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ABSTRACT
The effects of individual differences on user interaction is a
topic that has been explored for the last 25 years in HCI.
Recently, the importance of this subject has been carried
into the field of information visualization and consequently,
there has been a wide range of research conducted in this
area. However, there has been no consensus on which eval-
uation methods best answer the unique needs of informa-
tion visualization. In this position paper we introduce the
ICD3 Model (Individual Cognitive Differences), whereby in-
dividual differences are evaluated in 3 dimensions: cognitive
traits, cognitive states and experience/bias. Our proposed
model systematically evaluates the effects of users’ individ-
ual differences on information visualization and visual an-
alytics, thereby responding to Yi’s [72] call for “creating a
standardized measurement tool for individual differences”.

1. INTRODUCTION
In recent years, strides have been made toward understand-
ing the impact of individual differences on performance when
interacting with visual analytic systems. Research has shown
that factors such as personality [24, 73], spatial ability [14],
biases [40, 74, 76] and emotional state [4, 23, 34, 47, 56, 62]
impact a user’s performance. Though progress is undeni-
able, a common limitation is that every cognitive factor that
affects visualization performance is not considered or prop-
erly controlled. For instance, studies that focus on personal-
ity factors alone do not consider how differences in working
memory, perceptual ability, and previous experience can also
affect visualization performance. Indeed, as stated by Yi in
his position statement in 2010, the visualization community
has yet to employ a comprehensive and standardized model
for measuring individual differences such that researchers
can better understand how factors in individual differences
interact with each other and with existing evaluation tech-
niques [72].

In this position paper, we pursue this problem by introduc-
ing the ICD3 Model (Individual Cognitive Differences) - a 3-
dimensional model that encompasses the cognitive facets of
individual indifferences. A necessary step in defining ICD3

was to seek an underlying structure of previous research by
identifying which factors are dependent and which are in-
dependent of one another. Doing so, we propose that in-
dividual differences can be categorized into three orthogo-
nal dimensions: cognitive traits, cognitive states and expe-
rience/bias.

Figure 1: The ICD3 categorizes individual cognitive
differences in three orthogonal dimensions: Cogni-
tive Traits, Cognitive States, and Experience/Bias

Cognitive traits are user characteristics that remain constant
during interaction with a visual analytic system. Factors
such as personality, spatial visualization ability, and percep-
tual speed are all examples of cognitive traits. These have
been shown to correlate with a user’s ability to interact with
a visualization [15, 18, 24, 68, 73] and can be generalized to
predict the behavioral patterns of users with different cog-
nitive profiles.

Cognitive states, on the other hand, are the aspects of the
user that may change during interaction and include situa-
tional and emotional states, among others. Research has
shown that a user’s performance can be significantly al-
tered by changes in their emotional state [4, 23, 34, 47, 56,
62], and the importance of combining workload with per-



formance metrics has been noted for decades [28, 46, 71].
Although cognitive states are difficult to measure because
of their volatility, they provide important contextual infor-
mation about the factors affecting user performance that can
not be described through cognitive traits alone.

Cognitive states and traits can describe a significant portion
of a user’s cognitive process but they are not comprehensive;
experience and biases can also affect cognition. Intuitively,
we think of experience and bias separately, but they both
describe learned experiences that can affect behaviour when
familiar problems arise, and are therefore not orthogonal.
Although there has been little work about the impact of
experience/bias on interaction with visual analytics systems,
previous studies have shown that learned behavior such as
confirmation bias can significantly affect performance and
decision-making [27].

Taken together, these three dimensions can create a model
that encapsulates the cognitive aspects of individual differ-
ences (Fig. 1). Similar to how analyzing state and trait alone
would disregard potential performance gains from expertise,
ignoring any one dimension of the model would also result in
an incomplete description of performance. For example, an-
alyzing only expertise and traits ignores changes that may be
triggered by workload or emotions (cognitive state). Thus,
the model is only complete if all three dimensions are con-
sidered. By using ICD3, evaluators can identify what factors
must be controlled in an experiment and which should be
included as independent variables. The community can also
begin to evaluate visualizations using this common platform
and be able to better reproduce and extend each other’s
research.

