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1 INTRODUCTION

Thomas and Cook define the field of Visual Analytics as “the sci-
ence of analytical reasoning facilitated by visual interactive inter-
faces” [70]. By leveraging increasing computational power and the
significant bandwidth of human visual processing channels, it strives
to facilitate the analytical reasoning process and support the “human
capacity to perceive, understand, and reason about complex and dy-
namic data and situations” [70]. As the field matures, it is increas-
ingly imperative to provide mechanisms for approaching analytic tasks
whose size and complexity render them intractable without the close
coupling and dynamic interplay of both human and machine analy-
sis. Primary goals of this field are to develop tools and methodologies
that facilitate human-machine collaborative problem solving, and to
understand and maximize the benefits of such a partnership.

Researchers have explored this coupling in many venues: IEEE
Conference on Visual Analytics Science and Technology (VAST),
IEEE Visualization Conference (Vis), IEEE Information Visualization
Conference (InfoVis), ACM Conference on Human Factors in Com-
puting Systems (CHI), ACM Conference on Knowledge Discovery
and Data Mining (KDD), ACM Conference in Intelligent User Inter-
faces (IUI), and more. The study of general human-computer collab-
oration offers a plethora of examples of successful human/machine
teams [15, 23, 37, 39, 41, 46, 50, 65, 66, 68, 83]. Developments in
supervised machine learning in the visualization community present
several vetted techniques for human intervention into computationally
complex tasks [3, 4, 12, 18, 28, 29, 36, 47, 51, 57]. The emerging field
of human computation inverts the traditional paradigm of machines
providing computational support for problems that humans find chal-
lenging, and demonstrates success using aggregated human processing
power facilitated by machines to perform difficult computational tasks
such as image labeling [21, 33, 73, 74], annotating audio clips [44, 49],
and even folding proteins [20].

While there have been a multitude of promising examples of
human-computer collaboration, there exists no common language for
describing such partnerships. This begs several questions:
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1.1 Problem selection
How do we tell if a problem would benefit from a collaborative
technique? Balancing the cost of building and deploying a collabora-
tive system with the benefits afforded by its use is currently precarious
at best. Without a framework in which to situate the development of
new systems, we rely heavily on researcher intuition and current field-
wide trends to decide which problems to approach using these tech-
niques. This is akin to looking for the sharpest needle in a haystack of
needles, and while it has led to many novel approaches to hard prob-
lems, it has also led to the investment of significant time and energy
into inefficient collaborative solutions for problems that might better
have been (or have already been) solved by human or machine tech-
niques alone.

1.2 Function allocation
How do we decide which tasks to delegate to which party, and
when? It has long been stated (even by the author himself) that Fitts’
HABA-MABA lists [27] are insufficient and out-of-date. Sheridan
notes that function allocation in collaborative systems is far from a
perfect science [63]. Dekker argues that static function allocation con-
sistently misses the mark because humans adapt to their surroundings,
including systems with which they work [22]. However, the effec-
tiveness of any collaborative system is deeply rooted in its ability to
leverage the best that both humans and machine have to offer. Be-
cause of this, a language for describing the skills and capacity of the
collaborating team is long overdue.

1.3 Comparative analysis
Finally, how does one system compare to others trying to solve
the same problem? With no common language or measures by
which to describe new systems, we must rely heavily on researcher
intuition and anecdotal evidence. This makes it challenging to
reproduce results and to build on previous discoveries, leading to
the development of many one-off solutions rather than a cohesive,
directed line of research.

We argue that each of these areas would benefit from consensus
about the set of attributes that define and distinguish existing tech-
niques. In this work, we have reviewed 1,271 papers from many
of the top-ranking conferences in visual analytics, human-computer
interaction, and related areas. From this corpus, we have identified
49 that we believe are representative of the study of human-computer
collaborative problem-solving, and provide a thorough overview of



the current state-of-the-art. Our analysis has uncovered key patterns
of design hinging on human- and machine-intelligence affordances,
or properties of the human and machine collaborators that offer
opportunities for collaborative action. The results of this analysis
provide a common framework for understanding these seemingly
disparate branches of research and also indicate unexplored avenues
in the study of this area, which we hope will motivate future work in
the field.

1.4 Contributions
This paper makes several contributions to the study of human-
computer collaboration and human computation in Visual Analytics
and HCI:

• First, we conduct a comprehensive literature review of 1,271 pa-
pers in this area and present a collection of 49 publications that
represent the state of the art in the study of human-computer col-
laboration and human computation.

• Second, from these papers we identify groupings based on
human- and machine-intelligence affordances. These groupings
form the basis of a common framework for understanding and
discussing this collection of work.

