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ABSTRACT

The world’s corpora of data grow in size and complexity every day,
making it increasingly difficult for experts to make sense out of
their data. Although machine learning offers algorithms for finding
patterns in data automatically, they often require algorithm-specific
parameters, such as an appropriate distance function, which are out-
side the purview of a domain expert. We present a system that al-
lows an expert to interact directly with a visual representation of the
data to define an appropriate distance function, thus avoiding direct
manipulation of obtuse model parameters. Adopting an iterative
approach, our system first assumes a uniformly weighted Euclidean
distance function and projects the data into a two-dimensional scat-
terplot view. The user can then move incorrectly-positioned data
points to locations that reflect his or her understanding of the sim-
ilarity of those data points relative to the other data points. Based
on this input, the system performs an optimization to learn a new
distance function and then re-projects the data to redraw the scatter-
plot. We illustrate empirically that with only a few iterations of in-
teraction and optimization, a user can achieve a scatterplot view and
its corresponding distance function that reflect the user’s knowledge
of the data. In addition, we evaluate our system to assess scalability
in data size and data dimension, and show that our system is compu-
tationally efficient and can provide an interactive or near-interactive
user experience.

1 INTRODUCTION

The total body of collected data in the world is enormous and grow-
ing. Analyzing it is as valuable and important as it is difficult.
Although powerful statistical analysis and machine learning tools
exist for making sense of data, they are often complicated and re-
quire understanding outside the realm of a researcher’s expertise to
set model parameters. In particular, many data analysis methods
such as clustering, retrieval and classification require the definition
of a distance metric to define the distances/similarities among data
points, which may not be intuitive for most domain experts to con-
struct explicitly.

What is needed, then, is a system to bridge the space between
the experts and the tools. In this paper we introduce an approach
and prototype implementation, which we name Dis-Function, that
allows experts to leverage their knowledge about data to define a
distance metric. Using our system, an expert interacts directly with
a visual representation of the data to define an appropriate distance
function, thus avoiding direct manipulation of obtuse model pa-
rameters. The system first presents the user with a scatterplot of
a projection of the data using an initial distance function. During
each subsequent iteration, the expert finds points that are not po-
sitioned in accordance with his or her understanding of the data,
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and moves them interactively. Dis-Function learns a new distance
function which incorporates the new interaction and the previous
interactions, and then redisplays the data using the updated distance
function.

In the remainder of this paper we first review the related work in
learning a distance metric in the machine learning and visualization
research literature. We then present the proposed approach which
allows a user to implicitly describe a distance function over high-
dimensional data by interacting with a visualization of the data. We
present the results of experiments on a machine learning benchmark
dataset with our prototype system to assess Dis-Function’s ability
to learn a distance metric for classification. In addition, we eval-
uate the system’s ability to provide interactive or near-interactive
speed and conclude that performance scales linearly in the number
of dimensions and quadratically in the number of data points. We
finish with a discussion of the potential of Dis-Function and future
directions of research.

2 RELATED WORK

This work leverages previous efforts in both machine learning and
visualization. We begin with the machine learning work in dis-
tance functions, and then discuss interactive visualizations for high-
dimensional data.

2.1 Machine Learning
In the last decade, increasing attention has been paid to learning a
distance metric from data [2, 3, 9, 15, 31, 32, 33, 34, 35, 36, 39, 40].
These methods have been successfully applied to many real-world
application domains including information retrieval, face verifica-
tion and image recognition [8, 17, 21]. Methods in the machine
learning literature assume that the learning method is given some
“side information,” most often in the form of pairwise constraints
between instances. They assume that a domain expert can easily
provide pairs of similar data points and pairs of dissimilar data
points. An approximation to this information can be collected from
the label information in supervised training datasets (by defining
instances in the same class to be similar, and from distinct classes
to be dissimilar).

Using this side information, existing methods seek to learn a
distance metric such that the distance between similar examples
should be relatively smaller than that between dissimilar examples.
Although the distance metric can be a general function, the most
prevalent one is the Mahalanobis metric defined by

DA(xi,x j) =
√

(xi− x j)T A(xi− x j)

where A is a positive semi-definite matrix and xi and x j are two in-
stances in the data [37]. While existing methods have been proven
to be effective, what they fail to adequately address is how such
side information is obtained in the absence of class label informa-
tion. Indeed, the majority of methods found in the machine learning
literature are not truly interactive, but instead simulate user inter-
action. In contrast, our work provides an interactive visualization
method for observing which instances are considered similar based
on the current distance metric, and a way to directly manipulate the
visualization to redefine similarity.