2. BACKGROUND
Evaluation has been an active area of research in visual-
ization in recent years. Evaluating visual forms and visual
analytics systems share a common challenge with empirical
evaluation in the field of HCI [63]: the results are often sub-
jective and difficult to generalize to a large population in
real-world conditions [25, 50]. To categorize evaluation ap-
proaches, Carpendale [9] carried out a comprehensive survey
and divided the techniques into two groups: quantitative
and qualitative evaluation methods.

Quantitative methods, such as laboratory experiments, seek
to infer the quantifiable characteristics of a population by
studying a few individuals. The challenges and concerns of
using quantitative evaluation methods include the potential
of Type I and Type II errors, internal validity (in that most
findings are correlations and do not infer causality), external
validity in generalizing the findings, and ecological validity
in applying the findings to a real-world task, environment,
or context.

For qualitative evaluation, the two primary mechanisms for
gathering data are observations and interviews. There have
been many proposed qualitative evaluation techniques: Nested
Qualitative Methods, which argues for integration of qual-
itative methods such as the “think-aloud” protocol in both
quantitative and qualitative studies; Inspection Evaluation
Methods, which relies on an existing heuristic or theory
such as perceptual theories [69] or expert guidelines [75];

and the Observational Methods, which promotes the use
of exploratory methods to gain richer understanding of a
new situation or group of users. For evaluating visualiza-
tions in which the user performs exploratory tasks, the Ob-
servational Methods are most frequently used with specific
techniques like in-situ (or grounded) observations [31, 41],
participatory observations [33, 54], and laboratory observa-
tions [30]. The key challenges and concerns to using quali-
tative evaluations include collecting data in an unobtrusive,
objective, and timely manner; subjectivity in the sampled
population; typical small sample sizes; and the coding and
analysis of the collected data.

In addition to standard evaluation methodologies, visual-
ization and visual analytics have additional considerations
relating to perception and comprehensibility [26, 69] and
the ability of a system to support higher level tasks [1]. Re-
searchers have therefore suggested guidelines to determine
how and when these evaluation methods can be used. Mun-
zner [42] proposed a nested process in which she promotes
the importance of identifying the key components of the
tested visualization system and using the appropriate eval-
uation methodology for each component. Scholtz recom-
mends an iterative and systematic approach to evaluating a
visualization in different phases of its development and de-
ployment [60, 61], which is similar in spirit to the MILCS
concept proposed by Shneiderman and Plaisant [64]. Chang
et al. [13] suggested that a mixed learning-based evaluation
method can be more appropriate if the visualization is in-
tended to improve a user’s understanding of data, system,
and domain. On the other hand, Kosara et al. [35] rec-
ommended that some aspects of the visualization cannot be
evaluated using standardized metrics, and should instead be
critiqued in the same manner as art and design.

The evaluation methods described so far have been in the
category of secondary measurements. Some studies have
attempted to measure visualization usage with more direct
measurements. One notable technique suitable for evaluat-
ing complex, interactive visual analytics systems is insight-
based evaluation, proposed by North et al. [43, 58, 59]. Since
the most important criteria for a successful visual analytics
system is to derive insight [8, 66] and to “answer questions
that you didn’t know you had” [50], an insight-based evalua-
tion approach is highly appropriate for determining the effec-
tiveness of the system. Unfortunately, the method proposed
by North et al. relies on the user to track and self-report the
number of insights experienced during the experiment. The
results of such measurements are inherently subjective and
therefore difficult to reproduce and generalize. As noted by
Chang et al. [12], the key problem of self-reported insight is
that the definition of insight is ambiguous and difficult to
measure.