• Third, we identify unexplored areas for future work and argue for
the utility of this framework in addressing the questions outlined
in the previous section.

2 BACKGROUND

Before we present our survey and associated framework, let us first
briefly describe two terms that will be utilized extensively throughout
this paper: human-computer collaboration and human computation.

2.1 Human-Computer Collaboration
In a 1993 symposium at AAAI, researchers from a variety of back-
grounds came together to discuss challenges and benefits in the emerg-
ing field of human-computer collaboration. They defined collabora-
tion as a process in which two or more agents work together to achieve
shared goals, and human-computer collaboration as collaboration in-
volving at least one human and at least one computational agent [69].
This collaboration has also been called mixed-initiative systems [34],
in which either the system or the user can initiate action, access in-
formation and suggest or enact responses [70]. Mixed-initiative sys-
tems have been explored in diverse areas including knowledge dis-
covery [71], problem-solving in AI [26], procedural training in vir-
tual reality [56] and much more. The field of Visual Analytics is
deeply rooted in human-computer collaboration; that is, Visual An-
alytics seeks to leverage both analyst intelligence and machine com-
putational ability in a collaborative effort to solve complex problems.

2.2 Human Computation
In his 2005 doctoral thesis [72], Luis von Ahn introduces the concept
of human computation; that is, harnessing human time and energy for
solving problems that have to date proven computationally intractable.
This is accomplished by treating human brains as processors in a dis-
tributed system. With the advent of online marketplaces providing an
on-demand workforce for microtasks, we have seen an explosion of
work utilizing human processing power to approach problems such as
image labeling [21, 33, 73, 74], digitizing text [77], annotating audio
clips [44, 49], and folding proteins [20]. For surveys of research in
this area, please see [55, 82].

While much of the work in this has shown promise in harnessing hu-
man computational power, there is a temptation to use human workers
as an easy out. In his article entitled “Why I Hate Mechanical Turk
Research (and Workshops)” [1], Adar argues:

We should not fool ourselves into believing that all hard
problems fit this mold [warrant human computation] or

completely distract ourselves from advancing other, com-
putational means of solving these problems. More im-
portantly, we should not fool ourselves into believing
that we have done something new by using human la-
bor. . . Showing that humans can do human work is not a
contribution.

This sentiment has prompted fascinating debate about when and how
to leverage human intelligence in computation.

2.3 Previous Frameworks
A few of the existing papers surveying work in Human-Computer Col-
laboration and Human Computation also include discussions of the de-
sign dimensions that organize and contextualize their work. In these
surveys, the authors provide mechanisms to compare and contrast the
systems they review to others along salient dimensions.

Bertini and Lalanne [9] survey the intersection of machine learning
and visualization, identifying three categories of design hinging on the
distribution of labor between human and machine. In enhanced visu-
alization, human use of the visualization is the primary data analysis
mechanism and automatic computation provides additional support in
the form of projection, intelligent data reduction, and pattern disclo-
sure. In enhanced mining, data analysis is primarily accomplished by
the machine through data mining and visualization provides an ad-
vanced interactive interface to help interpret the results through model
presentation and patterns exploration and filtering. In integrated visu-
alization and mining, work is distributed equally between the human
and machine collaborators at different stages: white-box integration,
where the human and machine cooperate during model-building, and
black-box integration, where the human is permitted to modify param-
eters of the algorithm and immediately visualize the results.

In the area of human computation, Yuen et al. [82] identify three
broad categories based on the relative maturity of the system. Initia-
tory systems are the earliest examples of human computation and were
generally used to collect commonsense knowledge. Distributed sys-
tems were the next generation of human computation, aggregating the
contributions of Internet users but with limited scalability and with-
out any mechanism to guarantee the accuracy of the information col-
lected. Finally, the authors describe social game-based systems, the
most recent incarnation of human computation involving enjoyable,
scalable and reliable systems for approaching hard AI problems. In a
later survey, Quinn and Bederson [55] identify six dimensions along
which they characterize human computation systems. Motivation de-
scribes the mechanism for encouraging human participation. Quality
control indicates whether and how a quality standard is enforced upon
the human workers. Aggregation refers to the means by which human
contributions are collected and used to solve the problem at hand. The
remaining dimensions of human skill, process order, and task-request
cardinality are self-explanatory.

Each of these frameworks provides critical insight into organizing
the systems appearing in the venues they survey. However, because
each is specific to a specific subclass of collaborative systems, it is
difficult to extend them to a broader class of human-computer col-
laborative systems. In the following sections, we provide a detailed
survey of the literature across many venues, and argue for examining
these systems through the lens of affordances; that is, what does each
collaborator (machine or human) bring to the table in support of the
shared goals of the team?