2.2 Visual Analytics and Machine Learning

In the visualization community, machine learning techniques have
been used to project high-dimensional data into 2D information vi-
sualization for data exploration. Jeong, et al. [23] created a tool with
a coordinated view between a projection of the data using principal
component analysis (PCA) and parallel coordinates. The user can
change the parameters of the projection interactively to explore the
data. Similarly, Buja, et al. [6] created a tool with which a user
can look at the data in a multi-dimensional scaling (MDS) projec-
tion and manipulate parameters directly to change the visualization.
Dust and Magnets [38] and RadViz [20] layout high-dimensional
points in a 2D visualization where the dimensions are anchored and
their positions can be manipulated by the user to affect the display.
These efforts demonstrate the effectiveness of combining interac-
tive visualization with machine learning techniques. However, in
these systems, the user’s interaction is limited to modifying the pa-
rameters of the projection algorithm.

Several methods have been proposed that couple machine learn-
ing techniques with visualization to cluster or classify data. Nam,
et al. [28] introduced ClusterSculptor, which allows the user to it-
eratively and interactively apply different clustering criteria to dif-
ferent parts of a dataset. Garg, et al. [14] use Inductive Logic Pro-
gramming to learn rules based on user inputs. These rules can be
stored and reused in other parts of the data to identify repeating
trends and patterns. Andrienko, et al. [1] allow expert users to build
classifiers of trajectories from sampled data, and interactively mod-
ify the parameters of the classifier at different stages in the anal-
ysis. Broekens, et al. [5] propose a system that allows a user to
explore data in an MDS projection by dragging points around to
affect clustering and layout. DesJardins, et al. [11] visualize data
via a spring layout in which the user can interact with the visu-
alization by pinning points in place. The pinned points are inter-
preted as constraints, and the constraints are used in a clustering
analysis that results in a regenerated visualization that attempts to
satisfy the constraints. Similarly, Endert, et al. [12] developed a
spring-based system specific to text analysis, and developed a vari-
ety of interaction paradigms for affecting the layout. Choo, et al. [7]
present iVisClassifier, which is a system based on supervised linear
discriminant analysis that allows the user to iteratively label data
and recompute clusters and projections. In all these systems, the
user works closely with an automated machine learning algorithm
through a visual interface to explore and better understand the data,
but none of these systems explicitly addresses learning a distance
function.

There have been some methods designed specifically to learn a
distance function and select features. The interactive tool proposed
by Okabe and Yamada [29] learns a distance function by allowing a
user to interact with a 2D projection of the data. However this tool is
restricted to clustering, and supports only pairwise constraints that
are formed by requiring users to select pairs of points and spec-
ify whether or not they are in the same cluster. Thus the user is
forced to make these decisions purely based on the 2D projection.
In contrast, our method as described in Section 4 provides several
coordinated views of the data and does not restrict the user to for-
mulate only pairwise constraints. May, et al. [27] present the Smart-
Stripes system which assists the user in feature subset selection by
visualizing the dependencies and interdependencies between dif-
ferent features and entity subsets. This work is similar to ours in
that both methods seek to identify relevant dimensions in a high-
dimensional dataset. However, unlike the SmartStripes system that
directly represents low-level statistical information of each feature,
our approach hides the complex mathematical relationships in the
features and allows the user to interact directly with the visual in-
terface.

Perhaps most conceptually similar to our work is that by En-
dert, et al. [13], which presents variations of three projection tech-

niques, including MDS, that can be updated based on user inter-
action. While their techniques are similar to ours, our approach
emphasizes the externalization of a user’s interactions to produce
a useful, exportable distance function. Unlike the formulations of
[13], our system produces distance functions that are simple enough
that the user can observe the relative importance of features while
interacting with the software.

3 LEARNING A DISTANCE FUNCTION INTERACTIVELY

Our approach to learning a distance function is both interactive and
iterative. The user follows the procedure below until satisfied with
the visualization, and thus with the learned underlying distance
function.

1. Based on the current distance metric, we provide a two-
dimensional scatterplot visualization of the data as well as
other coordinated views (see Section 4).

