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ABSTRACT  

A typical approach to exploring Light Detection and Ranging (LIDAR) datasets is to extract features using pre-defined 
segmentation algorithms.  However, this approach only provides a limited set of features that users can investigate. To 
expand and represent the rich information inside the LIDAR data, we introduce a linked feature space concept that 
allows users to make regular, conjunctive, and disjunctive discoveries in non-uniform LIDAR data by interacting with 
multidimensional transfer functions.  We achieve this by providing interactions for creating multiple scatter-plots of 
varying axes, establishing chains of plots based on selection domains, linking plots using logical operators, and viewing 
selected brushing results in both a 3D view and selected scatter-plots. Our highly interactive approach to visualizing 
LIDAR feature spaces facilitates the users’  ability to explore, identify, and understand data features in a novel way. Our 
approach for exploring LIDAR data can directly lead to better understanding of historical LIDAR datasets, and increase 
the turnaround time and quality of results from time-critical LIDAR collections after urban disasters or on the battlefield.

Keywords: LIDAR, visualization, interaction, feature extraction, scatter-plots

 1.  INTRODUCTION

Existing LIDAR feature extraction approaches typically isolate features by applying pre-defined segmentation 
algorithms. Using this approach, users are limited to a small sandbox of feature spaces with which they can interact. 
Typically, users can only interact with terrain information that is embedded in the data, or they can reconstruct a 3D 
model based on the LIDAR grids. Although these features are practically important,  after thorough study of LIDAR data, 
we found these typical approaches only cover a limited set of features embedded in the LIDAR data.  Therefore, in this 
paper, we argue that LIDAR data actually contains more information that could of great help in understanding urban 
disasters or on the battlefield.

To help users discover the embedded rich information inside LIDAR datasets, we introduce our visualization system that 
depicts LIDAR data in multiple feature spaces, each of which represents a unique aspect of the LIDAR data (i.e. the 
certain geometry of a terrain).  Our approach significantly expands the number and richness of interaction possibilities by 
allowing users to specify new feature space domains with varying axes. Segmentation algorithms may still be used to 
create various initial feature spaces. Our approach facilitates not only exploratory analysis, but also predictive analysis.  
In addition, users can decide beforehand which feature space path (which is essentially a visual multidimensional 
transfer function) to follow and verify their results in the 3D view.

By interactively linking feature spaces with Boolean logic operators,  users are able to make conjunctive and disjunctive 
queries. Additionally, selections made in given plots can be used as new domains for derived plots. Redrawing a plot 
based on a new domain can uncover patterns that would be hidden by keeping a consistent domain. 

By applying our methods to historical datasets, we can use the ability to identify once elusive features to extract 
additional knowledge which can then be used to strengthen predictive models based on these historical datasets.   Due to 
the acceleration of feature discovery over other time-intensive techniques,  one can produce timely and relevant results 
shortly after or even during LIDAR data collection.   This is very attractive for time-critical applications, such as after 
natural or urban disasters and battlefield use where it is important to quickly assess the overall situation as well as track 
changes over time.

2.  RELATED WORK
  
Previous approaches to LIDAR feature extraction focuses on computer-assisted and fully-automatic techniques. 
Computer-assisted methods typically use a small set of scatter-plots that allow users to brush subsets of interest1.  Fully 
automatic approaches attempt to extract features of interest by using image segmentation algorithms2. Both of these 



approaches play a significant role in assisting user to understand features stored in the LIDAR data, however, either 
approaches only represents the features on a limited aspect. In contrast, our approach combines these two approaches to 
gather and presents user more complete features.  In our approach, the system enables not only to start analysis with 
automated techniques but also allows users to interactively explore data feature spaces while simultaneously creating 
multidimensional transfer functions. 

Research in volume rendering indicates that multidimensional transfer functions are essential for selecting features of 
interest in volumetric data3.  Because it is easier for users to interact in 2D, these transfer functions are usually defined in 
a 2D feature space4. Thus the majority of our key interactions are done within the scatter-plot views. We define several 
novel interaction techniques for this view.

Zhou uses an edge-detection algorithm to detect building boundaries in a re-sampled grid of LIDAR data5. Our initial 
algorithm is related in that it computes gradients to detect building boundaries and other features of interest, except that 
we achieve a similar effect using raw unstructured LIDAR data, which does not sacrifice accuracy by requiring 
interpolation between sample points.