3 FRAMEWORK: ALLOCATION AND AFFORDANCES

We now introduce the foundation upon which we will build our frame-
work for describing and understanding human-computer collaborative
systems.

3.1 Function allocation in human-machine systems
Researchers have sought a systematic approach for the appropriate al-
location of functions to humans and machines for decades. In 1950,
Fitts published the first formal attempt to characterize functions per-
formed better by machines than humans, and vice versa [27]. For



years, this list was regarded as the definitive mantra for function al-
location, despite the author’s assertion that to use his list to deter-
mine function allocation was to lose sight of the most basic tenet of
a human-machine collaborative system. As later articulated by Jor-
dan, this underlying foundation is that humans and machines are com-
plementary, rather than antithetical [38]. Price [54] further expands
on this idea by arguing that function allocation is perhaps better envi-
sioned as an iterative process rather than a decisive listing, and that
there may be more the one optimal allocation for any given prob-
lem. Price also notes that human operators require support to perform
optimally, and emphasizes the importance of understanding cognitive
loading and engagement.

In more recent work, several contemporaries have argued that the
notion of function allocation as it was originally conceived no longer
makes sense. Sheridan discusses several problems with function allo-
cation which include ever-increasing computing power, complicated
problems with optimal allocation differing at each stage, and ill-
defined problem spaces [63]. Dekker and Woods provide a second
counterargument to the validity of any Fitts-style HABA-MABA list-
ing in [22]. They point out a relationship that is often leveraged
(though seldom explicitly stated) by the field of Visual Analytics:
human-machine collaboration transforms human practice and forces
people to adapt their skills and analytic practices. They argue for a
shift in attention, moving away from allocation of tasks to a focus cen-
tered on how to design for harmonious human-machine cooperation.
That is, how do we get humans and machines to play nicely, and work
effectively?

3.2 Affordances
In 1977, American psychologist J.J. Gibson stated his theory that an
organism and its environment complement each other [31], which is
much in alignment with the work by Jordan cited in the previous sec-
tion. In this work, Gibson coined the term affordances, defining them
as the opportunities for action provided to an organism by an object
or environment. Norman later appropriated this term as it applies
to design and the field of Human-Computer Interaction, redefining it
slightly to refer only to the action possibilities that are readily perceiv-
able by a human operator [53]. This definition shifts the concept of
affordance toward relational rather than subjective or intrinsic; that is,
an affordance exists between an actor and the object or environment,
not existing separate from that relationship.

In the case of human-computer collaboration, we argue that there
exist affordances in both directions. Both human and machine bring
to the partnership opportunities for action, and each must be able to
perceive and access these opportunities in order for them to be effec-
tively leveraged. These affordances define the interaction possibilities
of the team, and determine the degree to which each party’s skills can
be utilized during collaborative problem-solving. In the next sections,
we will survey the existing literature through the lens of affordances,
providing a common framework for understanding and comparing re-
search in the areas of human-computer collaboration, human interven-
tion, and human computation. The affordances we identify are by no
means an exhaustive list; they represent the patterns of design that we
have seen in the existing literature of an emerging area. Please note
that while examples will generally be given under the heading of a
single affordance, systems mentioned may utilize multiple affordances
(both human and machine) at the same time. For a complete listing of
the affordances identified in all systems surveyed, please see Table 1
in the Appendix of this work. In Section 6, we present case studies of
specific systems to discuss the costs and benefits of leveraging multi-
ple affordances.

4 HUMAN AFFORDANCES

The human-computation and human-computer collaborative systems
we have reviewed leverage a variety of skills and abilities afforded by
the human participants. In this section, we will offer a brief definition
of each of the affordances we have observed in the literature, discuss
the utility of these affordances as articulated in the work reviewed and
offer an overview of the application of each affordance.

(a) Peekaboom [76]

(b) Fold.it [20]

(c) TagATune [44]

Fig. 1. Systems leveraging human affordances: (a) Visual perception,
(b) Visuospatial thinking, and (c) Audiolinguistic ability.

4.1 Visual perception
Of the human affordances we will discuss, perhaps the most salient to
the study of Visual Analytics is visual perception1. In [64], Shneider-
man comments on humans’ capacity for visual processing:

[T]he bandwidth of information presentation is potentially
higher in the visual domain than for media reaching any of
the other senses. Humans have remarkable perceptual abili-
ties. . . Users can scan, recognize, and recall images rapidly,
and can detect changes in size, shape, color, movement,
or texture. They can point to a single pixel, even in a
megapixel display, and can drag one object to another to
perform an action.

1For more on visual perception, see Gibson [32].