2. The expert user observes and explores the provided visual-
izations and finds inconsistencies between the visualizations
and his or her knowledge of the data. The user interacts with
the scatterplot visualization via drag/drop and selection oper-
ations on data points with the mouse.

3. Dis-Function calculates a new distance function based on the
feedback from the previous step. The new distance function
is used to re-start the process at Step 1.

Figure 1 illustrates the process of iterating these three steps start-
ing with the data as input, then making updates to the distance func-
tion until the user is satisfied with the 2D projection. In this section
we describe our approach to each of these steps. We leave the de-
tails of the visualizations to the following section.

Input Data 2D Projection

UserOptimization

Output 

Distance Function

Figure 1: Flow chart showing the interactive process of using Dis-
Function.

3.1 Producing a 2-D Scatterplot of the Data
To produce the two-dimensional scatterplot, we project the original
(potentially high-dimensional) data to two dimensions via Multi-
Dimensional Scaling (MDS) [4]. MDS has the property that when
mapping from a high- to low-dimensional space, it preserves the
relative distances between points. Thus, when a user looks to see if
two points are the correct distance apart relative to others in the 2D
projection, the relative distances between pairs of points observed
in the projection correspond to their relative distance in the full-
dimensional space as defined by the current distance metric. The



MDS projection is dependent on a distance function. The input
is an N ×N matrix D where each i, j entry contains the distance
between points xi and x j from the set of all N data points in RM .
(All notation used in this section is shown in Table 1).

Specifically, the projection algorithm accepts a pairwise distance
matrix D covering all points, calculated with the “current” distance
function. Note that in our experiments we set the initial distance
function to be a uniformly-weighted Euclidean distance function
across all possible features. Given the matrix D, we apply PCA to
perform an eigenvector decomposition and compute the principal
components, a ranked set of orthogonal vectors.1 The top-ranked
vector is the direction of highest variance in the distance matrix,
and the second-ranked is the orthogonal vector that describes the
next-most amount of variance. The data points, represented as vec-
tors, are projected onto those two top-ranking principal components
[24]. The final result is a set of N vectors in R2, one for each orig-
inal data point. Using these new vectors we display the data as a
scatterplot visualization.

3.2 User Input

In Section 4 we describe the expert’s interaction with the data in
more detail after we have presented the details of the visualization
system. For now, we ask the reader to assume that the user is able
to directly manipulate the scatterplot to define sets of points that
should be nearer to one another or further apart. To this end, let
us define two sets of data points Y1 and Y2, selected by the user, as
sets of points which should be moved relative to each other. We
then calculate a matrix U that will represent the user input when
calculating an updated distance function as described in Section 3.3,
where U is defined as follows:

Ui j =

{
intended distance

original pro jected distance if (xi,x j) ∈ Y1×Y2,

1 otherwise.
(1)

where original pro jected distance is computed as the Euclidean
distance between points xi and x j in the scatterplot before the user
moved them, and intended distance is their Euclidean distance in
the scatterplot after. Thus dragging data points xi and x j closer re-
sults in Ui j < 1, whereas dragging them further apart would result
in Ui j > 1. These values will be used to compute a new distance
function as described in the next section. Note that the majority
of the values for Ui, j will be equal to 1 because the interaction
paradigm is that the user wants to change the relative distances be-
tween points in Y1 and Y2 only, wishing to maintain the relative
distances of all other data points.

3.3 Updating the Distance Function

We incorporate user input to create a new distance function by solv-
ing an optimization problem over the space of possible distance
functions. We use a weighted Euclidean distance function, i.e., Eu-
clidean distance with each dimension of the data weighted by a
coefficient. Although there are many other possibilities, we chose
weighted Euclidean distance because it is easy for a human to map
the magnitude of the weight of each feature to its relative impor-
tance. We describe in Section 4 how we present a visualization of
the weights of the distance function to further help the user under-
stand the data.

The distance between two points xi and x j is given by:

D(xi,x j|Θ) =
M

∑
k=1

θk(xik− x jk)
2 (2)

1That is, we calculate an MDS projection by applying PCA to the pair-
wise distance matrix [16].