Clearly there has been a wide range of research in the area
of visualization evaluation. Of particular interest are sev-
eral pieces of work that directly report or suggest the use of
brain imaging and individual differences for evaluating visu-
alizations. Anderson et al. [2] demonstrated the use of EEG
to measure the user’s cognitive load when viewing different
boxplot designs. In a position statement presented at BE-
LIV 2010, Riche [53] proposed the use of multiple physiolog-
ical measurements (heart rate, eye gaze, brain imaging, etc.)



for evaluating visualizations. At the same BELIV workshop,
Yi [72] proposed studying individual differences when eval-
uating visualizations. Yi argued that understanding how
users differ in personality and cognitive factors is important
in evaluating visualizations. In a follow-up research project,
he demonstrated that there is a significant difference be-
tween novice and expert users when using a visualization
to solve analytical tasks and highlights the importance of
additional research in individual differences in visualization
evaluation [36].

This body of research on directly measuring a user’s cogni-
tive and individual profile highlights a need for better evalu-
ation methods to address the unique needs of visualization,
but as of yet, there is no consensus on which methods best
answer these needs. What is clear, however, is that the field
of visualization does not yet have a systematic and objective
way of measuring individual differences in user analysis of
visualizations. The ICD3 Model that we are proposing seeks
to structure the existing research into a cohesive model.

3. DIMENSIONS OF INDIVIDUAL DIFFER-
ENCES

In this section we discuss each of the three dimensions in
the ICD3 model: cognitive traits, cognitive states, and ex-
perience/bias. Figure 1 shows the three dimensions and how
they could be represented graphically. Specifically, we illus-
trate how the components of these dimensions affect perfor-
mance, and tie these to related experiments in visualization.

3.1 Cognitive Trait
Cognitive traits such as spatial ability, verbal ability and
working memory capacity vary considerably among individ-
uals and have been demonstrated to significantly affect per-
ception, learning and reasoning. Consequently, it has been
shown that cognitive factors can affect a user’s performance
when using a visualization. We propose using these factors
to measure the stable traits that make up a user’s basic cog-
nitive profile.

Several studies have demonstrated the effect of basic cog-
nitive abilities on user performance in visualization tasks.
For example, Conati and McLaren [18] found that percep-
tual speed, the speed at which users compare two figures,
correlates with accuracy on an information retrieval task.
Another commonly studied cognitive factor that has been
shown to impact interaction in a visualization is spatial abil-
ity, and refers to the ability to reproduce and manipulate
spatial configurations in working memory. Chen and Cz-
erwinski [15] found correlations between spatial ability and
the visual search strategies users employed in a network vi-
sualization. Participants with high spatial ability performed
better in search tasks and navigated an interactive node-link
visualization of a citation network more efficiently. Velez et
al. [68] tested the correlation of speed and accuracy with a
number of factors related to spatial ability, including spa-
tial orientation, spatial visualization, visual memory and
perceptual speed. These factors affected users’ speed and
accuracy in the comprehension of three-dimensional visu-
alizations, similar to those found in scientific visualization
applications. Similarly, Cohen and Hegarty [17] found that
a user’s spatial ability affects the degree to which interact-

ing with an animated visualization helps when performing a
mental rotation task.

An interesting aspect of these findings is that an individ-
ual’s spatial ability not only affected performance, but also
how they approached tasks. If people with varying cognitive
abilities employ different strategies, an evaluation method-
ology will need to take these strategies into account to fully
understand user behavior.