Given its direct applicability, it is perhaps unsurprising that we have
seen a plethora of work in Visual Analytics and HCI leveraging human
visual processing. For example, human visual perceptive abilities are
utilized by Peekaboom [76] to augment image labels on the web (see
Fig. 1a). For some tasks such as image labeling [21, 33, 59, 62, 73, 74],
visual search [6, 10], and query validation [48, 80], the systems pre-
sented rely heavily on the users’ visual perceptive abilities, with the
machine serving only as a facilitator between the human and the data.
For other tasks such as exploring high-dimensional datasets [68, 83],
classification [4, 51], and dimension reduction [28, 36], machine affor-
dances (which will be discussed at length in Section 5) are combined
with human visual processing to achieve superior results.

4.2 Visuospatial thinking
A level deeper than basic visual processing such as image recognition,
another skill afforded by human collaborators is visuospatial think-
ing2, or our ability to visualize and reason about the spatial relation-
ships of objects in an image. These abilities are strongly informed by
our experiences in the physical world, which shape our understanding
and are intrinsic to our everyday lives. We are able to visualize com-
plex spatial relationships and tune this attention to accomplish specific
goals. In an article on the significance of visuospatial representation
in human cognition [60], Tversky notes:

For human cognition, [entities] are located in space with
respect to a reference frame or reference objects that vary
with the role of the space in thought or behavior. Which
things, which references, which perspective depend on the
function of those entities in context. . . These mental spaces
do not seem to be simple internalizations of external spaces
like images; rather, they are selective reconstructions, de-
signed for certain ends.

We have seen evidence that progress can be made on computationally
intractable problems through the application of human visuospatial
thinking. For example, the Fold.it project (see Fig. 1b) has demon-
strated remarkable success at protein folding [20], a problem known
to be NP-complete [7] using purely computational means.

4.3 Audiolinguistic ability
Another affordance presented by the human user is audiolinguistic
ability; that is, our ability to process sound3 and language4. Although
separate from the visual affordances generally leveraged in Visual An-
alytics systems, we suggest that the interplay between visual and non-
visual human faculties is equally important in supporting analytical
reasoning. In [70], Thomas and Cook state:

We perceive the repercussions of our actions, which also
recalibrates perception, ensuring that vision, hearing, and
touch maintain their agreement with each other. If we
are to build richly interactive environments that aid cog-
nitive processing, we must understand not only the lev-
els of perception and cognition but also the framework
that ties them together in a dynamic loop of enactive, or
action-driven, cognition that is the cognitive architecture
of human-information processing.

The literature contains several examples of systems leveraging this af-
fordance. The well-known reCAPTCHA [77] system uses human lin-
guistic ability augment computer vision in an effort to fully digitize the
world’s libraries. In MonoTrans2 [35], it is used to improve automated
translation results using monolingual translators. In TagATune [44],
human audio processing ability is leveraged to generate descriptive
tags for music clips (see Fig. 1c). We have also surveyed examples uti-
lizing human audio linguistic ability for audio annotation [5, 44, 49],
transcription [16], and even crowdsourced word processing [8].

2For more on visuospatial thinking, see Shah and Miyake [60].
3For more on psychoacoustics, see Fastl and Zwicker [25].
4For more on language, see Vygotsky [78].

4.4 Sociocultural awareness
In addition to physical senses, human collaborators also afford at-
tributes such as sociocultural awareness, which refers to an individ-
ual’s understanding of their actions in relation to others and to the so-
cial, cultural, and historical context in which they are carried out. Re-
searchers in the area of embodied interaction have long advocated for
design that acknowledges the importance of this relationship. In [24],
Dourish notes:

[O]ur daily experience is social as well as physical. We in-
teract daily with other people, and we live in a world that
is socially constructed. Elements of our daily experience –
family, technology, highway, invention, child, store, politi-
cian – gain their meaning from the network of social inter-
actions in which they figure. So, the social and the physical
are intertwined and inescapable aspects of our everyday ex-
periences.

We argue that this can be viewed as an affordance, not just a compli-
cating factor. For example, in Mars Escape [17], human participants
partner with a virtual robot to complete collaborative tasks to build ro-
bust social training datasets for human-robot interaction research. This
affordance is integral to the construction of commonsense knowledge
databases [43, 45, 75], and has been leveraged in domains such as
stress relief [19] and providing social scripts to support children with
autism [11].

4.5 Creativity
Another important affordance of human collaborators is creativity5.
As noted by Fitts [27], Dekker [22] and many others, humans are ca-
pable of incredible creativity, generating spontaneous arrhythmic ap-
proaches to problems that may be difficult or impossible to simulate.
In [58], American psychologist Mark Runco posits:

It may be that creativity plays a role in all that is hu-
man. This surely sounds like a grand claim, but consider
how frequently we use language or are faced with a prob-
lem. Think also how often problems are subtle and ill-
defined. . . [C]reativity plays a role in each of our lives, and
it does so very frequently.

