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Experts in disparate fields from biology to business are increasingly called upon to make

decisions based on data, but their background is not in data science, which is itself a sepa-

rate field requiring years to master. Machine learning approaches tend to focus on finding

a black-box answer, which the user may not understand or trust. Visualization on its own

can leverage the power of human insight, but may miss out on the computational power

available with automated analysis. Visual analytics researchers aim to provide tools for do-

main experts to find the patterns they need in their data, and have recently been interested

in systems that combine the two approaches. One promising method is to blend the best of

visualization and machine learning by building systems that provide interfaces for users to

explore their data interactively with visual tools, gather their feedback through interaction

mechanisms, and apply that feedback by using machine learning to build analytical models.

In this dissertation, I discuss my research on such systems, showing techniques for learn-

ing from user interactions about the data and about the users themselves. Specifically, I

first describe a prototype system for learning distance functions from user interactions with

high-dimensional data. These distance functions are weighted Euclidean functions that are

human-readable as the relative importance of the dimensions of the data. Observing that

users of such systems may be required to review large amounts of data to be effective, I

propose an algorithm for better leveraging user efforts in this interactive context. Next, I

show an adaptation of the interactive learning prototype for text documents, with a study

showing how to make use of the vector representation of the distance functions for numeri-

cally examining the analysis processes of the participants. Turning the focus of the learning

back onto the user, I provide a proof-of-concept that shows how models of users as opposed
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to data can be learned from user interactions. Finally, I introduce the sketch of a frame-

work for future systems that will empower data stakeholders to find the answers they need

without leaving their comfort zone.
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Chapter 1

Introduction

People in disparate fields and professions from government work to medicine, education

to biology, marketing to engineering are expected to make decisions with data. Because

of this growing cultural trend, data is collected on myriad aspects of life and in staggering

quantity. But the people who must depend on the insights encoded in the data are not trained

in how to extract them. As an example of the growing problem, in the scientific community,

retractions are on the rise [CORE08] and one of the main causes of retractions is mistaken

statistics [Eco13]. It is asking too much of professionals who are studied and steeped in the

knowledge of their domain to learn the mathematical or statistical modeling required to do

the analysis necessary for their complex experiments.

Approaches to this problem can involve training the domain experts or hiring data

analysts separately and training them in the domain. Both options require sorting through

communication issues between groups with disparate training, and both options can be

expensive in both time and money. There is already high demand for the data analysts.

Davenport and Patel wrote in the Harvard Business Review that the sexiest profession of

the 21st century will be “data scientist” [DP12]. But there is no consensus about what that

job entails or its qualifications. Listings under that title include jobs for bachelors in the

sciences, PhDs in statistics, and marketing majors with an analytics focus. The fact is that

most people not only are unsure about how to do good data science, but about what it is in

the first place. Further obstacles to hiring help to deal with “the math” include the expense,

and the communication gap — data scientists cannot also be expected to be experts in their
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Figure 1.1: This diagram shows the user affecting models of both the data and the user,
while only interacting directly with a visualization. A user’s interactions might tell us
something about the data, but we can also create a model of the user. Note that both affect
the visualization. The data model may influence what data gets displayed, how it is laid
out, or what we can suggest to the user. The user model might allow adaptations of what
options are available, or directing the user toward the data of his or her expertise.

employers’ domains.

Training domain experts and hiring data experts are both expensive and difficult,

but there is another solution to this pervasive data analysis problem. It is the one I explain

and advocate for in this thesis: create tools that domain experts can use to perform the data

analysis themselves. Experts could interact with their data in a comfortable way, using tools

that are tailored to their understanding of their own data, and the necessary models could

be built for them automatically, behind-the-scenes, to protect them from needing to study a

completely separate discipline. This final approach underpins my research and is the broad,

guiding motivation of this dissertation. There are two prongs — learning about data from

user interactions, and learning about the users themselves from their interactions. Figure

1.1 shows this approach pictorially. A user can interact directly with a visualization as

opposed to interacting with models or parameters, and the interactions are fed to modeling

in the back-end. Some of these interactions are expressive and we respect the semantics of

the user’s intentions to update a model of the data. The broader set of interactions can be

used to learn about the user him- or herself. Either or both of these models can be used
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to in-turn affect the visualization or interface so that the user’s intentions manifest in an

improved experience and improved data model.

In this dissertation, I discuss the possibilities for how systems with the automatic

data modeling goal can be constructed and narrow the focus sufficiently to explain my

contribution. The remainder of this introduction provides context for the chapters: (1) an

exposition of related academic work, (2) presentation of a prototype system that learns

from user interactions with high-dimensional numerical data, (3) a method for making the

user experience more efficient by guiding the analysis from the machine learning, (4) an

application of that technology to text analytics for intelligence with a discussion of how to

look for user interaction patterns with these types of systems, (5) an example of what we

can learn when we turn the model building exercise upon the users themselves to predict

performance and even personality, and finally (6) a discussion of how the fields of machine

learning and visualization can work together. Note that although I lead the research efforts

described in this document, I use the pronoun “we” when describing the work, as is common

practice in academia, to acknowledge the contributions of my collaborators.

1.1 Learning About Data

The well-known problem of the increasing volume of data and our increasing expectations

for its power is tackled by both the visualization and machine learning communities. The

machine learning community offers sophisticated algorithms for building models and mak-

ing predictions. These algorithms may involve complex, opaque parameters, and present

themselves to data-stakeholders as black-boxes. Expertise in these algorithms is well out-

side the realm of a data stakeholder’s domain expertise. They may be glad not to have

to understand how the result is achieved, but they may also not inherently trust a result

handed to them from an opaque process. Further, many problems are beyond the scope

of what a computer can handle automatically, especially for cases in which ground-truth,

expertly-labeled data examples are scarce.

Human reasoning is better suited to those open-ended problems, where the target

is shifting and the desired pattern is unknown. The visualization community enables data
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stakeholders to take control of their own analytics process by providing techniques and

systems that allow them to leverage their expertise to explore the data and discover patterns

on their own. However, visual analytics systems generally do not build and export useful

computational models for explaining patterns and re-using on other data.

While machine learning research focuses on leveraging the machine’s raw comput-

ing power to discover patterns, visual analytics works to leverage the natural visual per-

ception ability of humans. Leveraging the best of each could provide powerful results. A

spectrum of approaches exists for this combination. On one end, a machine learning algo-

rithm uses a person as a source of information about the data, directly asking the user to

label the data. Some of this work can be classified as interactive machine learning, a sub-

field in which machine learning is applied to general software tasks and the user may not be

aware of providing labels, e.g. a spam filter. On the other end, visualization systems adapt

toward machine learning by showing the results and providing an interactive mechanism for

changing parameters of the algorithms (e.g. iPCA [JZF+09a]). Our approach comes closer

to the middle — the user works with an interactive visual system for data analysis, with

tools that are appropriate and comfortable for the data at hand, and those interactions are

converted into feedback for a machine learning algorithm that can run behind-the-scenes.

This algorithm learns a model about the data that encapsulates the user’s feedback, progres-

sively refined by iterating. The visualization reflects the machine learning model, so as the

user feedback improves the model, the user can see the interactions improving the visual

representation. After the user is satisfied with the visual representation, the software can

export the learned model as an analytic representation that models the insight supplied by

the user during the analysis. This approach requires machine learning algorithms that can

be used incrementally at an appropriate speed for an interactive context. It requires visual-

ization methods that enable exploration and discovery, and interaction methods that capture

the feedback needed by the machine learner.

The first prong of this thesis demonstrates that this middle approach is feasible. In

Chapter 3, I present a prototype system that works with high-dimensional numerical data.

