 APPLICATION TO EXPERIMENTALLY COLLECTED BIOME-
CHANICS DATA

This section describes application-specific implementtedietails, ini-
tial findings, and feedback from domain scientists for thelgtof pig
chewing behavior introduced in section 2.

5.1 Processing Motion Data

Before loading the pig chewing motion data into the visualon
framework, a simple Matlab script was prepared to segmernittion
into cycles. While, more advanced time series analysisicoedtainly
be utilized in this step, the approach taken here is quitglsimThe
angular velocity of the jaw bone is already calculated fasthdata
in a preprocessing step. Using this information, a sign gagnom
negative to positive in the angular velocity is detectedisTdtcurs
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Fig. 5. Detailed motion comparisons are supported via overlay-style vi-
sualization applied to each of the coordinated views. Data from multiple
motion segments are plotted on the same axes and in the same regis-
tered 3D space to produce these visualizations.

regularly at the bottom of a chewing motion when the jaw staEn-
ing and begins to close. The data frames where this occusanaee to
a file and loaded into the visualization system to seed thHetques,
such as the small multiples display, that work based on setgnué
the motion data. In all, data from five different trials araded into
the system resulting in 108 motion segments identified mranner.
All this data can be seen in the motion overview in Figure 1teNbat
not all of the sequences correspond to a chewing cycle, sefeeto
food gathering. The small multiples traces view in Figure@vjgle a
visual means for distinguishing chewing and food gathepafgerns.

5.2 Identifying Spatial Relationships and Surface Interac -
tions

Many biomechanical analyses require investigation ofgpastin the
interaction of surfaces, particularly bone-to-bone stefateraction
within joints [10]. Chewing motions are interesting in thegard in

that there are three areas of surface-to-surface interadtie attach-
ment of the jaw to the skull on the left and on the right, andtéegh.

The occlusion and grinding patterns of the teeth are of @i in-

terest. Figure 6 shows a series of zoomed-in data views setugp
side-by-side comparison. The vertical distance betweernetgth has
been calculated and plotted directly on the 3D view as a aulap

textured to the tooth geometry. These distance data arelatdd for

each frame of the motion in a preprocessing step and arenethide

teractively in the 3D views using a texture-based color magémen-
tation. Within this framework, these data may be viewed hotthe

3D visualization and in 2D plots, where the average distamteeen
the two sets of teeth is a useful variable to explore.

5.3 Identifying Clusters of Related Motion Sequences

Figure 7 demonstrates the use of multiple linked views fentdy-
ing and characterizing related motion sequences. The asdiltered
down to a subset of the data (eleven chew sequences) thadie v
in the parallel coordinates view and the 2D plot of averagtadice
between teeth vs. frame number. The 2D plot has been arraoged
overlay the chewing sequences, starting each at frame netftedeft
side of the plot. In this arrangement, two similar clustersnotions
are easily distinguishable, with an outlier that does neaudy fit into
either pattern. Each cluster is likely to correspond to gedéht chew-
ing behavior, for example, chewing and food gathering. Yse 2D
views, we can clearly identify the two clusters and also esglthe
amount of variance within each cluster for different datdalzes.

5.4 Feedback from Domain Scientists

While we have yet to perform an extended analysis of the uski®f
framework by domain scientists, we have collected somalriged-
back from our collaborators based on our current implentiemtaTwo
high-level points of feedback are: first, there is widesgragreement
that new analysis strategies are needed for working witkethiata,
and second, the framework presented here is a drastic depéam
current practice in fields such as evolutionary biology arttiape-
dics. A key point of departure is the notion that it may be fues
to look at all of the data from an experiment at once via thenoeer
visualization methods. During a feedback session with ollalsora-
tors, this point sparked considerable discussion, inoydiiscussion
of the use of tracer lines within the small multiples views! dine po-
tential to extend this concept to more sophisticated “tisicthat also
encode velocity, rotation angle, or other variables thihoaglor cod-
ing or other visual means. This feedback reinforces the itapoe of
exploring the design space of potential small multiplesvgi¢hat are
appropriate for motion visualization. During the same isgssve also
confirmed several characteristic features of pig chewingians and
investigated differences in the motion based upon the tf/fmod (pig
chow vs. nuts) through interactive exploration using thésrfework.

6 DIsScuUSsSION

In this section we discuss current limitations and futuseegch direc-
tions suggested by this work.

6.1 Scalability of Small Multiples

One question raised by the current framework is, how will tlheh-
niques scale to databases of various sizes? The initialievevisual-
ization, including the small multiples view, is perhaps thest inter-
esting aspect of the framework to discuss with scalabitityind. One
answer to the question is that the utility of the small migtipvisual-
ization scales with the skill and creativity of the user imstucting
a useful small multiples display. The display in Figure 2 s&ful
for discerning some trends across 108 related motion seqaekVith
fewer motion sequences, alternative views, includingehbat feature
the bones prominently may be useful. With more motion secg®n
this layout and others may still be useful, but certainlyaahs point,
the utility of a small multiples display crafted from snapshof 3D
renderings will reach a limit.

A complimentary technique to address the scalability of #mall
multiples motion overview may be the use of filtering withire tsmall
multiples view or within new instances of it in separate vang.
Currently this display functions as a complete overviewhaf éntire
database, however, such an overview may also be approfoiate
subset of the original data. We have discussed this ided)dwat not
yet developed an implementation of it. Several interestisey inter-
face issues remain in developing an interactive displayhisf fiorm
that supports fluid, interactive exploration.