We have seen human creativity leveraged to great success in both phys-
ical and conceptual design. For example, Yu and Nickerson [81] use
human creativity to crowdsource design sketches via a human genetic
algorithm, and Tanaka et al. [67] use sequential application of crowds
to produce creative solutions for social problems. Creativity has also
been used to augment automated systems and find hidden outliers [47].

4.6 Domain knowledge
The final example of human affordance that we have seen in the litera-
ture is straightforward, but worthy of inclusion nonetheless. This is the
affordance of domain knowledge. In their 2009 article on Knowledge-
Assisted Visualization [13], Chen et al. argue:

[T]he knowledge of the user is an indispensable part of vi-
sualization. For instance, the user may assign specific col-
ors to different objects in visualization according to certain
domain knowledge. The user may choose certain view-
ing positions because the visualization results can reveal
more meaningful information or a more problematic sce-
nario that requires further investigation.

Often, this domain knowledge can be difficult or impossible to embed
fully into the system itself, or it may be too time-consuming to gener-
ate a complete model of the domain. Instead, we can leverage the ex-
perience of the human analyst as part of the collaborative process. For
example, we have seen domain expertise leveraged to help diagnose
network faults [47], classify MRI data [12], perform domain-specific
data transformations [40], and navigation and infer trends about a spe-
cific geographic region [4].

5For more on creativity, see Amabile [2].



5 MACHINE AFFORDANCES

For over two decades, the HCI community has been engaged in con-
versation about affordances in technology, beginning with [30]. While
much of the focus has centered on designing interfaces that are intu-
itive to the user, we would like to take the liberty of broadening the
definition of affordances to include more than just design elements. In
this section, we survey the literature with an eye toward the conceptual
affordances of machine collaborators and discuss how they come into
play in human-computer collaboration.

5.1 Large-scale data manipulation
As predicted by Moore’s Law [52], computational power has steadily
doubled every two years for the past five and a half decades. Because
of this incredible increase in processing ability, machine collabora-
tors afford large-scale data manipulation at speeds and scales Fitts
never could have imagined. In Visual Analytics, this computational
ability has been leveraged to help analysts navigate massive datasets
across many domains. For example, RP Explorer uses random pro-
jections to approximate the results of projection pursuit to find class-
separating views in high-dimensional space where traditional projec-
tion pursuit can fail to converge [3]. In ParallelTopics (see Fig. 2a),
computational methods for manipulating large datasets have been used
to help users navigate and make sense of massive text corpora [23]. It
has also been utilized to refine classification models and performing
dimension reduction [18, 29, 51], interactively cluster data [4], and
automatically extract transfer functions from user-selected data [57].
It has been used to suggest informative data views [83], and even to
help users externalize and understand their own insight generation pro-
cess [15, 39, 41, 46, 65].

5.2 Collecting and storing large amounts of data
In addition to being able to manipulate large amounts of data at in-
credible speed, machine collaborators are also able to efficiently ag-
gregate and store data for later use. This affordance has been used
to support human users in many areas where the data is being gen-
erated in large quantities and from multiple sources simultaneously.
For example, systems like Verbosity [75] and others [43, 45] aggre-
gate and store information generated by human users to create com-
monsense knowledge repositories. It is also used in the collection of
behavioral scripts for autism treatment [11] and human-robot inter-
action [17], as well as collecting tags for music and image annota-
tion [5, 12, 21, 49, 59, 62, 73, 74]. In a world that is growing ever
more big data-centric, storage capacity and efficient retrieval are crit-
ical advantages afforded by machine collaborators.

5.3 Efficient data movement
Thanks to developments in data storage, the advent of fast and reli-
able networking techniques and the rapid development of an always-
connected society, data has been freed from its historic ties to a
geographic location and machine collaborators afford very efficient
data movement. This implies that data can be collaboratively ac-
cessed and manipulated by entities asynchronous in both time and
space, with machines affording the efficient transfer of data to the
right place at the right time. For example, VizWiz [10] leverages ef-
ficient data movement to connect visually-impaired users to sighted
collaborators to get near real-time answers to visual search ques-
tions. This affordance is critical in facilitating distributed collabora-
tion [8, 14, 19, 33, 67, 76, 80], as well as access to distributed infor-
mation [33, 44, 48, 76]. Efficient data movement techniques also fa-
cilitate rapid access to data that is too large to fit in memory. This has
been used to augment human visual processing using saliency modu-
lation [37] (see Fig. 2b), as well as facilitate access to other datasets to
numerous to list.