Definitions used in describing our methods
N, M Number of points, number of dimensions
xi ∈ RM Point i of the data
xik Value of feature k of data point xi
Θ Vector in RM containing the weight of each

dimension for a distance function
θk Weight of feature k in Θ

Θt and Θt−1 Indicate Θ values from before (t−1) and af-
ter an optimization step

D(xi,x j|Θ) Distance between xi and x j given parameters
(dimension weight vector) Θ

δi jk Abbreviation used in the gradient of the ob-
jective function as a stand-in for (xik− x jk)

2

Oi jt Abbreviation used in the gradient of the ob-
jective function for the square root of a term
of the full objective function

Li j The impact coefficient in the objective func-
tion

Ui j Entry in matrix U containing the user feed-
back information for the pair (xi,x j)

Table 1: Definitions of the symbols described in our methods.

where M is the number of original dimensions in the data, Θ is the
vector of feature weights, and θk is the weight for feature k. We
initialize with all weights equal, i.e., θk = 1/M.

To update Θ after a user interaction at time t, we seek to find the
Θt that maintains the relative distances of points the user did not
select while encouraging changes that affect the selected points in
the desired direction. We formalize this intuition with the following
optimization criterion:

Θ
t = argmin

Θt ∑
i< j≤N

Lt
i j

(
D(xi,x j|Θt)−U t

i j ·D(xi,x j|Θt−1)
)2

(3)

where U t
i, j is defined in Equation 1 and is the result of the user’s

interactions at round t based on the projection using the distance
function defined by Θt−1. The term Lt

i j, defined in Equation 4, is a
scalar weight that is greater than one when the points xi and x j are
in Y t

1 and Y t
2 , and one otherwise. In the summation over all points

in the objective function of Equation 3, this increases the value of
terms corresponding to points the user moved. We define Li j at time
t as:

Lt
i j =

{
N(N−1)
|Y t

1 ||Y t
2 |
−1 if (xi,x j) ∈ Y t

1×Y t
2 ,

1 otherwise.
(4)

where Y t
1 and Y t

2 are the sets of points in each user interaction set
at iteration t. The value of the coefficient is the ratio of the number
of unchanged pairs of points to the number of changed pairs. This
heuristic and somewhat ad hoc weight is to ensure that the points
the user selected have impact in the overall value of the objective
function, even though the function is a sum over all points in the
dataset, and Y t

1 and Y t
2 could be relatively small.

Our objective is to incorporate new user feedback at iteration t,
while preserving the user’s previous interactions. Previous itera-
tions of feedback are not explicity represented. Instead, Equation 3
minimizes the difference, over all pairs of points, between the new
distance and a multiple (Ui j from the user input) of the old distance.
By including the old distance in the function and summing over all
points, we provide some inertia against the user’s updates. This
was an important design decision, as machine learning methods for
finding distance functions generally focus on a single set of con-
straints from the user and optimize once (with the exception of [2],
which has an online version of the RCA algorithm).



To find a solution to this optimization problem we use the
method of conjugate gradient descent [19], which is an optimization
method similar to hill-climbing: starting from an initial guess, the
solver moves in steps toward a minimum of the objective function
by walking along the gradient. At each step, the gradient is evalu-
ated at the current guess, and a new guess is generated by moving in
the direction of the gradient some small amount. This process con-
tinues until it converges. Although versions of the algorithm exist
that determine step directions without the gradient, we provided the
following gradient function to the solver for efficiency:

∇ob jective(Θ) =


∂Θ

∂Θ1
...

∂Θ

∂ΘM

=

2∑i< j≤N δi j1Oi jt
...

2∑i< j≤N δi jMOi jt

 (5)

where
δi jk = (xik− x jk)

2

and
Oi jt = Li j

(
D(xi,x j|Θt)−U t

i j ·D(xi,x j|Θt−1)
)
.

4 VISUALIZATION AND USER INTERACTION

Figure 2 shows Dis-Function, the prototype system introduced in
this work. Dis-Function presents the user with three coordinated
views of the data to aid in data exploration. Along the bottom of
the window, seen in Figure 2E, user can see the raw data in a table
with column labels. In Figure 2A, the interactive scatterplot visu-
alization both displays data and captures user interaction. In 2C, a
view we call parallel bars shows the user how the values of all the
points in the dataset are distributed in each dimension. It appears
as a bar graph with one bar for each dimension. The bars are each
colored with a heat map to show how common each range of values
along the bar is.