Perceptual and spatial abilities are not the only cognitive
factors that have been shown to have an effect. Yi [72] pro-
posed that one must investigate beyond a users’ basic spatial
ability to better understand the variability in visualization
evaluation. Many personality factors relevant to visualiza-
tion use are both reliably measurable and consistent over a
user’s lifetime, making them potential candidates for under-
standing a user’s stable traits. For example, the Five Factor
Model, a common model in personality psychology, cate-
gorizes personality traits on five dimensions: extraversion,
neuroticism, openness to experience, conscientiousness and
agreeableness. Green and Fisher [24] studied how varying
scores on the Five Factor Model as well as locus of control
impacts the way users interact with visualizations. Locus of
control [55] is the degree to which a person feels in control of
(internal locus of control) or controlled by (external locus of
control) external events. The authors found individuals with
an external locus of control performed better at complex in-
ferential tasks when they used a visual analytics system than
when they used a web-based interface with a list-like view.
The study also revealed a correlation between neuroticism
and task performance. Ziemkiewicz et al. [73] found that
users with a more internal locus of control showed greater
difficulty adapting to visual layouts with a strong metaphor
of containment (i.e. a layout with many containers) versus
a more traditional list-like menu.

The results of these studies suggest that cognitive traits may
account for some of the observed individual variability in vi-
sualization use. Understanding this variability will help to
improve the generalizability of evaluation findings. There-
fore, it seems prudent to include this in a model of individual
differences in user research.

3.2 Cognitive State
Cognitive state refers to the current condition of a person’s
mental processes. Unlike cognitive traits, cognitive state
can change from moment to moment during interaction with
a visualization, impacting performance, understanding, or
retention.

Cognitive load is the most studied cognitive state in visual-
ization evaluation, as it often has a direct impact on perfor-
mance. In particular, working memory has been labelled as
an information bottleneck in visualization because it is lim-
ited by both size and duration [37, 39, 48]. When multiple
visual elements compete for space, there is a loss of infor-
mation and often a decrease in performance. Speed and
accuracy regularly suggest mismatches between visual de-
sign and perceptual affordances [10], and dual-task studies
can be designed to evaluate mental demand through perfor-
mance [38, 45].



Cognitive load theory breaks down this generic concept of
workload into three more narrowly-defined categories [11].
Germane load describes the memory needed to the process
and understand new schemas, intrinsic load refers to the
amount of memory necessary for a given task (and cannot
be modified by instructional design), and extraneous load
is determined by the memory needed to absorb information
and can be modified based on presentation. This last cate-
gory is what researchers typically refer to when comparing
the workload demands between visualizations.

Unfortunately, an increased load on working memory is not
always reflected in behavioral metrics [71], and it is possi-
ble for one person to exert significantly more mental effort
than another to achieve the same level of performance in a
visualization [70]. Accordingly, researchers have suggested
the integration of performance and mental demand during
evaluation [28, 46, 71]. Paas and Merrienboer constructed
a two-dimensional model of performance and mental effort
to define cognitive efficiency [46], and Huang et al. tailored
the model to visualization evaluation by adding a third di-
mension - response time [28]. However, this extra exertion
is not necessarily an indication of poor design. Hullman et
al. proposed that “visual difficulties” may introduce bene-
ficial obstructions that aid information processing and en-
gagement [29].

Moving away from cognitive load, emotional states triggered
by visual imagery or from other external sources can also
impact interaction with a visualization. Bateman et al. sug-
gested that emotional responses to “chart-junk” may have
favorably impacted the recall of information [5]. Previous
work has shown positive emotional states to enhance atten-
tion regulation, working-memory performance, open-ended
reasoning, creativity, and “big picture” understanding [4, 23,
34, 47, 56]. Conversely, negative emotional states, such as
anxiety, can disrupt visuospatial working memory [62]. Fi-
nally, emotions have a strong link to decision-making and
cost-benefit analysis [6]. Observing these subtle (or not so
subtle) nudges to performance is necessary to fully describe
the interaction between a person and a visualization.

These studies represent a small subset of work from the psy-
chology literature that has addressed cognitive state and
performance. For example, cognitive load is an umbrella
term that needs to be narrowed in order to be predictive of
performance (for example, visuospatial working memory v.
verbal working memory). Additionally, the effect of emo-
tional state on visualization performance has been largely
unexplored. Considering these factors will help construct
more accurate models of performance in visual analytic sys-
tems.