Recent developments in parallel coordinates visualization have shown the importance of conjunctive discoveries in real-
world applications with several case studies6,7. Piringer introduces a system that links three 2D scatter-plots to a 3D 
scatter-plot8. Tweedie links histograms via union and negation operators to new histograms to facilitate conjunctive 
discoveries9

3.  SYSTEM DESIGN AND IMPLEMENTATION
3.1 Data

It is important to know how our data is structured before we can apply automated and computer aided approaches to help 
depict the embedded features. In our current system, we focus on extracting and understanding features in 2.5 
dimensional, unstructured Light Detection and Ranging (LIDAR) data. More specifically, for each (x,y) coordinate, there 

Fig. 1 Diagram showing basic system design. a) The LIDAR data is fed into a feature space extraction algorithm. b) Then 
this algorithm outputs the computed metrics into a data manager. c) The data manager is used by the view manager to control 
the data flow in the views. d) The creation of new scatter-plot views is reflected in the tree view. e) The 3D view reflects the 
transfer function specified by the user in the scatter-plot views.



is an associated height (or intensity) value. Such LIDAR data is obtained by flying aircraft back and forth across a 
terrain, using laser-based range finders to collect sample points on that terrain. Due to the way in which the data is 
collected, in its original form it does not have a regular grid structure. In other words,  each consecutive (x,y) pair is not 
evenly spaced. Instead there are areas of varied density (including overlapping scans), as well as areas without any 
coverage at all. The unique characteristics increase the difficulty in utilizing such data and therefore largely limits the 
features that can be extracted. Traditionally, this data is interpolated into a 2D raster to facilitate analysis. This process 
however, can remove accuracy and discards the extra sample points in areas of higher density10. Therefore, we use the 
unstructured data in our system to preserve as many features as possible. 

3.2 Feature Space Acquisition

To extract meaningful features from the above datasets,  our system focuses on applying computational algorithms to 
precede the initial extraction of our feature space. Specifically,  our system computes the nearest neighbors for each 
LIDAR point and prepares each point for its gradient and standard deviation.  Our system will also calculate more 
advanced metrics such as the standard deviation of the gradient. Any combination of these computations is referred to as 
a feature space,  where different choices can produce various interesting results in the scatter-plot view. Users can 
develop an intuitive sense of the physical meanings of these metrics by making selections in the scatter-plot view, and 
seeing the results reflected in the 3D view. 

3.3 Views

Our system utilizes a set of three types of views to depict features from difference perspectives. A 3D LIDAR rendering 
window is used to interactively represent the selected features. A 2D scatter-plot view represents different individual 
feature information. Throughout the interaction process,  users create multiple scatter-plot views. All scatter-plot views 

Fig. 2 Coastal LIDAR usage scenario. Selecting buildings in highly unstructured coastal LIDAR data. Note the bright areas 
in the scatter-plots that are made possible by the heat-map functionality.



are managed by a interactive tree view which is designed to facilitate user’s exploration processes. Using our system, 
users can leverage the interactive capabilities of these views to meet their analysis goals. Since LIDAR are important 
data on multiple platforms, we also designed our system to be compatible with multiple platforms, as our 
implementation is based strictly on Java and OpenGL. 

3.3.1 3D View

Throughout the user’s exploration of the feature spaces, the 3D-view provides a way to see the results of the 
multidimensional transfer function in a geospatial context.  All the LIDAR points are rendered based on its distribution in 
the dataset. User can easily zoom, pan and rotate the 3D view to examine LIDAR information from different angles and 
to help them focus on certain areas of the terrain. 

This 3D view is coordinated with scatter plot views in a manner that the changes in scatter plot will view immediately 
reflect in the 3D view. The coordination is based on a one-to-many mantra, where system only keeps one 3D rendering 
visual state. This approach not only significantly reduces the use of computational resources, but more importantly, it 
will help the user to more efficiently explore the data set and reduce confusion during the exploration process. With the 
assistance of our interactive scatter-plot view, the 3D view is of great importance to help user visually depict the features 
and enable them to examine and compare individual LIDAR areas interactively. 

3.3.2 Scatter-Plot View

This is the “linked” component of our approach. Users begin with a scatter-plot showing all LIDAR points and their 
choice of feature space (e.g. intensity vs. gradient). Then, users can change axes to any of the metrics mentioned in the 
data section, make two-dimensional selections on the plot itself, highlight their selection in the 3D-view, or create a new 
child scatter-plot based on their selections.