The three views are coordinated, which facilitates exploration
[30]: selecting a point on the scatterplot causes the point to be
moved into view in the data table and highlighted, as well as high-
lighted on the parallel bars view. The point is highlighted by a black
line across each bar at the height corresponding to that point’s value
in the bar’s dimension. Placing the mouse over an element in the
data table causes the point to be highlighted in the scatterplot and
parallel bars.

Together, these views allow a user to explore the data in order to
provide more useful feedback to Dis-Function. Aside from just the
relative distances among the points as shown in the scatterplot of
the projection, the user can see the actual data in the original data
space. Assuming the user has some domain knowledge, he or she
will likely understand the implications of certain ranges of values
in certain dimensions. The user can also observe from the parallel
bars visualization how any data point fits into the scheme of the data
on a dimensional basis. If a given point is an outlier in one or all
dimensions, for example, that will be clear from the parallel bars
visualization.

In addition to the views of the data, we provide two views of
the distance function and the user’s progress toward finding it. Fig-
ure 2D shows two tabs. The one visible in the figure shows a bar
graph representation of the current distance function. Each bar rep-
resents a dimension, and the bar height encodes the weight of that
dimension. Using the bar graph, the user can watch the distance
function change after each feedback iteration. This allows the user
to observe the relative importance of the different dimensions in the
current distance function used to display the data in the scatterplot
to the left. The hidden tab in Figure 2D contains a data table version
of the same information, but includes history, and makes it easy to
export the distance function from any iteration.

Having described how the data is visualized we now turn to how
the user can interact with the data through this interface. Recall that

the goal of the interaction is to define two sets of points that should
be closer to one another, or further apart. To this end, the user can
select points and drag-and-drop points to mark them as members of
either set and to move them some amount closer together or further
apart. The points in the two sets are marked by different colors in
the scatterplot visualization, and they correspond to using the left
or right mouse button when clicking or dragging points. These two
sets of points, which we indicate by red and blue in the visualiza-
tion, correspond to the two sets, Y t

1 and Y t
2 respectively. During

the feedback step of each iteration, the user can select and unselect
points, and repeatedly move points around. To signal completing
one round of interaction, the expert clicks the Moved Points but-
ton (see 2B). At this point a new distance metric is learned from the
feedback and the data is then reprojected using the new metric. Cur-
rently, the scatterplot and bar graph update as quickly as possible,
without animation or optimizing for rotation. To provide context
between iterations, after each iteration the user can see where the
points in his or her input sets have been placed in the new projec-
tion via highlighting with colored rings (we illustrate this process
in detail in the next section).

In the next section, we present empirical results of ten subjects
interacting with Dis-Function and we provide preliminary experi-
ments to assess its interactive speed. Our results show that our sys-
tem is interactive or near-interactive for a standard machine leaning
testing dataset.

5 EXPERIMENTS AND RESULTS

In this section, we describe our evaluation of the effectiveness of
Dis-Function at finding distance functions, the quality of distance
functions learned by Dis-Function, and the time taken to perform
each update as a function of the input. We begin with a presen-
tation of the empirical results that demonstrate the efficacy of the
proposed interaction method for defining sets of points to learn a
distance metric.

5.1 Empirical Results
We had ten subjects from Tufts University evaluate our software. In
order to test software meant for experts in the absence of experts,
we simulate the experience by coloring the data points in the scatter
plot based on the known classes of the points; i.e., when the correct
class membership of each point is visible, any user is an “expert”
on the data.2 We showed each participant how to use the software
and let each perform as many iterations as desired. We performed
our experiments on a modified version of the Wine dataset from the
UCI Machine Learning repository [25] as this has been used in prior
studies of defining a distance metric. The original Wine dataset has
thirteen features and 178 instances, each labeled as one of three
classes. We modified the Wine dataset as follows: we added ten
noise features, each of which we generated by randomly choosing
values from a uniform distribution over the range [0,1], matching
the range of the data itself, which is normalized. We introduced
these features in order to know exactly which features in the data
were uninformative. We hypothesized that the user’s interactions
would result in a distance function giving these “useless” features a
weight close to zero.

Because our users were given instant expertise in the form of data
colored with class labels, we instructed them to provide feedback by
moving points closer together that are in the same class (i.e., of the
same color). In our experiments, we observed that all users quickly
figured out that moving only a few points at a time did not result in
significant changes to the distance function and further that moving
points from class x that are far away from a class x cluster3 to its

2Note that because the subjects interact based on class information, our
experiments do not explicitly evaluate the efficacy of the coordinated visu-
alizations.