3.3 Experience and Bias
Whereas cognitive state refers to current mental processes,
and cognitive trait to stable aspects such as personality, nei-
ther of these capture how experience and bias can affect
visualization performance. Here we cover a sample of the
extensive work on the effects of experience and bias on cog-
nitive performance from the fields of psychology and decision
science. We then relate them to recent work in visualization
that has begun to explore the role of experience and bias in
visualization.

Both experience and biases form through previous interac-
tions with a given problem, and are often utilized when a
similar problem is encountered later on [19, 67]. Although
experience and bias could be discussed at length separately,
here we discuss them together, since they are not orthogonal
to each other [20]. For instance, while extensive experience
assists with avoiding biases common to novices, experience
has also been shown to introduce biases that novices do not
encounter, such as the failure to appropriately weight infor-
mation that contradicts previous findings [32].

Experience is associated with the formation of effective rea-
soning strategies for given problem types [22, 57], many of
which are applicable to reasoning with visualizations. For
instance, the experiment in [19] explored the relationship be-
tween experience and performance on a hypothetico-deductive
task, and found that participants who had experience with
similar problems were able to utilize previously formed rea-
soning strategies on the new task. Such tasks parallel the
hypothesis testing techniques described in Pirolli and Card’s
sensemaking model [49], which has been utilized widely in
the design of visual analytics systems.

While the effect of experience on cognitive processes has
been studied extensively, there is relatively little work in
the visualization community which has explicitly examined
and discussed how differences in experience affects perfor-
mance in interactive visualizations [16]. Perhaps the first to
address experience directly is Kwon et al. [16], who iden-
tify common roadblocks novice analysts face when using a
complex visual analysis system. Other visualization work
has explored experience’s effects on visualization somewhat
indirectly. For instance, Dou et al. [21] explore the how
well novice users were able to infer the reasoning processes
of expert analysts based on a visualization of the experts’
interaction logs. Arias-Hernandez et al. describe pair ana-
lytics [3], an analysis process which pairs one analyst with
visualization experience with another who has experience in
the data domain.

Bias refers to a predisposition to behave a certain way for
a given task [52, 67]. Similar to experience, there is lit-
tle work in the visualization community that discusses the
relationship between visual analysis and different types of
cognitive biases. Notably, Zuk and Carpendale [76] dis-
cuss bias and uncertainty in depth, focusing on the many
ways in which bias can affect reasoning with uncertain data
and how visualization may aid users in debiasing. Another
example of debiasing comes from Miller et al. [40], who
describe an experiment in which a system consisting of a
statistical model and corresponding visualization was used
to assist users in avoiding regression bias. Their results
showed that the visualization approach outperformed both
no-visualization and algorithmic approaches, supporting the
notion that visualization and interaction help users manage
biases effectively. Ziemkiewicz and Kosara [74] found that
visualizations can be subject to perceptual biases, which can
adversely influence how users recall spatial relationships be-
tween visual elements. Many other types of cognitive biases
exist which significantly impact reasoning and task perfor-
mance [20, 27], yet the relationships between these and vi-
sualization is largely unexplored.



The experiments described here underscore the argument
that experience and bias can significantly influence visual-
ization performance. However, since cognitive states and
traits also affect performance, it is imperative that we ex-
plore the relationship between these three dimensions.

4. THE ICD3 MODEL
In light of the three dimensions that we have discussed, we
propose a structured model in order to describe individual
cognitive differences when users interact with visualizations.

We therefore introduce the ICD3 model: a three dimen-
sional model of cognitive traits, cognitive states, and expe-
rience/bias. Each orthogonal dimension would represent an
individual difference of a user thereby allowing researchers
to describe or perhaps even predict a user’s ability to inter-
act with a visualization, by knowing where that individual
lies along the three different axes. This would allow for not
just isolated cognitive factors, but for the interaction of the
user’s different cognitive abilities.