6.2 Scalability and Interactivity

Adding 3D renderings to a multi-window information visuadtion
system requires special design to maintain interactivendrates.
While the 2D graphics utilized in typical information vidization



Fig. 6. A sequence of side-by-side visualizations that demonstrate how the teeth slide against each other. The 3D view has been rotated so that
we are looking up at the top rows of teeth, and the mandible has been hidden from view. A color map has been texture mapped onto the forms of
the teeth to encode the vertical distance (defined by the principle axes of the skull) separating the teeth. The chewing sequence advances in time
across the views from left to right. A 3D instantaneous helical axis describing the motion of the mandible relative to the skull is also displayed.

techniques are relatively fast to render, 3D scientific afigations of-
ten utilize the full extent of the rendering power providgddurrent
graphics hardware, just to render a single view of the data.
Working with the data set described here, our current impletar
tion maintains interactive framerates, depending on tee/\dptions
set, while rendering on the order of five instances the 3Desagthe
filtered and comparison views. This seems to be a minimum téve
performance for reasonable analysis using the framewarslexiend
the framework to applications that involve more intensizZer@nder-
ing, new strategies for addressing multi-view 3D rendenwity be
required. One potential direction for this research is te agrior-
itized rendering scheme, directing more rendering ressuto the
views that are actively being manipulated. Since the vianagten-
tion is divided between several views in multi-view systearsifacts
in some views may be almost unnoticeable from a perceptaatst
point. An example would be the use of image warping [18] tqsup
linked camera manipulation in several 3D windows. The viewhie
window that the user is actually manipulating might be reades a
true 3D scene, while other (lower priority) views might ufslan an
approximate fashion using a faster rendering technique.

6.3 Alternative Visual Representations for Motion

Previously demonstrated 3D animated small multiples disphave
supported rendering just a handful of multiples [2], whidkeghem a
very different visual character than the display in Figur&\2th addi-
tional technical work to address rendering speed, it shbeldossible
to develop animated 3D small multiples displays of tens todneds
of animated 3D scenes. This raises the question of whethur @u
display would be useful in analysis of 3D motions. Our currgark
was motivated by the finding that static views may outperfaimi
mation in analysis of trends [16]. Based on this notion, agdiven
more animation seems to have more potential to distracttthatar-
ify. Nevertheless, it would be interesting to investigatesther certain
classes of 3D motion trends may be discernible through liisi#n
in large-scale animated small multiples displays.

Currently, the most useful static small multiple repreagans for

frames of data in a single image. In addition to tracers, rotfsals
commonly found in 3D motion visualization applications naso be
useful as small multiple images. Examples beyond traceicpes that
fit this description include the average axis of rotatiorhertuled sur-
face swept out by an instantaneous axis of rotation over @eseg of
frames of motion.

6.4 New Data Sources

In applying this framework to other data sets, one of the irgrd

next issues to address is handling biomechanical systentaioimg

more than two bones, such as the spine or the wrist. The shaljleav

system is a special, rather complicated, case for a two-bgstem, in
that the jaw has multiple attachment points to the skull {tMJ on

both sides), and the two bones also interact as the teeth toyather.
Thus, many of the strategies employed here (interactiny 3@t views
to establish spatial points of interest, using multipledaws to focus
on multiple points of interest, etc.) are likely to be reletveo analysis
in complex systems with more than two rigid bodies in motion.

7 CONCLUSION

As new high-speed, high-resolution imaging capabilitesiscreased
use in fields such as orthopedics, physical therapy, andigeoary
biology; scientists will face considerable challengesnalgzing the
wealth of complex, 3D, time-varying data that result froresl sys-
tems. The framework presented here is specifically geaveaktbad-
dressing many of the new challenges posed by these data.aCatinp
analysis across large sets of experimentally collectealiddacilitated
by integrating 2D and 3D interactive visualization toolsstgpport an
overview first, zoom and filter, then details-on-demandesoflanaly-
sis. This work contributes a new interactive approach testraoting
small multiples overview visualizations, which we demoat& using
a collection of more than one hundred repeated cyclic msti@pe-
cific interactive links that may be made between 2D and 3Daliza-
tions to facilitate zooming, filtering, and exploring matidata are also
presented. These links include the use of data generatethéoity”
during analysis, as seen in Figure 4, where the path of a Brtcarve

motion that we have discovered are of the form seen in Figure @enerated by the user acts as a filtering variable withindinated 2D

simple geometric representations that describe motiam fraultiple

views. Two methods (overlays and side-by-sides) are ptedeor
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Fig. 7. Clusters of motion cycles can be identified using a combination [12]
of the 2D plot and the parallel coordinates.

[13]
detailed motion analysis using coordinated multi-viewugigzation.
Each utilizes sophisticated 3D views that incorporateufiest, such as
visualization of surface-to-surface distances via textuapped color
coding, along with interactive 2D views, such as parallerdinates
plots that are non-traditional in this domain. Many chajjes remain
in this line of research, including scalability, refinemefvisual rep-
resentations, and extending this framework to new datacesurOur
initial feedback from domain scientists confirms both thechfor new
analysis strategies, and the novelty of this framework amexpto cur-
rent practice in their fields. Our collaborators expressatsitierable
interest in the overview visualization component of therfesvork and
in future work designed to extend the small multiples tragews to
depict additional data. These findings contribute to a gngwiody
of knowledge of the topic of coordinated, multi-view visizakion
systems that reinterpret and recombine techniques froemtiit and
information visualization to address driving scientificabysis chal-
lenges.
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