Users interact directly with data points in a visualization while the system, Dis-Function,

automatically learns a distance function that encapsulates what the user has expressed about
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the data through interactions. The visualization consists of a two-dimensional projection of

the high-dimensional data, and captures the relationships between each pair of points in

terms of their distances from each other. We start with a naive notion of distance, i.e. the

Euclidean distance. As the user progressively, iteratively provides feedback about what

inter-point relationships are being visualized inconsistently with his or her understanding

of the data, this feedback is processed by a machine learning algorithm. The algorithm

learns a distance function which warps the data space to enforce the updated relationships.

We apply the new distance function to calculate new relationships between the points and

then generate a new visualization for another round of feedback. The user is protected from

learning how the algorithm works and from manipulating model or algorithm parameters.

The experiments in Chapter 3 show that the system can be used to iteratively produce an

effective distance function and corresponding visualization. We also show that the updated

distance functions can be computed in a timeframe that allows using this in an interactive

system for data sizes of approximately 200 points.

1.2 Extensions and Applications

This dissertation continues with the goal of improving techniques for building models about

data with visual interaction beyond the Dis-Function technique itself (see Chapter 3). We

provide an extension that could make the interactive learning mechanism more efficient by

encouraging users toward the most effective feedback for the model learning. In addition,

we provide an adaptation of the Dis-Function technology to text data and demonstrate its

application to intelligence data. Finally, we consider the trail of models that the interactive

process produces and what it may tell us about the analytic processes of the users.

1.2.1 Active Learning

Despite the power of the interactive learning techniques we have presented, a data domain

expert may find the amount of data they are required to review to be too great. In partic-

ular, the analyst is required to compare sets of data points. In the worst case, this could

require reviewing every pair each iteration. The data points may each have numerous facets
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to consider, or may be related in deep and subtle ways. For example, a doctor researching

effects of disease on different patients may consider each patient a data point and may need

to read two full medical charts for every patient comparison. One potential mitigation for

this problem is to allow the machine learning algorithm a means of communicating to the

user to create a more efficient experience. The machine learning community devoted to

studying machine learning algorithms that work with limited input from users by commu-

nicating what input would be best is called active learning (see the Discussion in Chapter 7

for more information). In Chapter 4, we present work in progress that explains an approach

to using this type of learning algorithm, but built for the interactive model learning context

of Chapter 3. Unlike most active learning algorithms which focus on areas of uncertainty

for the model, ours is guided by the user. He or she starts a direction of inquiry by choosing

a data point of interest. The algorithm responds by helping to narrow the user’s focus on

points for comparison, aiming to help the user make the strongest update to the model. Our

work on this algorithm is still in progress. Though the algorithm itself remains unproven,

we present evidence of its likely effectiveness. Further, we believe that the approach we

present, i.e. a mechanism for a user-guided active metric learner, is worth presenting as it

represents a departure from the general active learning literature.

In our active metric learning algorithm, EigenSense, we consider the matrix of pair-

wise distances of all the data to be a representation of the relationships between the data

under a given model. It encapsulates both the distance metric model and the data in one

matrix. We look at this distance matrix like the transition matrix of a graph and, modeled

after the approaches of population studies in biology and the PageRank algorithm, we use

the dominant eigenvector as an approximation of its structure. When a user has selected a

point of interest, we examine the sensitivity of that dominant eigenvector with respect to the

chosen point in order to predict what user inputs could most affect the model structure. Our

evaluation compares the algorithm’s selection of those strong changes against ground truth

of how much those inputs actually change the model. We find that EigenSense predictions

are correlated to the quantity they are estimating, the actual amount of model change.
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1.2.2 Intelligence Application

While Chapter 3 focuses on high-dimensional real-number data, there are other types of

data for which this approach is germane. One example is text data, which abounds and

which is of critical interest to multiple parties, including for intelligence and anti-terrorism

purposes. This common type of data provides some advantages, especially visually, but

also presents challenges. Representations of text data are generally per-document vectors

(see bag-of-words models as a starting point [MRS+08b]), which means these data can be

plugged into many learning algorithms. However, caution is necessary because bodies of

text tend to yield extremely high-dimensional spaces with sparse vectors. Whereas options

for visualization on numerical data are myriad with no certain standard, for text data there is

a more limited number of very strong visualizations. Text is convenient for representation

because so much information about the meaning of the data is encompassed by the raw

data’s most obvious visual representation: the words themselves. A user seeing a word on

the screen does not just see the data point that the word may represent, but understands

immediately what that data point is about.

In Chapter 5, we extend the techniques of Chapter 3 to collections of text docu-

ments and discuss further ways to use the type of model being built by this method. When

analysts work with text data corpora, they must make sense (sensemaking) of piles of doc-

uments by looking for relationships and trying to discover themes and topics to compare

against existing mental models. One way that tools help analysts perform these tasks is

by visualizing document collections in spatializations [WTP+95]. These visual represen-

tations show many documents at a time, each represented by some glyph, and place the

documents relative to each other based on their relationship (generally by words they have

in common).

Systems may include techniques that allow the analyst to change or specify those

relationships by engaging in model-steering to update that model that calculates the dis-

tances. For example, highlighting words across several documents might affect the model’s

information about the importance of those words, and thus affect the spatial layout. To

work with documents based on such a layout, though, an analyst must read through a large
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amount of text. Each data point in the layout is a stand-in for a potentially long document

that the user may have to review for each comparison. One way around this is the use a

keyword-centric spatialization. Instead of using a glyph to represent an entire document,

a keyword-centric layout visualizes a set of keywords extracted from the document corpus

directly, positioning them to encode their relationships based on documents that contain

them. In Chapter 5 we present a prototype system that shows such a keyword layout and

allows users to manipulate keywords and implicitly and automatically learn new models.

The keywords in that chapter are extracted from a dataset of short documents provided by

the intelligence community that contain a fictitious terrorist plot. They are positioned based

on their co-occurrence in different documents, and the constructed model of the importance

of each document in that calculation. In a study with thirteen participants, we started with

a model that evenly weights all documents in importance, but as the participants provided

feedback on the inter-keyword relationships, the model was adjusted. The participants suc-

cessfully used the tool to uncover the fictitious plot.

1.2.3 Model Trails

In addition to proposing a tool for finding patterns in text data, we begin to consider the

paths the analysts took in their thinking process. In the second contribution of Chapter 5,

we leverage the fact that the models created during each participant’s process are vectors in a

high-dimensional space and thus we can visualize their relationships with a projection into a

two-dimensional spatialization, just as we do with the data themselves. Such a visualization

enables us to explore the actions of all the participants and see how their investigations

unfolded, providing a novel method for studying provenance analytically. We visualize each

model that any participant created as a point in the space of possible models, and layout the

points based on their similarity to each other. Connecting the points for a given user, we

draw lines that reveal (by mouseover) the actions of the user that lead to the transition from

the start state to the end state of the line. This visual tool allows us to compare and contrast

different participants’ investigations. In doing so, we are able to ask questions about the

user behaviors, and transition our discussion to modeling the users themselves.
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1.3 Learning About Users

So far, we have discussed means to help data stakeholders discover insights in their data.

We enable humans to communicate with the machine by empowering their interactions with

data to build analytic models. However, the choice of data that users interact with, and the

way they interact could tell us about them individually. There is an area of research in the

visualization community called provenance devoted to this study. In particular, researchers

in this field believe that the process of an analysis is as important as the result [NCE+11].

A current of studying the analytic process of the user (i.e. the provenance of the analysis)

runs through this entire work. First, in Chapter 3, we choose a model-building method

because it is human-readable. The distance functions that result from the analysis process

are artifacts of the user’s thinking. They encode the mental model and they are readable to

the extent that they reveal what the user found most important overall. Second, in Chapter

5, we consider the provenance of the models more deeply, not only considering the final

model, but examining the models created during the process and the user’s paths between

them. By making use of the fact that the models are vectors, we visualize the analysts’

progress through “model space”, a numerical representation of their analytic provenance.