5.4 Bias-free analysis
In contrast to the human affordance of sociocultural understanding,
machines afford the opportunity for bias-free analysis. That is, apart
from human bias introduced during the programming of the system,

(a) ParallelTopics [23]

(b) Saliency-Assisted Navigation [37]

(c) MDX [66]

Fig. 2. Systems leveraging machine affordances: (a) Large-scale data
manipulation, (b) Efficient data movement, and (c) Bias-free analysis.

machines are able to operate and report on numerically or computa-
tionally significant information without experiential or sociocultural
influence. In Visual Analytics, we have seen this affordance lever-
aged to help analysts direct their attention for natural disaster predic-
tion [66] (see Fig. 2c) as well as propose candidate visualizations for
exploring high-dimensional data [68]. It has also been used to help an-
alysts see dissimilarity to existing datapoints [50], where confirmation
or other bias may come into play.

6 MULTIPLE AFFORDANCES: CASE STUDIES

As stated in the introduction, while we have generally listed examples
under a single main affordance, systems may utilize multiple affor-
dances (both human and machine) in pursuit of a common goal. In this
section, we analyze a few systems leveraging multiple affordances and
discuss the impact of each set of design elements.

6.1 reCAPTCHA
reCAPTCHA, first introduced by Luis von Ahn et al. in [77] and later
acquired by Google, is a web security mechanism that harnesses the



(a) reCAPTCHA [77] (b) PatViz [41]

Fig. 3. Systems leveraging multiple affordances: (a) reCAPTCHA [77] leverages human visual perception and audiolinguistic ability with machine
storage and efficient data movement to digitize the world’s libraries. (b) PatViz leverages human visual perception, visuospatial ability, audiolin-
guistic ability and domain knowledge with machine computation, storage and efficient data movement.

effort of humans performing CAPTCHAs along with optical character
recognition (OCR) to collaboratively digitize the world’s text corpora
(see Fig. 3a). In the first year reCAPTCHA was made available for
public use, over 440 million suspicious words were correctly deci-
phered resulting in over 17,600 successfully transcribed books [77].
As of this writing, the system is used over 100 million times every day
with an overall success rate of 96.1%, and is currently being utilized to
digitize the New York Times archive as well as Google Books. Such
widespread adoption and remarkable accuracy mark reCAPTCHA as
one of the most widely successful human-computer collaborative ini-
tiatives to date.

We posit that the success of the reCAPTCHA system is due in part
to its effective combination of human and machine affordances. After
performing an initial automated recognition of a document (computa-
tion), suspicious or unrecognizable words are identified and transmit-
ted (efficient data movement) to a collection of human collaborators
for evaluation (visual perception) and subsequent transcription (lin-
guistic ability). Through this division of labor, each party receives
manageable tasks to perform according to their skills, and each set of
affordances can be leveraged without overloading the collaborator.

6.2 PatViz
PatViz [41] is a Visual Analytics system for the interactive analysis of
patent information (see Fig. 3b). PatViz utilizes a flexible coordinated
multiple views (CMV) to support the construction of complex queries
and the interactive exploration of patent result sets.
Analysis of patent information is a complex task involving the syn-
thesis of many data dimensions. Because of this, PatViz leverages a
multitude of human and machine affordances in an effort to provide
intuitive views for various data types: visual perception for the inspec-
tion of image data contained in patent documents, visuospatial ability
for analyzing the relationships between various patents, audiolinguis-
tic ability for evaluating terminology, and domain knowledge for un-
derstanding the relevance of the patent to its application, as well as
with machine computation for generating data views on the fly, stor-
age for aggregating the analysts’ activity, and efficient data movement
to provide the analyst with the appropriate information on-demand.

However, in the case of leveraging affordances, more is not always
better. As articulated in the discussion of the results [41]:

One frequently expressed comment indicated that most of
the patent experts never worked with a system providing in-
terlinked and interactive visual interfaces. While this was
also one of the systems properties that was most appreci-
ated by the users, it became clear that such features are
very difficult to use without any training.

While the machine collaborator offers many opportunities for the hu-
man to utilize many different analytical skills, it falls short in effec-

tively leveraging these affordances by leaving the decision of when
and how to select views wholly at the discretion of the human. Be-
cause so many different affordances are being leveraged, it is difficult
for the human collaborators to organize their strategy in approach-
ing the analysis, resulting in an interface that “is difficult to compre-
hend. . . without previous instruction” [41].

7 SUGGESTED EXTENSIONS

The scope of this paper is limited to the affordances we have identified
in the existing literature on human-computer collaboration and
human computation; it is far from an exhaustive list of the possible
affordances that exist between human and machine. We would like
posit a few un- or under-explored affordances and suggest scenarios
in which these affordances might prove useful.

