
Optimizing an SPT-Tree for Information Visualization
Connor Gramazio∗

Department of Computer Science
Brown University & Tufts University

Remco Chang†

Department of Computer Science
Tufts University

ABSTRACT

Despite the extensive work done in the scientific visualization com-
munity on the creation and optimization of spatial data structures,
there has been little adaptation of these structures in visual analyt-
ics and information visualization. In this work we present how we
modify a space-partioning time (SPT) tree – a structure normally
used in direct-volume rendering – for geospatial-temporal visual-
izations. We also present optimization techniques to improve the
traversal speed of our structure through locational codes and bit-
wise comparisons. Finally, we present the results of an experiment
that quantitatively evaluates our modified SPT tree with and with-
out our optimizations. Our results indicate that retrieval was nearly
three times faster when using our optimizations, and are consistent
across multiple trials. Our finding could have implications in us-
ing our modified SPT tree in large-scale geospatial temporal visual
analytics software.

1 INTRODUCTION

In recent years the visual analytics community has made great ad-
vances in optimizing data storage for tabular data. Perhaps the most
notable contribution is from Polaris[4], which helped introduce vi-
sual analytics to online analytical processing. Yet other types of
popular data, like geospatial-temporal data, have received little at-
tention. Furthermore, prior work in other fields is seldomly incor-
porated into visual analytics research, depriving the community of
valuable resources. In this work we show how we modified a space-
partioning time (SPT) tree[1] – a structure from the scientific visu-
alization community used in direct-volume rendering – to match
how geospatial-temporal data is used in visual analytics. An illus-
tration of our structure is shown in Figure 1. The original SPT tree
first traverses down a binary time tree where the root is the whole
time span of the data and the leaves are individual time steps. At
each node the tree stores spatial data in a complete octree associ-
ated with that time span where each octree leaf represents a voxel.
We also discuss several optimizations we have made to traversing
the structure to improve search speed. Unlike data used in direct-
volume rendering, data in the visual analytics and information vi-
sualization communities often produce incomplete trees due to the
distribution of data points. However, navigation through incom-
plete trees can become slow when using quadtrees and other spa-
tial, hierarchal data structures, as it is not possible to perform sim-
ple jumps into a cell’s memory location. Instead algorithms must
traverse down the entire structure. Our optimizations mitigate the
cost of the required traversal while still using an incomplete tree to
conserve space.

Our work’s immediate purpose is to make working with
geospatial-temporal data more attractive for visualization re-
searchers and developers by providing a hierarchal data structure
that is both efficient and in accordance with how the visual analyt-
ics community uses data. We show how concepts from other fields

∗e-mail: cgrama01@cs.tufts.edu
†e-mail:remco@cs.tufts.edu

of visualization can be effective in visual analytics software devel-
opment by example. We also optimize around common interactions
with spatial-temporal data to reduce retrieval time for frequently
used tasks, though we have left user testing for future work.

2 THE STRUCTURE

Figure 1: Our modified SPT tree

Given the extensive work in scientific visualization and graphics
on optimizing hierarchal, spatial structures like quadtrees, we pro-
pose a hierarchal-based data model. But if we are to switch to a hi-
erarchal model, a new schema for representing geospatial-temporal
data must be considered. In existing relational storage methods it
is most common to represent time as an extra dimension in a data
cube. However, as shown by Shen et al.[3], treating time as a third
dimension of a hierarchal structure can sharply decrease its resolu-
tion, which degrades a hierarchal structure’s efficiency.

Despite decreased performance, thinking of time as a third di-
mension is often times more intuitive. To help developers, we
looked for hierarchal structures in the scientific visualization com-
munity that maintained this unified abstraction in their interfaces,
yet did not suffer a drop in performance by coupling them as de-
scribed by Shen et al. in their implementation. After a survey of
existing structures, the SPT tree was the structure that closest fit
these two constraints.

2.1 Temporal and spatial substructures
The original SPT tree used a binary tree as its temporal index-
ing structure, with leafs representing single time steps and inter-
nal nodes representing increasingly large durations of time with the
root spanning the whole time frame. Instead of using a time tree
we use a hash map. It is common in geospatial-temporal software
for users to scrub along a timeline, or index into specific points in
time, and hash maps are ideal for this type of indexing. We felt
it was more important in building a scalable data structure for fast
individual time step indexing rather than adding support for quick
access to time spans, which the user may never even use.

Our spatial substructure remains the same as the SPT tree. In our
implementation we used a quadtree, however the structure supports
any number of dimensions.

3 OPTIMIZATIONS

While the primary emphasis of our work is on optimizing retrieval
speed, our structure does save space. Because time steps are likely
to be unique, the hash map we use for temporal indexing can be
shrunk in size, assuming an appropriate hash is used, as there
should be few if any collisions. We also see savings in the spa-
tial substructure because we do not construct complete trees like
the original SPT tree.

We base our indexing optimizations on work done by Frisken
and Perry[2]. Their work describes a way to efficiently traverse
quadtrees and higher dimensional structures through bit compar-
isons. In this work we focus on searching for points, however
Frisken and Perry also provide optimizations for region search and
moving to adjacent nodes in the tree.

3.1 Frisken and Perry optimizations
The optimizations Frisken and Perry describe in their work rely on
locational codes represented by bit strings. These bit strings are
generated by bit shifting normalized values as shown in Listing 1.
Every bit represents a branching decision for one level of the spatial
tree. In a quadtree if both x and y locational codes are zero, then the
algorithm will traverse to the top left child. If x is one and y is zero,
then the algorithm will traverse to the top right child. The other two
traversal decisions are made in similar fashion. These comparisons
and branching decisions use almost exclusively bit comparisons,
rather than using if statements or other flow control techniques,
thereby lowering the constant for traversal.