In Chapter 6, my interest in learning about users comes full circle. We use interaction data

to learn not about data but about the users themselves.

Data analysis is best served by a human-computer collaboration - the human is in

control and provides the actual insight, but the computer serves the human’s needs to find

and present data. While the computer can use a full complement of visual (and audio)

mechanisms to convey information to the user, the person driving the process has a limited

means of communicating with the machine. Just telling the machine what to do does not

give the software a chance to help the user get the most out of the analysis. Research had

shown that interactions can reveal a user’s reasoning process before the work of Chapter 6,

but accomplished only through painstaking manual analysis of logs. To be able to create

systems that help individual users, technology is needed that can learn models based on the

user interactions automatically.

In Chapter 6, we test the question of whether or not computer software can be

9



programmed to automatically detect facets of its user. With an experiment that asked par-

ticipants to perform a visual search task in the form of the children’s game Where’s Waldo,

we verify that we could predict participant performance and even infer some aspects of

personality by applying machine learning algorithms to interaction data. First we make

the case for this approach by visualizing the interaction data to reveal strongly visually

salient differences between the patterns of fast and slow user groups. Next, we take an an-

alytic approach and encode the interaction data into four different sets of machine learning

features. The encodings and techniques were chosen not just to seek accuracy of predic-

tion, but also as a modeling exercise, seeking understanding of the nature of the interaction

data. Each encoding takes into account different facets of the interaction experience: raw

mouse movements incorporate the small unintentional movements while sequences of but-

ton clicks capture intentional user exploration, and two encodings based on the state of the

software are focused on what the participant saw while performing the task. Making use

of standard machine learning algorithms, we build classifiers for predicting a participant’s

performance at the Waldo task based on his or her interactions. We found that with between

62% and 83% accuracy, depending on the combination of machine learning technique and

interaction encoding, we could predict if a participant would be among the faster or slower

group overall. Beyond performance, we apply the same encodings and algorithms to per-

sonality information about the participants, as determined by surveys administered for the

experiment. We found that, we can infer, to a lesser extent than performance, aspects of

participant personality including locus of control, extraversion and neuroticism depending

on the choice of technique, a result which is a consistent with existing literature on per-

sonality factors that affect interactions with visualization. Finally, we showed that we can

attain strong results even if we limit the time that the algorithms could observe participants.

In one case, limiting the learning algorithm to a quarter of the average task completion

time still yields 95% of the final accuracy percentage. Overall, Chapter 6 demonstrates that

there is potential to use interaction data to automatically infer information about users and

possibly their processes or strategies. These technologies are a step forward in realizing a

pathway for a computer to gather information about its human collaborator, paving the way

for mixed-initiative visual analytic systems.
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1.4 Future Analytics Systems

This dissertation marks progress in a number of technologies with strong promise for the

future of visual analytic systems. Much work is needed to realize the potential of leverag-

ing machine learning for learning about users and their data. Future work and innovation

should be driven by applications. Applying these principles to solve real-world problems

is the only way to demonstrate their power in leveraging human and machine at their best

strengths. For the purpose of encouraging this future work, in the Discussion (Chapter 7), I

provide a sketch of a framework for how machine learning and visualization techniques fit

together. Finally, I explain the types of interaction mechanism and provide an overview of

machine learning with a focus on how it can be integrated to benefit visual analytics.

11



Chapter 2

Related Work

In order to appropriately place this dissertation in context, we discuss related previous re-

search. The two main branches of the work cover learning about data and learning about

users. The connection between the two branches is work in machine learning and analytic

provenance. We discuss these two areas first and then explore the related work in the area

of machine learning and visualization together. To better frame our work with text data,

we provide further background in text analytics. A subsection on inferring cognitive traits

and strategies explains work related to building models of users. Finally, we explore the

literature of active learning, a subset of machine learning that we use when managing the

user’s workload.

2.1 Machine Learning

Chapter 7 includes general background on machine learning, but here we focus on specific

work that is closely related to the techniques presented in this dissertation. Many exam-

ples of interactive software using machine learning algorithms at their core use a subset of

algorithms called metric learning. This powerful approach has been the subject of much

research since 2003 [BHHSW05, BBM04b, DKJ+07, GRHS04, RF06, SKWH09, TL07,

WBS06, WS08, XNJR02, YHC09, YL12] (see Yang’s work [YJ06] for a survey) and has

proven applicable in many real-world application domains including information retrieval,

face verification and image recognition [CHL05, GVS09, HLLM06]. Methods in the ma-
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chine learning literature assume that the machine learner is given additional information

beyond the data itself, most often as pairwise constraints between data points, i.e. that cer-

tain pairs should or should not be close together. With that information, metric learning

techniques learn a distance function optimized to produce relatively small distances be-

tween points that belong close together, and large distances between those that belong far

apart [YL12]. Further, it is assumed that a domain expert can easily provide pairs of similar

data points and pairs of dissimilar data points. An approximation to this information can be

collected from the label information in supervised training datasets (by defining instances

in the same class to be similar, and from distinct classes to be dissimilar).

Using this side information, existing methods seek to learn a distance metric such

that the distance between similar examples should be relatively smaller than that between

dissimilar examples. Although the distance metric can be a general function, the most

prevalent one is the Mahalanobis metric defined by

DA(xi,x j) =
√

(xi− x j)T A(xi− x j)

where A is a positive semi-definite matrix and xi and x j are two instances in the data [YJ06].

While existing methods have been proven to be effective, what they fail to adequately ad-

dress is how such side information is obtained in the absence of class label information.

Indeed, the majority of methods found in the machine learning literature are not truly in-

teractive, but instead simulate user interaction. In contrast, this dissertation is concerned

with learning methods that can be used interactively. Chapter 3 includes a prototype with

an interactive visualization method for observing which instances are considered similar

based on the current distance metric, and a way to directly manipulate the visualization to

redefine similarity.

2.2 Analytic Provenance

Analytic provenance in the visual analytics community broadly includes consideration for

the history of how an analyst progressed through the various stages of his or her analytic
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process, and encompasses the belief that the process is just as important as the product

[NCE+11]. Through analyzing a user’s interactions, researchers in analytic provenance

seek to identify how a user discovers insight and how the same procedures can be stored

and reapplied to automatically solve other similar problems [XGH06, KCD+09]. More

complete descriptions and examples of analytic provenance can be found in surveys, in-

cluding [FKSS08, dCCM09].

Many systems have been developed in the visual analytics community for logging,

storing, and analyzing a user’s interactions and activities. For example, the GlassBox sys-

tem by Cowley et al. [CNS05] records low-level events generated by the interface (such

as copy, paste, window activation, etc.). Sequences of visualization states can also be cap-

tured and visualized. For example, Graphical Histories captures and visualizes every new

visualization produced by users over the course of the exploration [HMSA08]. Similarly,

these sequences of visualizations or intermediate visualizations can be shown graphically

to show branches and sequences during the exploration [SBE+11, DHRL+12]. At a pro-

cess level, VisTrails captures the user’s steps in a scientific workflow [BCC+05, CFS+06]

and visualizes this history as graph of nodes depicting stages. Finally, at a model level,

researchers, including in work included in Chapter 3 of this dissertation, have demonstrated

that user interactions with representations of data can be used perform model-steering op-

erations by inferring parameters of analytical models that can be exported and presented

visually [BLBC12, EFN12b, GNRM08b, XGH06]. In Chapter 5 we discuss a method for

visualizing the progress of a group of users through the space of possible analytical models.