Human Adaptability: One of the most important components
of the human analytic process is the ability to take multiple perspec-
tives on a problem, and adapt hypotheses and mental models in the
wake of new information. This adaptability is critical to the successful
generation of insight about large datasets. However, most work in
this area has centered around supporting the adapting user, rather than
explicitly leveraging this.

Consider the hypothetical collaborative system leveraging hu-
man adaptability along the lines suggested by Thomas and Cook [70]:
as human collaborators are exploring a dataset, the system observes
patterns in provenance to try to detect when an analyst has gotten
“stuck” in a redundant or potentially fruitless analytical path. When
this happens, the system suggests an alternative perspective or avenue
for exploration. This encourages the analyst to form new hypotheses
or adopt new methods of inquiry, ensuring that the analysis does not
become entrenched in a local minimum.

Machine Sensing: With new developments in hardware tech-
nology rapidly becoming more readily available, there is the potential
for significant advances in the kinds of sensory information that
machines can make available. However, to our knowledge, this
affordance has not yet been considered as part of a collaborative
system.

We see potential for the utility of sensing technology as part of
a human-computer collaborative team in two areas. First, sensing
technology could be used to make the human collaborator aware of
extrasensory information about the environment around them. Sec-
ond, it could be used to respond to changes in the human collaborator
themselves; for example, adapting to the user’s mental state using
brain sensing technology to improve the working environment.



These represent just a brief brainstorming of potential additions to
the list of affordances we have observed in the literature to date, and
we hope that these ideas will inspire intellectual discourse and encour-
age further inquiry.

8 DISCUSSION

We close this paper with a discussion of the utility of this framework
for addressing critical need in the area of human-machine collabora-
tion, as well as its shortcomings and areas for future work.

8.1 Utility of an affordance-based framework
We claim that with the development of an affordance-based language
for describing human-computer collaborative systems, we are indeed
in a better position than when we first began. To validate this claim,
let us return to the three questions posed in the introduction of this
paper:

How do we tell if a problem would benefit from a collaborative
technique? We argue that the set of problems warranting a col-
laborative technique is equivalent to the set problems where there
is an opportunity to effectively leverage affordances on both sides
of the partnership in pursuit of the solution. By framing potential
collaboration in terms of the affordances at our disposal, we can then
consider which of these affordances could be used to approach a
problem and construct a solution.

How do we decide which tasks to delegate to which party,
and when? In adopting this language, we are deliberately moving
away from terminology that encourages us to speak in terms of
deficiencies; that is, we need the human because computers are bad
at X, etc. Instead of deciding who gets (stuck with) which task, we
begin to reason about who can contribute to the collective goal at each
stage. The answer may not be only the human, or only the machine,
but could in fact be both. By designing such that all parties are aware
of the affordances made available to them by their collaborators, we
encourage the development of more flexible procedures for collective
problem-solving.

How does one system compare to others trying to solve the
same problem? Of the contributions made by this framework, we
believe that providing a common language for discussing human-
computer collaborative systems is its greatest strength. We are able
to talk about which affordances are being leveraged, and use these to
compare and contrast between systems. We may also be able to make
hypotheses about how these choices of affordances influence the
resulting solutions by comparing performance measures. However,
this language does not yet afford a robust, theoretical comparison. To
achieve this, we must first build our understanding of the mechanisms
underlying these affordances and their associated costs.

8.2 Complexity measures for Visual Analytics
While we believe that this framework provides an important founda-
tion for developing a common language, it is only the first of many
steps toward a rich vocabulary for describing human-computer collab-
orative systems. Consider for example the plethora of human compu-
tation systems for image labeling that we have reviewed in this work:
the ESP Game [73], Ka-captcha [21], KissKissBan [33], LabelMe [59]
and Phetch [74]. Each system leverages the visual perception and lin-
guistic abilities of the human users, and the aggregative capacity of
the machine. Given that these systems are all addressing very simi-
lar problems using a similar approach, how do they compare to one
another? We argue that is it critical to develop a common language
not just for describing which affordances are being leveraged, but how
much and how well.

The National Science Foundation CISE directorate has called for
the development of theoretical measures for systems involving hu-
man computation, calling this one of the five most important questions
facing computer science today [79]. This need was reiterated at the

CHI2011 workshop on Crowdsourcing and Human Computation [42].
Can we begin to describe the complexity of human-computer collabo-
rative systems with a robust language parallel to describing the com-
plexity of an algorithmic system?