3Note that there may be more than one cluster per class.



Figure 2: This screenshot shows Dis-Function comprising A) the MDS scatterplot visualization of the data; B) the buttons for recalculating
the projection, undoing unsatisfying input, loading custom distance functions and user input data, etc.; C) the Parallel Bars visualization
described in Section 4; D) a bar graph of the current distance function (obscured ’Data Grid’ tab shows a tabular version); and E) the original
data. All these views are tightly coordinated such that interactions with one view are immediately reflected on the others. For example, in the
figure above, the mouse cursor is over a point in the scatterplot, and thus the corresponding point in the data table at the bottom is highlighted
and the black lines on (C) highlight the values of the data point in each dimension as they relate to other data points.

(a) (b)

Figure 3: These images show an example of how a user manipulates the visualization. A handful of points have been marked in blue and
dragged closer to another set of points, marked in red. After the update (on the right), the points in those groups are closer together, and
the clustering with respect to different colors is more compact. The same red and blue points marked on the left are indicated in their new
positions on the right with red and blue halos.



center allows the system to converge more quickly. An example
of a typical interaction is shown in Figure 3. The left side shows
the original positions of data points with arrows indicating the user
interaction; the user dragged the points from the start to the end of
the arrow. The red and blue circles show the two sets of selected
points. The right side shows the result of the reprojection of the data
using the new distance function. The selected points have moved
closer together and the clusters are more cohesive.

Our user study found all users were satisfied with the separation
of different classes after 4–12 (µ = 7.3,σ = 2.5) feedback updates.
Figure 5 shows a sequence of updates where the augmented Wine
dataset transitions from scattered to compact. Each step shown is
after feedback (we do not show the user feedback step explicitly).
The figure illustrates how the visualization changes with more user
input. Note that the bar graph accompanying each scatterplot shows
the weights of the dimensions in the distance function associated
with the plot. Figure 4 shows the values of the dimension weights
changing with each iteration for the same user as was used to gen-
erate Figure 5. Each sub-graph in Figure 4 shows the weight of a
different dimension; the x-axis gives the iteration number and the
y-axis shows the magnitude of the weight. Notice that the weights
of the noisy features (the bottom ten) plunge steadily downward
as was hypothesized; recall that these features were generated uni-
formly at random and thus provide no information about the classes
in the data. In our experiment, all ten participants generated dis-
tance functions with low weights on these noisy features.
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Figure 4: This figure shows the weight of each feature after each of
User 10’s five interactions. Each sub-graph shows a single feature.
The x-axis gives the iteration number and the y-axis, the weight.
The top thirteen correspond to the features in the original wine data
and the bottom ten show the weights for the added noise features.
Note that the weights of the added noise features quickly decrease
and approach zero within a few iterations.

We evaluated the users’ learned distance functions using a k-
nearest-neighbor (k-NN) classifier. Recall that a k-NN classifier
classifies a previously unseen (test) instance by taking the majority
vote of the instance’s k nearest neighbors, where “nearest” is calcu-
lated using a (weighted) Euclidean distance function. Thus we can
evaluate the quality of the learned distance function using a leave-
one-out cross-validation (LOOCV)4 over the training data.

We show the results for k = 1,3,5 and 7 in Table 2. We note
three observations from these results. First, all user-guided dis-

4In an LOOCV we hold out each instance one at a time, and use the rest
of the data to form our k-NN classifier.

k-NN Accuracy
User 1 3 5 7
Even Weight 0.89 0.91 0.91 0.91
1 0.97 0.97 0.97 0.97
2 0.92 0.93 0.95 0.96
3 0.92 0.93 0.95 0.96
4 0.94 0.97 0.98 0.97
5 0.96 0.97 0.97 0.97
6 0.95 0.96 0.98 0.96
7 0.95 0.95 0.97 0.97
8 0.94 0.96 0.96 0.97
9 0.94 0.96 0.96 0.97
10 0.94 0.97 0.98 0.98

Table 2: Results of a leave-one-out cross-validation (LOOCV) for
the Wine data using k-NN for k = 1,3,5,7. “Even Weight” is
the baseline condition, i.e., an evenly-weighted Euclidean distance
function without user interaction.

tance functions perform better than using the original unweighted
Euclidean distance function. Second, performance is also a func-
tion of the user’s ability as can be seen by the fact that users 2 and 3
performed worse than everyone else despite having the same direc-
tions. Finally, the Wine dataset is a relatively “easy” classification
task in that our baseline accuracy is already 90%. We anticipate
that for “harder” classification tasks we will see even more of a
performance increase after user interaction.