The expanse of this body of work shows the value and extent of information encoded

in interactions. Analyst strategies can be extracted from interaction logs, though it requires

extensive manual examination [DJS+09]. Automatic analysis of interaction data can be

used for authentication purposes [LB99, PB04]. Recent work included in this dissertation

shows that higher-level information about users, like their performance and some aspects of

their characteristics can be automatically predicted from this low-level interaction data, even

hinting at human-readable models of their command sequences [BOZ+14] (see Chapter 6).
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2.3 Visual Analytics and Machine Learning

There are many ways to take advantage of machine learning for interactive systems. Re-

searchers in interactive machine learning strive to use human interaction with machine

learning to improve machine learning results and improve user experiences, leveraging

computers’ raw analytical power and humans’ reasoning skills to achieve results greater

than either alone [SRL+09]. Systems have been built for grading [BJV], network alarm

triage [ALK+11], building social network groups [AFW12], ranking search results with

user context [ART06], managing overeating [CCR+13], and searching for images [AFKT11].

The visual analytics community focuses on applications to data analysis. One ex-

ample is that techniques often considered in the realm of machine learning have been used

to project high-dimensional data into 2D information visualization for data exploration.

Jeong, et al. [JZF+09a] created a tool with a coordinated view between a projection of

the data using principal component analysis (PCA) and parallel coordinates. The user can

change the parameters of the projection interactively to explore the data. Similarly, Buja, et

al. [BSL+04] created a tool with which a user can look at the data in a multi-dimensional

scaling (MDS) projection and manipulate parameters directly to change the visualization.

Dust and Magnets [YMSJ05] and RadViz [HGP99] layout high-dimensional points in a 2D

visualization where the dimensions are anchored and their positions can be manipulated

by the user to affect the display. These efforts demonstrate the effectiveness of combining

interactive visualization with machine learning techniques. However, in these systems, the

user’s interaction is limited to modifying the parameters of the projection algorithm.

Several methods have been proposed that couple machine learning techniques with

visualization to cluster or classify data. Nam, et al. [NHM+07] introduced ClusterSculp-

tor, which allows the user to iteratively and interactively apply different clustering criteria

to different parts of a dataset. Basu, et al. [BDL10], used metric learning to assist users

in sorting items into clusters. Garg, et al. [GNRM08a] use Inductive Logic Programming

to learn rules based on user inputs. These rules can be stored and reused in other parts

of the data to identify repeating trends and patterns. Andrienko, et al. [AAR+09] allow

expert users to build classifiers of trajectories from sampled data, and interactively modify
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the parameters of the classifier at different stages in the analysis. Broekens, et al. [BCK06]

propose a system that allows a user to explore data in an MDS projection by dragging

points around to affect clustering and layout. DesJardins, et al. [DMF07] visualize data

via a spring layout in which the user can interact with the visualization by pinning points

in place. The pinned points are interpreted as constraints, and the constraints are used in

a clustering analysis that results in a regenerated visualization that attempts to satisfy the

constraints. Similarly, Endert, et al. [EFN12a] developed a spring-based system specific

to text analysis, and developed a variety of interaction paradigms for affecting the layout.

Choo, et al. [CLKP10] presented iVisClassifier, which is a system based on supervised lin-

ear discriminant analysis that allows the user to iteratively label data and recompute clusters

and projections. In all these systems, the user works closely with an automated machine

learning algorithm through a visual interface to explore and better understand the data, but

none of these systems explicitly addresses learning a distance function as in Chapter 3.

There have been some methods designed specifically to learn a distance function

and select features. The interactive tool proposed by Okabe and Yamada [OY11] learns a

distance function by allowing a user to interact with a 2D projection of the data. However

this tool is restricted to clustering, and supports only pairwise constraints that are formed

by requiring users to select pairs of points and specify whether or not they are in the same

cluster. Thus the user is forced to make these decisions purely based on the 2D projection.

In contrast, our method as described in Chapter 3 provides several coordinated views of

the data and does not restrict the user to formulate only pairwise constraints. May, et al.

[MBD+11] presented the SmartStripes system which assists the user in feature subset selec-

tion by visualizing the dependencies and interdependencies between different features and

entity subsets. This work is similar to ours in that both methods seek to identify relevant

dimensions in a high-dimensional dataset. However, unlike the SmartStripes system that

directly represents low-level statistical information of each feature, our approach hides the

complex mathematical relationships in the features and allows the user to interact directly

with the visual interface.

Perhaps most conceptually similar to the work of Chapter 3 is that by Endert, et

al. [EHM+11a], which presents variations of three projection techniques, including MDS,
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that can be updated based on user interaction. While their techniques are similar to ours,

our approach emphasizes the externalization of a user’s interactions to produce a useful,

exportable distance function. Unlike the formulations of [EHM+11a], our system produces

distance functions that are simple enough that the user can observe the relative importance

of features while interacting with the software.

2.4 Visual Text Analytics

An important data type in analytics, one that we use as an example application in Chapter

5, is text. Visualizing text corpora entails showing relationships between documents and

terms so that users can see topics, themes, trends, and other characteristics. For example,

Stasko et al. developed Jigsaw which provides users with multiple linked views of document

characteristics and relationships [SGL08]. Similarly, IN-SPIRE is a visual analytics system

the shows visualizations of documents in many views, including the Galaxy View, where

documents are shown spatially in a scatterplot [WTP+95]. Such visual metaphors encode

relative similarity between documents visually as distance. As a result topics and themes

in the documents become apparent as clusters of groups in the spatialization. Andrews et

al. have shown that in fact being able to organize documents spatially helps analysts with

sensemaking [AEN10].

The keywords frequently used in a document corpus can be shown using a visual-

ization technique called word clouds [VWF09]. Word clouds consist of a spatial metaphor

containing a collection of words from the document corpus. These words are often selected

based on specific characteristics extracted from a dataset, including occurrence counts.

Common visual encodings used include occurrence counts encoded using font size. Simi-

larly, color can be used to encode word or term types or topics [SKK+08]. The layout algo-

rithms for word clouds include space-filling algorithms that attempt to minimize whitespace

[KL07], computing the grammatical similarity between terms [WZG+14], and determining

the similarity score between terms to produce context-preserving word clouds [CWL+10].

More recently, techniques have extended the term-based word clouds to include semantic

zoom functionality that enables users to retrieve detail (i.e., documents) in context of the
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words being visualized [EBC+13].

Prior work exists that visualizes the context around words in text corpora. For

example, Word Trees are an effective technique for representing the context of how terms

are used given the adjacency of other terms [WV08]. Similarly, FeatureLens enables visual

exploration of patterns in the text that stem from the saliency computed algorithmically

[DZG+07]. Endert et al. presented ForceSPIRE, which enables users to directly reposition

and regroup subsets of documents [EFN12c]. ForceSPIRE learns from these interactions,

and adjusts the spatial layout of the remaining documents accordingly.

The work presented in this dissertation (Chapter 5) presents a technique that enables

interactivity and visual exploration at the keyword-centric level. The visualization shows

keywords spatially, encoding relative distance as the similarity between the keywords. Fur-

ther, users are able to interact directly with these keywords to train and steer the underlying

computation based on interactive model learning approaches.

2.5 Interactive Model Learning for Visual Analytics

In recent years, the visual analytics community has developed numerous tools and tech-

niques that allow the users to interactive explore and create machine learning models through

a visual interface. These interactions can utilize direct manipulation in which the user would

directly modify and adjust the parameters of the model while examining the visual output,

or the models can be implicitly learned based on the user’s actions with different aspects of

the visualization.