The creation of the child scatter-plots demonstrates the uniqueness of our approach, since it allows users to perform 
simple intuitive interactions, while actually making complex multi-dimensional transfer functions. Users may apply the 
Boolean operators AND or NOT  when creating a child scatter-plot.  Creating a child using the AND operator takes all of 
the LIDAR points within the two-dimensional selection range and creates a new scatter-plot view with these points as 
the domain. Semantically, this operation is similar to zooming in to a feature of interest. In contrast, using the NOT 
operator will create a scatter-plot with all of the LIDAR points outside of the selection range. This is useful for filtering 
out unwanted data parts. Multiple iterations of creating children using NOT  and AND operators while switching axes 
allows users to hone in on areas of interest. However, what if a user wants to go back several steps? To solve problems 
like this, we allow users to hide unneeded scatter-plot views and store scatter-plot view interactions in a tree data 
structure.

Each child creation operation can be thought of as adding a child to a tree. For example, the root will contain all LIDAR 
points, and the first child could contain LIDAR points within a certain standard deviation and gradient range (or 
whatever range and axes the user selects).  Users may then add another child to the root or a child to the first child and 
continue interacting with any scatter-plot. We store this interaction information so users can go back to previous nodes in 
the tree and create new branches of exploration.

Since scatter-plots tend to become over-plotted, meaning that several points are drawn on top of one another, we enhance 
the traditional scatter-plot view by adding a heat-map view. Such a view will show brighter colors for over-written 
points, which will help users to identify this issue and could even suggest places to look for more features.  This 
enhancement is illustrated in the scatter-plots in Figure 2.

Two main issues are faced when translating a scatter-plot view into a density-based view. First,  should the intensity in 
each cell of the heat-map be continuous or discretized? Second, how many pixels should there be per cell? To address 
the latter issue, we simply set one cell to each pixel. This way the heat-map looks more similar to the original scatter-
plot.  The continuous or discretized issue is more complex. The discretized approach can show different features in the 
plot depending on the cutoff points for each brightness level.  In contrast, the continuous approach will only show one set 
of features per plot. Because of this, we chose to use the discretized method with a variable number of brightness levels 
that can be set by the user.



3.3.3 Tree View

Since the scatter-plot child-creation process naturally takes the form of a tree, we provide a tree view similar to ones 
found in file-browsers to allow quick access to the child-creation interactions thus far. Basic expand and collapse 
operations are available, and double-clicking on any given node will show the corresponding scatter-plot view window. 
Also, should users have a large tree, they may want to show the scatter-plot view which they are currently using in the 
tree so they can see their previous steps. Users could do this by simply selecting a scatter-plot window, which will be 
highlighted in the tree view.

3.4 Scalability

We initially expected the performance of the system to slow dramatically as the tree size increased. However, by using 
binary arrays to track the active points in each subplot,  we were able to increase performance even with deeper trees.  In 
fact, we were able to render one-hundred scatter-plots at interactive rates on a basic laptop. Another potential bottleneck 
is the calculation of the nearest neighbors for each point. We have only tested the nearest-neighbor algorithm on smaller 
(2-3MB) files.  However, this algorithm and the metrics calculations can also be pre-processed, with the resulting values 
loaded at runtime.

3.5 Extendability

Since the key components of our approach are linked scatter-plots, any calculation that results in one value per LIDAR 
point can be used with our system. The linked approach can also be used with other types of data, such as 3D volume 
data.

Fig. 3 Analysis usage scenario: The user wishes to identify buildings that lie in the flood plane of the river. This is achieved 
by selecting low height and gradient values.



4. USE CASE

We will use a concrete example to better explain the queries that users can make with our system. We use an image-
processing algorithm modified to work with unstructured LIDAR data as our starting point.  This algorithm effectively 
brings out the features (walls,  trees, etc.) in the data. Options are given for calculating values at each point based on the 
average gradient and maximum gradient of a given number of its nearest neighbors. This serves as a starting point for 
exploration.  However, other algorithms that effectively segment unstructured data can be used, as well. In our example, 
the 3D view of the LIDAR data is linked to an initial 2D scatter-plot with height on the X axis and gradient on the Y 
axis.