5.2 Interactive Speed Performance

Using the Wine dataset, we find that user interactions with the vi-
sualization are fluid, and that updates based on user feedback take
on the order of a second. In this section, we describe additional ex-
periments to evaluate the scalability of Dis-Function in a controlled
manner. Specifically, we examine the performance of Dis-Function
as the dataset grows in size (in terms of number of rows) and in
complexity (in number of dimensions) independently. Our experi-
ment was conducted on a desktop computer with an AMD Phenom
X3 processor and eight gigabytes of memory, running Windows
7 Home Premium. Our implementation of Dis-Function is in C#,
using Windows Forms. The rendering is done in software using
GDI+ (without using GPU hardware support), the PCA computa-
tion is done using the PricipalComponentAnalysis.Compute func-
tion in the Accord.NET Framework library,5 and conjugate gra-
dient is done using the mincgoptimize function from the C# AL-
GLIB library version 3.5.0.6 At the time of the experiment, no
other applications were running on the computer except for basic
Windows services running in the background. In the remainder of
this discussion, the reported performance is based on the amount
of time required for Dis-Function to perform the optimization and
re-projection, independent of the interface.

In the Dis-Function prototype, we include a stand-alone
command-line executable that links against Dis-Function. This pro-
gram allows us to write scripts that test different types of input and
collect performance data. To test the dependence on data dimen-
sionality, we extended the Wine dataset, which has 178 data points
and 13 dimensions, up to 2000 dimensions. Those extra dimensions
were filled with random numbers drawn from a uniform distribu-
tion over the range [0,1], the same range as the original, normal-
ized data. We ran our performance test repeatedly with all the data
points, starting with only the real data dimensions (13), and cumu-
latively growing to the full 2000 dimensions. Figure 6 shows the

5http://code.google.com/p/accord/
6www.alglib.net



Figure 5: While Figure 3 demonstrates one step of feedback, this figure shows how the scatterplot visualization improves through a number of
iterations of feedback (matching those of Figure 4). Each scatterplot shows the visualization after a round of feedback. The bar graph below
each plot shows the distance function used to create the projection shown above it. Each bar represents a different dimension, and collectively
they show the relative weights of the dimensions in the distance function. In each frame, the sets Y1 and Y2 from the previous interaction are
highlighted with red and blue halos.

results of this experiment: the dependence of the optimization time
on the number of dimensions (Figure 6 (a)), and the dependence of
the re-projection time on the number of dimensions (Figure 6 (b)).

To evaluate the performance in data size, we randomly gener-
ated a 2000-element dataset with two dimensions, and used sequen-
tial subsets of it to create datasets of different sizes. Figure 7 (a)
shows the time taken by the optimization as a function of the num-
ber of data points, and Figure 7 (b) shows the time taken by the
re-projection as a function of the number of data points.

Both optimization and projection scale the same way: linearly in
the number of dimensions and quadratically in the number of data
points. The graphs include trend lines fit by Microsoft Excel, and in
all cases the correlation is high, as seen in the figures. These results
are aligned with our expectations because the conjugate gradient
method can be expected to converge in as many steps as there are
dimensions. In terms of number of data points, the calculations are
dependent on pairwise distances, which number O(N2).

Although the performance as it stands makes Dis-Function com-
fortable to use, we believe the performance of the re-projection step

can be improved substantially by introducing online singular value
decomposition (SVD) into our PCA calculation, similar to the ap-
proach of Jeong, et al. [23]. Using online SVD would allow us to
calculate the eigenvalues at each projection step incrementally. An-
other option for fast eigenvalue calculation is power iteration [18].
Separately, we could improve the performance of the optimization
step by stopping it early: empirically we have noticed a good so-
lution is reached in only a few steps. Truncating the number of
steps the optimizer is allowed would sacrifice only a small amount
of precision and speed up the software’s response to user input.

6 DISCUSSION

In this section we discuss Dis-Function as a general purpose data
analytics tool, propose future work, and provide some usage guide-
lines.