For directly manipulating model parameters, the iPCA system by Jeong et al. [JZF+09b]

projects high-dimensional data points into 2D using principal component analysis (PCA)

and allows the user to directly modify the weights of original data dimensions. Using a

similar concept, Turkay et al. presented a dual-space approach for exploring and analyzing

data in high-dimensional space [TFH11]. More recently, van den Elzen and van Wijk de-

veloped the BaobabView system that allows the user to semi-automatically refine a decision

tree [vdEvW11], Muhlbacher et al. proposed a tool for generating regression models using

a partition-based approach [MP13], and Gleicher presented the Explainers system that al-
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lows the user to interactively control the outcomes of a support vector machine classifier

[Gle13]. While these projects and systems focus on different types of machine learning

methods, they share the common principle of model learning by allowing users to interac-

tively manipulate parameters in a visual interface.

More related to the approach championed by this dissertation are the visual analyt-

ics systems that implicitly learn models by passively observing the user’s interactions with

data. In particular, the ForceSPIRE system by Endert et al. [EFN12c] allows the user to

position documents in a spatial layout where the distance between two documents repre-

sent the similarity between them. Based on the user’s positioning of documents, the Force-

SPIRE system would update the underlying spring-based model and dynamically update the

visualization. Using a similar spatialization approach, we presented the Dis-Function sys-

tem [BLBC12], discussed in Chapter 3, that allows a user to manipulate high-dimensional

data projected into 2D (using multidimensional scaling). The system would then learn the

weights of a distance function by observing the relative distances between these data points

in 2D. In Chapter 5 the proposed keyword-centric approach is inspired by these earlier

works. However, our approach differs in that instead of directly visualizing the documents

(as in the ForceSPIRE system) or the data points (as in the Dis-Function system), we choose

to visualize the keywords (features) within the data. In Chapter 5, we discuss the advan-

tages that this approach has over the previous methods, including providing a more scalable

framework for large-scale data analysis.

2.6 Inferring Cognitive Traits and Strategies

Understanding the user is critical to creating the systems of the future that automatically

customize the user experience for maximum comfort and efficiency. Much of the existing

work in the visual analytics community on connecting the ways users solve problems with

their cognitive abilities has been based on eye tracker data [AABW12, LME10, SCC13].

For example, Lu et al. demonstrated how eye gaze data can be used to determine impor-

tant or interesting areas of renderings and automatically select parameters to improve the

usability of a visualization system [LME10]. Steichen et al. explored the use of eye track-
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ing data to predict visualization and task type [TCSC13, SCC13]. With varying degrees

of accuracy they were able to predict: (1) a user’s cognitive traits: personality, perceptual

speed and visual working memory, (2) the difficulty of the task, and (3) the visualization

type. These findings are particularly important for visual analytics tasks as previous re-

search has shown that users’ cognitive traits can be used as predictors of speed and ac-

curacy [GF10, ZOC+13]. Although researchers have demonstrated the utility of eye gaze

data, its collection is often not suitable for dynamic or interactive systems where what the

user sees is not static. In our work [BOZ+14], described in Chapter 6, we forgo specialized

sensors and analyze mouse interactions1.

Cognitive traits can also be correlated with proficiency in certain domains. For in-

stance, Ziemkiewicz et al. [ZOC+13], Green and Fisher [GF10], and Ottley et al. [OCZC13]

demonstrate a significant correlation between the personality trait locus of control (a mea-

sure of perceived control over external events) and speed and accuracy on complex visual-

ization tasks. Though more subtle, they also found significant effects with the personality

traits extraversion and neuroticism. Other cognitive traits such as perceptual speed [All00,

CM08] and spatial ability [Che00, ZK09] have also been shown to affect performance on

visual analytics task.

Other types of traits can be used to adapt systems as well. In the HCI community,

Gajos et al. developed the SUPPLE system that can learn the type and degree of a user’s

disability by analyzing mouse interaction data and generate dynamic and personalized in-

terfaces for each specific user [GW04]. Although the intended scenario is in the domain

of accessibility, the approach and methods developed by Gajos et al. can be generalized to

other interfaces as well.

In the web usage mining community, researchers have used click stream data for

modeling and predicting users’ web surfing patterns [EV03, KJ04, KB00, SCDT00]. Some

of the techniques developed for these web mining applications could be adapted to extend

work like ours. However, we focus on a more general but complex visual task, and on

learning about the users themselves as they complete the task.

1Recent work suggests that mouse movements in some interfaces are strongly correlated with eye move-
ments [Coo06, HWB12]
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2.7 Active Learning

Active learning is a form of semi-supervised machine learning in which the learner itera-

tively queries the user for additional information while building its model. The key idea

behind active learning is that an algorithm can achieve greater accuracy or performance

with fewer training labels if it is allowed to choose the most helpful labels [Set10].

A common approach is to select the data points that are most uncertain to classify.

Different measures of the uncertainty are based on the disagreement in the class labels pre-

dicted by an ensemble of classification models [AM98, MM04, SOS92], by distance to the

decision boundary [CCS00, RM01, TK01a], by the uncertainty of an unlabeled example’s

projection using the Fisher information matrix [Mac92, ZO00], or with Bayesian analysis

that takes into account the model distribution [FSST97, JS04, TK01b, ZXC03].

Active learning and metric learning come together in several recent works, where

authors determine what the user should see based on uncertainty of labels and coverage

of the dataset [EFS12], or the median points in groups with the same label [WSLA09].

Yang and Jin select pairs of points for feedback based on the uncertainty of deciding their

closeness [YJ07].

In a sub-category of active learning algorithms called active clustering, the end goal

is a clustering instead of classification, and the common approach is to gather constraints by

iteratively querying the user about pairs of points. Points are chosen by uncertainty [HB97],

or by most informative example pairs [BBM04a]. One work by Xu et al. is especially related

to that of Chapter 4. The authors learn a two-class spectral clustering with active learning by

examining the eigenvectors of the pairwise distance matrix to find points on the boundary

of being put in either cluster [XdW05].

Generally, active learning methods are based on querying the user for one unit of

feedback at a time. In our approach in Chapter 4 the user plays an active role in deciding

what feedback to provide: no suggestions are given without an initial seed point of interest

from the user, and then, several suggestions are provided for the user to peruse.
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Chapter 3

Learning Distance Functions from

Visual User Interactions

This chapter is based on the paper:

Eli T. Brown, Jingjing Liu, Carla E. Brodley, and Remco Chang. Dis-Function:

Learning Distance Functions Interactively. In Visual Analytics Science and Technology

(VAST), 2012 IEEE Conference on, pages 83-92. IEEE, 2012.

3.1 Introduction

As discussed in the introduction to this dissertation, a method for bridging the space be-

tween data domain experts and the analysis tools they use is needed to allow those depen-

dent on data to make full use of the combined power of their own abilities and those of

computers. In this chapter we introduce an approach and prototype implementation, which

we name Dis-Function, that allows experts to leverage their knowledge about data to define

a distance metric. Using our system, an expert interacts directly with a visual representation

of the data to define an appropriate distance function, thus avoiding direct manipulation of

obtuse model parameters. The system first presents the user with a scatterplot of a projec-

tion of the data using an initial distance function. During each subsequent iteration, the

expert finds points that are not positioned in accordance with his or her understanding of

the data, and moves them interactively. Dis-Function learns a new distance function which
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incorporates the new interaction and the previous interactions, and then redisplays the data

using the updated distance function.

In the remainder of this chapter we present the proposed approach which allows

a user to implicitly describe a distance function over high-dimensional data by interacting

with a visualization of the data. We present the results of experiments on a machine learning

benchmark dataset with our prototype system to assess Dis-Function’s ability to learn a

distance metric for classification. In addition, we evaluate the system’s ability to provide

interactive or near-interactive speed and conclude that performance scales linearly in the

number of dimensions and quadratically in the number of data points. We finish with a

discussion of the potential of Dis-Function and future directions of research.