Frisken and Perry’s work was written in C, so we have made
several changes to their approach in our implementation to better
fit C++ idioms. Our traversal algorithm can be found in Listing
1. Note that nextNextLevel and the if/else statement can be safely
eliminated, however the function will not be warning-free.

Listing 1: Optimized point search for a quadtree

v e c t o r<D a t a E l t∗> QuadNode : :
f i n d P o i n t (f l o a t x , f l o a t y) {
QuadNode∗ c e l l = g e t S m a l l e s t N o d e (x , y) ;
v e c t o r<D a t a E l t∗> vec ;
D a t a E l t∗ d a t a ;
f o r (i n t i = 0 ; i < c e l l −>getNumEl ts () ; i ++) {

d a t a = c e l l −>g e t D a t a E l t (i) ;
i f (d a t a != NULL && da ta−>g e t x () == x

&& da ta−>g e t y () == y) {
vec . p u s h b a c k (d a t a) ;

}
}
re turn vec ;

}
QuadNode∗ QuadNode : : g e t S m a l l e s t N o d e

(f l o a t x , f l o a t y) {
QuadNode∗ c e l l = t h i s ;
i n t n e x t L e v e l = r o o t L e v e l − 1 ;
unsigned i n t xLocCode = (unsigned i n t)

(x ∗ (1 << r o o t L e v e l)) ;
unsigned i n t yLocCode = (unsigned i n t)

(y ∗ (1 << r o o t L e v e l)) ;
whi le (c e l l −>i s L e a f () == f a l s e) {

i n t n e x t N e x t L e v e l = n e x t L e v e l − 1 ;
unsigned i n t c h i l d B r a n c h B i t = 1 << (n e x t L e v e l) ;
unsigned i n t xC h i ld =

((xLoc & c h i l d B r a n c h B i t) >> n e x t L e v e l) ;
unsigned i n t yC h i ld ;
i f (n e x t N e x t L e v e l < 0) {

yC h i ld = (yLoc & c h i l d B r a n c h B i t) << 1 ;
} e l s e {

yC h i ld = ((yLoc & c h i l d B r a n c h B i t) >>n e x t N e x t L e v e l) ;
}
unsigned i n t c h i l d I n d e x = xCh i ld + yC h i ld ;
c e l l = c e l l −>g e t C h i l d (c h i l d I n d e x) ;
n e x t L e v e l −−;

}
re turn c e l l ;

}

4 METHODS AND RESULTS

To test the efficiency of our structure with and without optimiza-
tions we generated random sets of coordinates, populated trees, and

3.0e-05

2.5e-05

2.0e-05

1.0e-05

0

1.5e-05

0.5e-05

100 500 1000 5000 200000 100 500 1000 5000 200000

S
ec

on
d

s

Elements

Unoptimized Point Search Optimized Point Search

Figure 2: Boxplots of each set of trial results for point search.

Elements Unopt. Avg. Unopt. S.D. Opt. Avg. Opt. S.D.
100 6.795e-06 3.055e-06 2.608e-06 1.230e-06
500 7.537e-06 4.336e-06 2.827e-06 1.585e-06

1,000 9.264e-06 4.507e-06 3.421e-06 1.626e-06
5,000 1.108e-05 5.538e-06 3.994e-06 2.357e-06

200,000 1.493e-05 6.868e-06 5.094e-06 2.924e-06

Table 1: Search Times (Average and Standard Deviation in Seconds)

then searched for a set point. All testing was performed on 15-
inch Early 2008 MacBook Pro with a 2.4GHz Intel Core 2 Duo
CPU and 4GB 667 MHz DDR2 SDRAM. We first tested sets of
100, 500, 1000, and 5000 elements with each set size undergoing
10,000 trials. We then tested our structure on sets of 200,000 ele-
ments with 1,000 trials. Because indexing through time is free in
comparison to indexing through space, we only tested spatial re-
trieval. Our results can be found in Table 1 and in Figure 2. On
average, in each size category, we achieved between a near tripling
in performance. Through testing we also discovered that our re-
trieval using a 200,000 element tree using our optimized algorithm
was faster than retrieving from a 100 element tree using the unop-
timized traversal, suggesting that the optimizations provide better
opportunities for scalability.

5 CONCLUSION

We have shown a set of adaptations to the SPT tree that made it
appropriate to use with geospatial-temporal data and optimizations
that caused an almost three times speed up for spatial traversal. We
have also shown by example that it is possible to take a structure in
a related field and adapt it to help visual analytics software accom-
modate more types of data. Immediately accessible future work
involves further fine-tuning our optimizations and testing against
relational databases in real applications.

REFERENCES

[1] Zhiyan Du, Yi-Jen Chiang, Han-Wei Shen.“Out-of-Core Volume Ren-
dering for Time-Varying Fields Using a Space-Partitioning Time (SPT)
Tree”. In the proc. of IEEE’s Pacific Visualization Symposium, 2009.

[2] Sarah F. Frisken, Ronald N. Perry. “Simple and Efficient Traversal
Methods for Quadtrees and Octrees”. In The Journal of Graphics Tools,
2002.

[3] Han-Wei Shen, Ling-Jen Chiang, Kwan-Liu Ma.“A Fast Volume Ren-
dering Algorithm for Time-Varying Fields Using a Time-Space Parti-
tioning (TSP) Tree”. In the proc. of IEEE’s Visualization, 1999.

[4] Chris Stolte, Diane Tang, Pat Hanrahan. “Polaris: A System for
Query, Analysis, and Visualization of Multidimensional Relational
Databases”. IEEE’s Transactions on Visualization and Computer
Graphics, Vol. 8, No. 1, January-March 2002.