Researchers in the field of Artificial Intelligence have begun to
imagine the concept of complexity measures for systems involving hu-
man contribution. Shahaf and Amir define a Human-Assisted Turing
Machine using the human as an oracle with known complexity [61].
In this work, they demonstrate that much of the standard theoretical
language holds true, including algorithmic complexity, problem com-
plexity, complexity classes and more. However, they also raise several
questions that remain unanswered:

• First, what is the best way to measure human work? In terms
of human time, space, or utility? Should we consider the input
size, that is, how much data does the human need to process? Or
to compensate for compression, should we be measuring infor-
mation density instead?

• Second, how can we assess this human work in practice?
Through empirical evaluation of a sample population’s perfor-
mance on a given task, we can begin to understand how the
average human performs, but this information is task-specific.
Perhaps more broadly applicable would be to develop a set of
canonical actions that humans can perform with known com-
plexity, but compiling this list is nontrivial.

• Finally, how do we account for individual differences in hu-
man operators? Perhaps the problem under consideration uti-
lizes skills or knowledge not common to every user (such as
bilingual translation). In this case, a general model of humans
is insufficient; instead, we need to understand the complexity of
the individual candidate. This requires the development of algo-
rithmic systems that are to be able to effectively and efficiently
utilize the affordances provided by the humans available to them,
rather than only the optimal human collaborator under perfect
conditions.

These areas afford many rich opportunities for collaboration with our
colleagues in theoretical computer science, as well as in psychology
and neuroscience. By engaging in the interdisciplinary pursuit of an-
swers around human affordances, we hope to construct a more com-
plete picture of insight generation, the mechanisms of human under-
standing, and the the analytic process as a whole.

9 CONCLUSION

In this article, we have presented a comprehensive survey of work in
the area of human-computer collaborative systems and human com-
putation. Out of 1,271 papers reviewed, we selected a corpus of 49
publications that represent the state of the art, and from these papers
we identify patterns of human- and machine-intelligence affordances.
These affordances form the basis of a common framework for under-
standing and discussing this collection of work. We argue for the
utility of this framework, then discuss some of its shortcomings and
identify unexplored avenues for extending this line of inquiry.

While we have concentrated our efforts on systems explicitly la-
beled as human-computer collaboration, mixed-initiative, or human
computation, we posit that the framework presented here will benefit
the field of Visual Analytics as a whole. While there has been remark-
able progress in the development of novel solutions to support analytic
processes, we have not yet fully realized our potential as a systematic
science that builds and organizes knowledge in the form of testable
theories and predictions. In presenting a preliminary framework for
describing and comparing systems involving human and machine col-
laborators, we aspire to lay the foundation for a more rigorous analysis
of the tools and approaches presented by our field, thereby paving the
way for the construction of an increasingly robust understanding of
analytical reasoning and how to best support insight generation.



Human Affordances Machine Affordances
Visual Spatial Aud/Ling. Creativity Social Domain Comp. Storage Moving Bias-Free

PatViz [41] X X X X X X X

CrowdSearch [80] X X X

ParallelTopics [23] X X X

Dissimilarity [50] X X X X

VH+ML [28] X X

Implicit tagging [62] X X

reCAPTCHA [77] X X X X

VizWiz [10] X X X

Phetch [74] X X X X X

ESP Game [73] X X X X

KissKissBan [33] X X X X

LabelMe [59] X X X X

Ka-captcha [21] X X X X

PeekABoom [76] X X X X

MRI [12] X X X X X

iView [83] X X X X

iVisClassifier [18] X X X X

Saliency [37] X X X X

RP Explorer [3] X X X X

DimStiller [36] X X X X

WireVis [46] X X X X

Action trails [65] X X X X

NetClinic [47] X X X

Trajectories [4] X X X

Risk assessment [51] X X X

Automatic transfer functions [57] X X X X

MDX [66] X X X X

Automated+viz [68] X X X X

CzSaw [39] X X X

Fold.it [20] X X

HRI scripts [17] X X X

Animated agents for VR [56] X X X

VA Model-learning [29] X X

EyeSpy [6] X X

MonoTrans2 [35] X X X

CastingWords [16] X X

Click2Annotate [15] X X X

Wrangler [40] X X

Soylent [8] X X

Crowdsourced solutions [67] X X

Crowdsourced design [81] X X

Stress OutSourced [19] X X

PageHunt [48] X X X X

Herd It [5] X X X

TagATune [44] X X X

MajorMiner [49] X X X

Autism scripts [11] X X

Social Games [43] X X

Common Consensus [45] X X

Verbosity [75] X X

Table 1. A table of all surveyed human-computer collaborative systems and the affordances they leverage. The human affordances listed are
(in order): visual perception, visuospatial ability, audioliguistic ability, creativity, sociocultural awareness, and domain knowledge. The machine
affordances listed are (in order): large-scale data manipulation, collecting and storing large amounts of data, efficient data movement, and bias-
free analysis.
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