3.2 Learning a Distance Function Interactively

Our approach to learning a distance function is both interactive and iterative. The user

follows the procedure below until satisfied with the visualization, and thus with the learned

underlying distance function.

1. Based on the current distance metric, we provide a two-dimensional scatterplot visu-

alization of the data as well as other coordinated views (see Section 3.3).

2. The expert user observes and explores the provided visualizations and finds incon-

sistencies between the visualizations and his or her knowledge of the data. The user

interacts with the scatterplot visualization via drag/drop and selection operations on

data points with the mouse.

3. Dis-Function calculates a new distance function based on the feedback from the pre-

vious step. The new distance function is used to re-start the process at Step 1.

Figure 3.1 illustrates the process of iterating these three steps starting with the data

as input, then making updates to the distance function until the user is satisfied with the 2D

projection. In this section we describe our approach to each of these steps. We leave the

details of the visualizations to the following section.
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Figure 3.1: Flow chart showing the interactive process of using Dis-Function.

3.2.1 Producing a 2-D Scatterplot of the Data

To produce the two-dimensional scatterplot, we project the original (potentially high-dimensional)

data to two dimensions via Multi-Dimensional Scaling (MDS) [BG05]. MDS has the prop-

erty that when mapping from a high- to low-dimensional space, it preserves the relative dis-

tances between points. Thus, when a user looks to see if two points are the correct distance

apart relative to others in the 2D projection, the relative distances between pairs of points

observed in the projection correspond to their relative distance in the full-dimensional space

as calculated with the current distance metric. The MDS projection is dependent on a dis-

tance function. The input is an N×N matrix D where each i, j entry contains the distance

between points xi and x j from the set of all N data points in RM. (All notation used in this

section is shown in Table 3.1).

Specifically, the projection algorithm accepts a pairwise distance matrix D covering

all points, calculated with the “current” distance function. Note that in our experiments

we set the initial distance function to be a uniformly-weighted Euclidean distance function

24



across all possible features. Given the matrix D, we compute an eigenvector decompo-

sition in order to get the principal components, a ranked set of orthogonal vectors.1 The

top-ranked vector is the direction of highest variance in the distance matrix, and the second-

ranked is the orthogonal vector that describes the next-most amount of variance. The data

points, represented as vectors, are projected onto those two top-ranking principal compo-

nents [Jol86]. The final result is a set of N vectors in R2, one for each original data point.

Using these new vectors we display the data as a scatterplot visualization.

3.2.2 User Input

In Section 3.3 we describe the expert’s interaction with the data in more detail after we have

presented the details of the visualization system. For now, we ask the reader to assume that

the user is able to directly manipulate the scatterplot to define sets of points that should be

nearer to one another or further apart. To this end, let us define two sets of data points Y1

and Y2, selected by the user, as sets of points which should be moved relative to each other.

We then calculate a matrix U that will represent the user input when calculating an updated

distance function as described in Section 3.2.3, where U is defined as follows:

Ui j =


intended distance

original pro jected distance if (xi,x j) ∈ Y1×Y2,

1 otherwise.
(3.1)

where original pro jected distance is computed as the Euclidean distance between points

xi and x j in the scatterplot before the user moved them, and intended distance is their

Euclidean distance in the scatterplot after. Thus dragging data points xi and x j closer results

in Ui j < 1, whereas dragging them further apart would result in Ui j > 1. These values will

be used to compute a new distance function as described in the next section. Note that the

majority of the values for Ui, j will be equal to 1 because the interaction paradigm is that

the user wants to change the relative distances between points in Y1 and Y2 only, wishing to

maintain the relative distances of all other data points.

1That is, we calculate an MDS projection by looking at the principle components, as in principle component
analysis (PCA), of the pairwise distance matrix [GKWZ07].
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3.2.3 Updating the Distance Function

We incorporate user input to create a new distance function by solving an optimization prob-

lem over the space of possible distance functions. We use a weighted Euclidean distance

function, i.e., Euclidean distance with each dimension of the data weighted by a coefficient.

Although there are many other possibilities, we chose weighted Euclidean distance because

it is easy for a human to map the magnitude of the weight of each feature to its relative

importance. We describe in Section 3.3 how we present a visualization of the weights of

the distance function to further help the user understand the data.

The distance between two data points xi,x j ∈ RM is given by:

D(xi,x j|Θ) =
M

∑
k=1

θk(xik− x jk)
2 (3.2)

where M is the number of original dimensions in the data, Θ is the vector of feature weights,

and θk is the weight for feature k. We initialize with all weights equal, i.e., θk = 1/M.

To update Θ after a user interaction at time t, we seek to find the Θt that maintains

the relative distances of points the user did not select while encouraging changes that affect

the selected points in the desired direction. We formalize this intuition with the following

optimization criterion:

Θ
t = argmin

Θt ∑
i< j≤N

Lt
i j
(
D(xi,x j|Θt)−U t

i j ·D(xi,x j|Θt−1)
)2

(3.3)

where U t
i j is defined in Equation 3.1 and is the result of the user’s interactions at round t

based on the projection using the distance function defined by Θt−1. The term Lt
i j, defined

in Equation 3.4, is a scalar weight that is greater than one when the points xi and x j are in

Y t
1 and Y t

2 , and one otherwise. In the summation over all points in the objective function of

Equation 3.3, this increases the value of terms corresponding to points the user moved. We

define Li j at time t as:

Lt
i j =


N(N−1)
|Y t

1 ||Y t
2 |
−1 if (xi,x j) ∈ Y t

1×Y t
2 ,

1 otherwise.
(3.4)
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Definitions used in describing our methods
N, M Number of points, number of dimensions
xi ∈ RM Point i of the data
xik Value of feature k of data point xi
Θ Vector in RM containing the weight of each

dimension for a distance function
θk Weight of feature k in Θ

Θt and Θt−1 Indicate Θ values from before (t−1) and af-
ter an optimization step

D(xi,x j|Θ) Distance between xi and x j given parameters
(dimension weight vector) Θ

δi jk Abbreviation used in the gradient of the ob-
jective function as a stand-in for (xik− x jk)

2

Oi jt Abbreviation used in the gradient of the ob-
jective function for the square root of a term
of the full objective function

Li j The impact coefficient in the objective func-
tion

Ui j Entry in matrix U containing the user feed-
back information for the pair (xi,x j)

Table 3.1: Definitions of the symbols described in our methods.

where Y t
1 and Y t

2 are the sets of points in each user interaction set at iteration t. The value

of the coefficient is the ratio of the number of unchanged pairs of points to the number of

changed pairs. This heuristic and somewhat ad hoc weight is to ensure that the points the

user selected have impact in the overall value of the objective function, even though the

function is a sum over all points in the dataset, and Y t
1 and Y t

2 could be relatively small.

Our objective is to incorporate new user feedback at iteration t, while preserving the

user’s previous interactions. Previous iterations of feedback are not explicity represented.

Instead, Equation 3.3 minimizes the difference, over all pairs of points, between the new

distance and a multiple (Ui j from the user input) of the old distance. By including the old

distance in the function and summing over all points, we provide some inertia against the

user’s updates. This was an important design decision, as machine learning methods for

finding distance functions generally focus on a single set of constraints from the user and

optimize once (with the exception of [BHHSW05], which has an online version of the RCA

algorithm).

To find a solution to this optimization problem we use nonlinear conjugate gradient

descent [HZ06], which is an iterative algorithm. Starting from an initial guess, the solver

moves in steps toward a minimum of the objective function by walking along the gradient.