6.1 Broad and Flexible Use
What we have presented in Dis-Function is a prototype for a
widely-applicable data analytics tool. The distance functions pro-
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Figure 6: Performance, as affected by data complexity (number of dimensions), of processing user feedback for one iteration by (a) running
optimization to find a new distance function and (b) re-projecting data for the scatterplot. Notice that both operations scale linearly in data
dimensionality.
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Figure 7: Performance, as affected by data size (number of points), of processing user feedback for one iteration by (a) running optimization
to find a new distance function and (b) re-projecting data for the scatterplot. Notice that both operations scale quadratically in data size.

duced by Dis-Function provide a form of knowledge externalization
that quantifies expert notions of a data space. By assigning numer-
ical weights to each dimension indicating relative importance, the
learned distance function can also serve the purpose of feature se-
lection. A user may discard features with a relatively low weight,
thereby reducing the dimensionality of a large and complex dataset
in order to make it easier for a user to explore and analyze.

Because a distance function is a representation of an expert’s
intention, if the expert has more than one intention, he or she can
use Dis-Function to create multiple distance functions, each reflect-
ing a different analysis hypothesis. For example, if a researcher
wants to study subjects in two different contexts such as socioe-
conomic similarity and physiological similarity, he or she can run
Dis-Function twice to produce two distance functions. The first
time, the researcher moves points with similar socioeconomic back-
ground closer; the second time, the researcher drag points with sim-
ilar physiological makeup together. Both resulting distance func-
tions can be used in additional computational analysis, perhaps
comparing how each clusters the data. (Recall that one can use
the learned distance function with clustering algorithms such as k-

means [26] or EM [10]).

6.2 Possible Extensions

Thinking of Dis-Function as a framework instead of just a prototype
opens some exciting possibilities for capturing different types of
expertise and exploring ways to express knowledge by interacting
directly with a visualization. We have provided only one simple
mechanism for capturing user input.

More techniques for incorporating user input will be tied to in-
troducing different visualizations amenable to similar “semantic in-
teractions” [12]. The goal is to find visualizations where we can
discover a mapping between some manipulation of the view and
a semantic meaning for the user, and where that meaning can be
translated into mathematics for adjusting the generation of the vi-
sualization. Not only could we offer different types of projections,
but we can learn distance functions for other types of data. For
example, when representing hierarchical data using a phylogenetic
tree, the framework of Dis-Function can be immediately applied be-
cause a phylogenetic tree is also generated from pairwise distance
data.



We can experiment with completely different classes of visual-
ization like parallel coordinates [22], RadViz [20], and Dust and
Magnets [38], for which tools exist for exploring data by manip-
ulating the parameters. Dis-Function could allow an expert to use
those tools to discover similar data points, and then model that feed-
back to stretch dimensions for improved visualization.

6.3 Usage Tips

Our own informal experimentation revealed some best-practice
ways of interacting with Dis-Function. While the semantic mean-
ing of separating dissimilar points is clear, the optimization we have
used to learn a distance function is not designed for such feedback.
As an example, consider moving two points together: they can only
move in one direction: toward each other. On the other hand, when
specifying that two points should be further apart, the two points
can be moved in any direction. Indeed, when separating groups of
points, Dis-Function occasionally introduces re-orientation of all
data points in a way that is difficult to correlate to the previous lay-
out. In some cases, this behavior is desirable – for example to sep-
arate tightly overlapping clusters. However, in most cases, it makes
sense to perform the transformation “move set A further from set
B” as two iterations of feedback by moving points closer: move A
closer to points far from B, then B closer to points far from A. This
way it is clearer in which direction to spread sets A and B.

7 CONCLUSION

In this paper we presented a prototype implementation, named Dis-
Function, that allows a user to interact with a visualization to define
a custom distance function. In particular, through a set of coordi-
nated views, the user can explore data and find points to drag closer
together. Based on a series of these interactions, the system learns
a weighted Euclidean distance function that can be used in any data
analysis algorithm requiring the definition of a distance function.
The weights are human-readable as importance ratings of each di-
mension, giving the user a way to understand what facets of the data
are most relevant. We demonstrated the scalability of Dis-Function
in both data size and complexity, and illustrated empirically by us-
ing a well-known dataset that an expert user could use Dis-Function
to build a distance function that can be used to improve classifica-
tion or clustering.
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