Figure 2 gives a hypothetical example of a user looking at
percentage judgments in treemaps. The cognitive state in
this example is the user’s workload, their cognitive trait is
their working memory capacity, and their experience/bias is
how experienced they are with treemaps. Our ICD3 model
would show that if the user is an expert, has a low workload,
and has a high working memory capacity, then they have
higher performance and abilities with percentage judgment
in treemaps. Conversely, if the user is overloaded with work,
has a naturally low working memory capacity, and has no
experience of treemaps, then they will be less effective in
performing that task.

After defining the visualization, task, and cognitive factors,
a set of experiments can then be run in which participant
workload, working memory capacity, and experience is var-
ied. For each interaction of factors, performance is recorded
in the instance at the appropriate coordinates. Given enough
data, we construct a descriptive topology of performance for
a task and visualization.

Unfortunately, the interaction of cognitive facets is ordinar-
ily much more nuanced than depicted in Figure 2. For the
sake of simplicity, we chose working memory capacity, work-
load, and experience because their impact on performance
is relatively straightforward. But in practice, we have lit-
tle knowledge of how other combinations of state, trait, and
experience/bias influence interaction with a visualization.

For example, some studies have shown that extraverts and
introverts perform differently when they receive positive or
negative feedback about a task, thus modifying their cogni-
tive state [7]. Introverts tend to perform well when given
positive feedback and worse when given negative feedback.
Reciprocally, extraverts perform worse than intraverts given
positive feedback, but their performance improves under
negative feedback. This exemplifies why it is important to
consider the interaction of state and trait.

However, other studies have suggested that people with an
external locus of control (LOC), which is correlated with ex-
traversion [44], perform better in visualizations where they

Figure 2: An example of how an ICD3 model might
be constructed. We map the interaction of work-
load, working memory capacity, and experience on
performance of percentage judgments in treemaps.
Darker red represents better performance.

have had no previous experience than people with an inter-
nal locus of control (LOC) [73]. This demonstrates how trait
and experience can interact to influence performance.

Each of these examples provide a two dimensional snapshot
of how cognitive dimensions can impact performance. But
how do we combine the knowledge of these two studies?
How would performance be impacted when an experienced
intravert is given negative feedback, or an inexperienced ex-
travert is given positive reinforcement during a task? Thus,
a key attribute of the ICD3 model is that limiting the scope
of evaluation to any two of the three described dimensions
leaves an incomplete and potentially misleading model of
performance:

• Analyzing state and trait without experience ignores
performance gains by expertise

• Analyzing state and experience without trait ignores
interaction differences that are driven by personality
or inherent cognitive strengths (e.g. spatial ability)

• Evaluating experience and trait without state disre-
gards the moment-to-moment cognitive changes in the
user that could be driven by emotion or workload

While instances of the ICD3 model should be constructed
for a explicit task and visualization, we imagine that the
interaction of certain cognitive factors will be generalizable
across visual forms (and tasks). In the next section, we
explore the implications of the ICD3 for design.

5. IMPLICATIONS FOR DESIGN
One important advantage of understanding individual users’
cognitive states, traits, and biases as a cohesive structure
is that this opens up the possibility of developing adap-
tive, mixed-initiative visualization systems [66]. As noted by



Thomas and Cook in Illuminating the Path [66], an impor-
tant direction in advancing visual analytics research is the
development of an automated, computational system that
can assist a user in performing analytical tasks. However,
with few exceptions, most visualization systems today are
designed in a “one-size-fits-all” fashion without the ability
to adapt to different users’ analytical needs into the design.

There is mounting evidence that successful adaptive systems
can significantly improve a user’s ability in performing com-
plex tasks. In the recent work by Solovey et al. [65], the
authors show that with the use of a brain imaging technol-
ogy (fNIRS) to detect a user’s cognitive states, the system
can adapt the amount of automation and notably improve
the user’s ability in performing a complicated robot navi-
gation task. Ziemkiewicz et al. [73] demonstrate that the
impact of locus of control (LOC) on visualization can be sig-
nificant. When the user is given a hierarchical visualization
that correlates with the user’s LOC, a user’s performance
can be improved by up to 52% in task completion time, and
28% in accuracy.