At each step, the gradient is evaluated at the current guess, and a new guess is generated by
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moving in the direction of the gradient some small amount. This process continues until it

converges. Although versions of the algorithm exist that determine step directions without

the gradient, we provided the following gradient function to the solver for efficiency:

∇ob jective(Θ) =


∂Θ

∂Θ1
...

∂Θ

∂ΘM

=


2∑i< j≤N δi j1Oi jt

...

2∑i< j≤N δi jMOi jt

 (3.5)

where

δi jk = (xik− x jk)
2

and

Oi jt = Li j
(
D(xi,x j|Θt)−U t

i j ·D(xi,x j|Θt−1)
)
.

3.3 Visualization and User Interaction

Figure 3.2 shows Dis-Function, the prototype system introduced in this work. Dis-Function

presents the user with three coordinated views of the data to aid in data exploration. Along

the bottom of the window, seen in Figure 3.2E, user can see the raw data in a table with

column labels. In Figure 3.2A, the interactive scatterplot visualization both displays data

and captures user interaction. In 3.2C, a view we call parallel bars shows the user how the

values of all the points in the dataset are distributed in each dimension. It appears as a bar

graph with one bar for each dimension. The bars are each colored with a heat map to show

how common each range of values along the bar is.

The three views are coordinated, which facilitates exploration [Rob07]: selecting

a point on the scatterplot causes the point to be moved into view in the data table and

highlighted, as well as highlighted on the parallel bars view. The point is highlighted by

a black line across each bar at the height corresponding to that point’s value in the bar’s

dimension. Placing the mouse over an element in the data table causes the point to be

highlighted in the scatterplot and parallel bars.

Together, these views allow a user to explore the data in order to provide more
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Figure 3.2: This screenshot shows Dis-Function comprising A) the MDS scatterplot visu-
alization of the data; B) the buttons for recalculating the projection, undoing unsatisfying
input, loading custom distance functions and user input data, etc.; C) the Parallel Bars visu-
alization described in Section 3.3; D) a bar graph of the current distance function (obscured
’Data Grid’ tab shows a tabular version); and E) the original data. All these views are
tightly coordinated such that interactions with one view are immediately reflected on the
others. For example, in the figure above, the mouse cursor is over a point in the scatterplot,
and thus the corresponding point in the data table at the bottom is highlighted and the black
lines on (C) highlight the values of the data point in each dimension as they relate to other
data points.

useful feedback to Dis-Function. Aside from just the relative distances among the points as

shown in the scatterplot of the projection, the user can see the actual data in the original data

space. Assuming the user has some domain knowledge, he or she will likely understand the

implications of certain ranges of values in certain dimensions. The user can also observe

from the parallel bars visualization how any data point fits into the scheme of the data on a

dimensional basis. If a given point is an outlier in one or all dimensions, for example, that

will be clear from the parallel bars visualization.

In addition to the views of the data, we provide two views of the distance function

and the user’s progress toward finding it. Figure 3.2D shows two tabs. The one visible

in the figure shows a bar graph representation of the current distance function. Each bar
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Figure 3.3: These images show an example of how a user manipulates the visualization.
A handful of points have been marked in blue and dragged closer to another set of points,
marked in red. After the update (on the right), the points in those groups are closer together,
and the clustering with respect to different colors is more compact. The same red and blue
points marked on the left are indicated in their new positions on the right with red and blue
halos.

represents a dimension, and the bar height encodes the weight of that dimension. Using the

bar graph, the user can watch the distance function change after each feedback iteration.

This allows the user to observe the relative importance of the different dimensions in the

current distance function used to display the data in the scatterplot to the left. The hidden tab

in Figure 3.2D contains a data table version of the same information, but includes history,

and makes it easy to export the distance function from any iteration.

Having described how the data is visualized we now turn to how the user can interact

with the data through this interface. Recall that the goal of the interaction is to define two

sets of points that should be closer to one another, or further apart. To this end, the user can

select points and drag-and-drop points to mark them as members of either set and to move

them some amount closer together or further apart. The points in the two sets are marked by

different colors in the scatterplot visualization, and they correspond to using the left or right

mouse button when clicking or dragging points. These two sets of points, which we indicate

by red and blue in the visualization, correspond to the two sets, Y t
1 and Y t

2 respectively.

During the feedback step of each iteration, the user can select and unselect points, and

repeatedly move points around. To signal completing one round of interaction, the expert
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clicks the Moved Points button (see 3.2B). At this point a new distance metric is learned

from the feedback and the data is then reprojected using the new metric. Currently, the

scatterplot and bar graph update as quickly as possible, without animation or optimizing for

rotation. To provide context between iterations, after each iteration the user can see where

the points in his or her input sets have been placed in the new projection via highlighting

with colored rings (we illustrate this process in detail in the next section).

In the next section, we present empirical results of ten subjects interacting with

Dis-Function and we provide preliminary experiments to assess its interactive speed. Our

results show that our system is interactive or near-interactive for a standard machine leaning

testing dataset.

3.4 Experiments and Results

In this section, we describe our evaluation of the effectiveness of Dis-Function at finding

distance functions, the quality of distance functions learned by Dis-Function, and the time

taken to perform each update as a function of the input. We begin with a presentation of

the empirical results that demonstrate the efficacy of the proposed interaction method for

defining sets of points to learn a distance metric.

3.4.1 Empirical Results

We had ten subjects from Tufts University (undergraduate and graduate students includ-

ing six males and four females from Electrical Engineering, Visualization and Human-

Computer Interaction) evaluate our software. In order to test software meant for experts in

the absence of experts, we simulate the experience by coloring the data points in the scatter

plot based on the known classes of the points; i.e., when the correct class membership of

each point is visible, any user is an “expert” on the data.2 We showed each participant how

to use the software and let each perform as many iterations as desired. We performed our

experiments on a modified version of the Wine dataset from the UCI Machine Learning

repository [MFL88] as this has been used in prior studies of defining a distance metric. The
2Note that because the subjects interact based on class information, our experiments do not explicitly eval-

uate the efficacy of the coordinated visualizations.
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Figure 3.4: While Figure 3.3 demonstrates one step of feedback, this figure shows how
the scatterplot visualization improves through a number of iterations of feedback (matching
those of Figure 3.5). Each scatterplot shows the visualization after a round of feedback.
The bar graph below each plot shows the distance function used to create the projection
shown above it. Each bar represents a different dimension, and collectively they show the
relative weights of the dimensions in the distance function. In each frame, the sets Y1 and
Y2 from the previous interaction are highlighted with red and blue halos.

original Wine dataset has thirteen features describing chemical components of wine, and

178 instances, each representing a specific wine, and each labeled as one of three classes.

We modified the Wine dataset as follows: we added ten noise features, each of which we

generated by randomly choosing values from a uniform distribution over the range [0,1],

matching the range of the data itself, which is normalized. We introduced these features in

order to know exactly which features in the data were uninformative. We hypothesized that

the user’s interactions would result in a distance function giving these “useless” features a

weight close to zero.
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Figure 3.5: This figure shows the weight of each feature after each of User 10’s five inter-
actions. Each sub-graph shows a single feature. The x-axis gives the iteration number and
the y-axis, the weight. The top thirteen correspond to the features in the original wine data
and the bottom ten show the weights for the added noise features. Note that the weights of
the added noise features quickly decrease and approach zero within a few iterations.

Because our users were given instant expertise in the form of data colored with

class labels, we instructed them to provide feedback by moving points closer together that

are in the same class (i.e., of the same color). In our experiments, we observed that all

users quickly figured out that moving only a few points at a time did not result in significant

changes to the distance function and further that moving points from class x that are far

away from a class x cluster3 to its center allows the system to converge more quickly. An

example of a typical interaction is shown in Figure 3.3. The left side shows the original

positions of data points with arrows indicating the user interaction; the user dragged the

points from the start to the end of the arrow. The red and blue circles show the two sets of

selected points. The right side shows the result of the reprojection of the data using the new

3Note that there may be more than one cluster per class.
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distance function. The selected points have moved closer together and the clusters are more

cohesive.