Users begin their analysis either by creating a new plot on the same level as the initial plot with different axes or by 
making a selection in the initial plot and using this selected domain to create a new plot.  Users make selections by 
clicking and dragging to create multiple brushing boxes. All points contained in these boxes are shaded with a user-
specified color.  The latter option recalculates the new plot based on the new domain. This is key, as recalculating the 
scatter-plot for a smaller domain can reveal features in the data that would otherwise remain hidden. This “subplot” is 
added to a lower level in the plot tree. Users could also tweak high-level scatter-plots and see the changes reflected in the 
plots derived from it.

Fig. 4 Analysis usage scenario: By further interaction with the scatter-plots in Figure 3, the buildings of interest can be 
identified.



The 2D scatter-plots in the tree can be selected and linked together via logic operators. The process of linking and 
selecting plots creates a multidimensional transfer function. This also allows users to make conjunctive and disjunctive 
queries on the data (assuming that users know the meaning of their selections) and to get instant feedback in the 3D 
view. An example of this reasoning is as follows: “If the height vs. gradient falls in this range AND the variance vs. 
height falls within this sub-range, draw points as blue.“ 

However, users may also explore the dataset without knowing exactly what they are selecting. For example, scatter-plots 
sometimes show clusters of related data items. Users may select these and color them in the 3D view or derive a new 
scatter-plot with this selected range as the new domain to see if any sub-clusters can be found.

Users can make disjunctive discoveries by using the NOT operator. This operator provides advantages in both semantics 
and interaction. The semantical advantage is that users are empowered to think and organize their analysis in natural 
terms. For instance, users may want to select a given height and gradient range and draw a new plot based on this range, 
but they also want to filter out a given gradient and variance range in the resulting plot. We expect that users will think of 
this query as “A but NOT B” where A and B are the ranges described,  respectively. The interactive advantage of using 
the NOT operator comes in the form of speed and efficiency of making exclusionary selections.  While these types of 
selections can be achieved by using multiple selection boxes to select the range outside of B, using a NOT operator 
necessitates only a single selection to achieve the desired result.

Once a user has achieved a desirable result, they could export either a path in the chain (a multidimensional transfer 
function) or the entire chain for future refinement. 

Fig. 5 Region-of-interest example. By plotting the latitude and longitude data in the scatter-plot view, users can select sub-
regions in a given dataset to explore.



4.1 Sample Scenarios

Consider a scenario where an analyst wishes to find the potential flood plane of a river and the buildings which lie in this 
flood plane.  First, the analyst would set the axes of the starting scatter-plot to intensity (height) and gradient values,  and 
select the lower end of this range, since the river would be low and flat in regards to the surrounding landscape. Next, the 
analyst would increase the range of their intensity selection, so that the area surrounding the river will be selected. This 
would be the flood plane. Finally, the analyst would use the standard deviation of gradient and difference from mean 
values to find the buildings in this area. This process is illustrated in Figures 3 and 4. 

Realistically, it will be necessary to explore several combinations of axes and selections before finding an ideal time to 
make a child scatter-plot.  However, since all child plots are stored in the tree, users can “save” intermediate results by 
adding children and refer to them later via the tree view.

Other possible scenarios include coastal storm surge and general urban terrain analysis, illustrated in Figures 2 and 5 
respectively. In coastal storm surge analysis, one may be interested in identifying areas of potential surge inundation due 
to natural changes in dune structures. Urban analysts may encounter various situations, such as assessing a situation after 
a natural disaster via LIDAR data, which can be gathered quickly when needed.

5. CONCLUSION

Our approach is unique in that it is interaction-focused and allows users to test their intuition in a timely and flexible 
manner. These capabilities are essential in battlefield or disaster scenarios in which an analyst can quickly process 
incoming LIDAR data. By enhancing traditional scatter-plots with a heat-map view, users are able to identify more 
interesting features which can be explored further by creating a child scatter-plot and continuing interaction. By 
interacting with a 3D, tree, and scatter-plot views, users can easily drill down to features in the data and keep track of 
their results. Also, while interacting with these spaces, users are creating transfer functions that can be applied to the 3D-
view. We demonstrate the effectiveness of our approach by providing several use cases, one of which was a scenario in 
which an analyst could determine which buildings lie within a river’s flood plane. For future work,  we plan to apply 
saved interactions from a given dataset to a similar dataset, to explore the transferability of such transfer functions.
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