It is clear that adaptive systems offer new possibilities for
visualization research and development, but more work is
necessary to model how and when a system should adapt to
a user’s needs. As noted earlier, only emphasizing one or
two of the three proposed dimensions can lead to a system
incorrectly assessing the user’s analysis process and provide
the wrong adaption. By examining all three dimensions in a
cohesive fashion, it becomes possible for a system to predict
a user’s performance and realize the potentials of an adap-
tive, mixed-initiative system as proposed by Thomas and
Cook.

6. FUTURE WORK AND CHALLENGES
Creating a precise model of individual differences is a daunt-
ing task. From the outside, it can appear that even the
slightest deviations between people can influence performance
in a visualization, whether it is as obvious as taking a formal
course in visualization or as subtle as reading emotionally-
charged news articles between analysis tasks. Cognitive
states may interact with and manipulate each other - for
example, emotional state has been shown to impact work-
ing memory - and people simultaneously bring many traits
and experiences to the table each time they see a visual-
ization. Furthermore, there are almost certainly cognitive
traits, states, and experiences that impact interaction sig-
nificantly more than others.

While we don’t believe that these problems impact the or-
thogonality of our model, it illuminates the potential de-
pendency of factors within each dimension, increasing the
difficulty of predicting human interaction. We highlight at
least two future areas of research that will be critical to ad-
dressing these challenges.

First, discovering new and unobtrusive methods to capture
cognitive state, trait, and experience/bias will ultimately
drive research in individual cognitive differences. For ex-
ample, recent advances in non-intrusive physiological sen-
sors that detect emotional states, such as the Affectiva Q-
Sensor [51], will enable future studies into the impact of
emotional state and visualization performance. In real-world

scenarios, it is unrealistic to expect users to be subjected to
a deluge of forms and intrusive monitoring equipment. The
simple act of filling out personality surveys or applying brain
sensing equipment is enough to potentially modify cognitive
state (or introduce biases) before interaction. It should be
a central goal to record as many cognitive factors as possi-
ble, in as little time as possible, with as little disruption as
possible.

Second, finding dominant individual cognitive factors both
within dimensions and between dimensions should limit the
sheer volume of cognitive tests necessary to describe interac-
tion. For example, if participants have a low working mem-
ory capacity, their locus of control might not matter given a
certain task and a visualization. If this is true, then having
a participant fill out a survey to determine locus of control
may be unnecessary. Similarly, we suspect that a person’s
experiences and biases may impact performance more than
many other cognitive traits and states. Thus, if we know a
person is an expert at a simple task, emotional state might
be irrelevant. Identifying these dominant factors should re-
duce the number of interactions between cognitive factors.

The generalizability of cognitive states, cognitive traits, ex-
periences/biases on performance in visualization has yet to
be seen. As a result, the ICD3 model takes a conservative
approach by specifying an exact set of cognitive factors and
requiring tests to be performed on a fixed task and fixed vi-
sualization. By identifying important factors or important
interactions between factors, we hope to construct new met-
rics in the future that are more predictive of interaction with
a visualization.

7. CONCLUSIONS
We have introduced a model to capture the various cog-
nitive aspects that affect visualization performance by di-
viding them into three dimensions: cognitive states, cog-
nitive traits, and experience/bias. Furthermore, we have
discussed how each of these dimensions are orthogonal to
each other, meaning that during visualization interaction, a
user may exhibit different values for states, traits, or expe-
rience/biases. Each of the dimensions are found to influence
cognitive processes related to visualization, such as reason-
ing and perception. The ICD3 model provides a sample
space for experiments involving visualizations, so that we
may form a better understanding of the cognitive underpin-
nings of visualization.
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