Our user study found all users were satisfied with the separation of different classes

after 4–12 (µ = 7.3,σ = 2.5) feedback updates. Figure 3.4 shows a sequence of updates

by one of the participants where the augmented Wine dataset transitions from scattered

to compact. Each step shown is after feedback (we do not show the user feedback step

explicitly). The figure illustrates how the visualization changes with more user input. Note

that the bar graph accompanying each scatterplot shows the weights of the dimensions in

the distance function associated with the plot. Figure 3.5 shows the values of the dimension

weights changing with each iteration for the same user as was used to generate Figure 3.4.

Each sub-graph in Figure 3.5 shows the weight of a different dimension; the x-axis gives the

iteration number and the y-axis shows the magnitude of the weight. Notice that the weights

of the noisy features (the bottom ten) plunge steadily downward as was hypothesized; recall

that these features were generated uniformly at random and thus provide no information

about the classes in the data. In our experiment, all ten participants generated distance

functions with low weights on these noisy features.

We evaluated the users’ learned distance functions using a k-nearest-neighbor (k-

NN) classifier. Recall that a k-NN classifier classifies a previously unseen (test) instance

by taking the majority vote of the instance’s k nearest neighbors, where “nearest” is cal-

culated using a (weighted) Euclidean distance function. Thus we can evaluate the quality

of the learned distance function using a leave-one-out cross-validation (LOOCV)4 over the

training data.

We show the results for k = 1,3,5 and 7 in Table 3.2. We note three observations

from these results. First, all user-guided distance functions perform better than using the

original unweighted Euclidean distance function. Second, performance is also a function

of the user’s ability as can be seen by the fact that users 2 and 3 performed worse than

everyone else despite having the same directions. Finally, the Wine dataset is a relatively

“easy” classification task in that our baseline accuracy is already 90%. We anticipate that

4In an LOOCV we hold out each instance one at a time, and use the rest of the data to form our k-NN
classifier.
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k-NN Accuracy
User 1 3 5 7
Even Weight 0.89 0.91 0.91 0.91
1 0.97 0.97 0.97 0.97
2 0.92 0.93 0.95 0.96
3 0.92 0.93 0.95 0.96
4 0.94 0.97 0.98 0.97
5 0.96 0.97 0.97 0.97
6 0.95 0.96 0.98 0.96
7 0.95 0.95 0.97 0.97
8 0.94 0.96 0.96 0.97
9 0.94 0.96 0.96 0.97
10 0.94 0.97 0.98 0.98

Table 3.2: Results of a leave-one-out cross-validation (LOOCV) for the Wine data using
k-NN for k = 1,3,5,7. “Even Weight” is the baseline condition, i.e., an evenly-weighted
Euclidean distance function without user interaction.

for “harder” classification tasks we will see even more of a performance increase after user

interaction.

3.4.2 Interactive Speed Performance

Using the Wine dataset, we find that user interactions with the visualization are fluid, and

that updates based on user feedback take on the order of a second. In this section, we

describe additional experiments to evaluate the scalability of Dis-Function in a controlled

manner. Specifically, we examine the performance of Dis-Function as the dataset grows

in size (in terms of number of rows) and in complexity (in number of dimensions) inde-

pendently. Our experiment was conducted on a desktop computer with an AMD Phenom

X3 processor and eight gigabytes of memory, running Windows 7 Home Premium. Our

implementation of Dis-Function is in C#, using Windows Forms. The rendering is done

in software using GDI+ (without using GPU hardware support), the PCA computation is

done using the PricipalComponentAnalysis.Compute function in the Accord.NET Frame-

work library,5 and conjugate gradient is done using the mincgoptimize function from the C#

ALGLIB library version 3.5.0.6 At the time of the experiment, no other applications were

5http://code.google.com/p/accord/
6www.alglib.net
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running on the computer except for basic Windows services running in the background. In

the remainder of this discussion, the reported performance is based on the amount of time

required for Dis-Function to perform the optimization and re-projection, independent of the

interface.
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Figure 3.6: Performance, as affected by data complexity (number of dimensions), of pro-
cessing user feedback for one iteration by (a) running optimization to find a new distance
function and (b) re-projecting data for the scatterplot. Notice that both operations scale
linearly in data dimensionality.

In the Dis-Function prototype, we include a stand-alone command-line executable

that links against Dis-Function. This program allows us to write scripts that test different

types of input and collect performance data. To test the dependence on data dimensionality,

we extended the Wine dataset, which has 178 data points and 13 dimensions, up to 2000

dimensions. Those extra dimensions were filled with random numbers drawn from a uni-

form distribution over the range [0,1], the same range as the original, normalized data. We
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Figure 3.7: Performance, as affected by data size (number of points), of processing user
feedback for one iteration by (a) running optimization to find a new distance function and
(b) re-projecting data for the scatterplot. Notice that both operations scale quadratically in
data size.

ran our performance test repeatedly with all the data points, starting with only the real data

dimensions (13), and cumulatively growing to the full 2000 dimensions. Figure 3.6 shows

the results of this experiment: the dependence of the optimization time on the number of

dimensions (Figure 3.6 (a)), and the dependence of the re-projection time on the number of

dimensions (Figure 3.6 (b)).

To evaluate the performance in data size, we randomly generated a 2000-element

dataset with two dimensions, and used sequential subsets of it to create datasets of different

sizes. Figure 3.7 (a) shows the time taken by the optimization as a function of the number

of data points, and Figure 3.7 (b) shows the time taken by the re-projection as a function of

the number of data points.
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Both optimization and projection scale the same way: linearly in the number of

dimensions and quadratically in the number of data points. The graphs include trend lines

fit by Microsoft Excel, and in all cases the correlation is high, as seen in the figures. These

results are aligned with our expectations because the conjugate gradient method can be

expected to converge in as many steps as there are dimensions. In terms of number of data

points, the calculations are dependent on pairwise distances, which number O(N2).

Although the performance as it stands makes Dis-Function comfortable to use, we

believe the performance of the re-projection step can be improved substantially by intro-

ducing online singular value decomposition (SVD) into our PCA calculation, similar to the

approach of Jeong, et al. [JZF+09a]. Using online SVD would allow us to calculate the

eigenvalues at each projection step incrementally. Other options for fast eigenvalue calcu-

lation include iterative algorithms [Hea01]. Separately, we could improve the performance

of the optimization step by stopping it early: empirically we have noticed a good solution is

reached in only a few steps. Truncating the number of steps the optimizer is allowed would

sacrifice only a small amount of precision and speed up the software’s response to user in-

put. Finally, a refactoring of the objective function could reveal applicability of alternative,

higher-performance optimization methods.

3.5 Discussion

In this section we discuss Dis-Function as a general purpose data analytics tool, propose

future work, and provide some usage guidelines.

3.5.1 Broad and Flexible Use

What we have presented in Dis-Function is a prototype for a widely-applicable data an-

alytics tool. The distance functions produced by Dis-Function provide a form of knowl-

edge externalization that quantifies expert notions of a data space. By assigning numerical

weights to each dimension indicating relative importance, the learned distance function can

also serve the purpose of feature selection. A user may discard features with a relatively

low weight, thereby reducing the dimensionality of a large and complex dataset in order to
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make it easier for a user to explore and analyze.

Because a distance function is a representation of an expert’s intention, if the ex-

pert has more than one intention, he or she can use Dis-Function to create multiple distance

functions, each reflecting a different analysis hypothesis. For example, if a researcher wants

to study subjects in two different contexts such as socioeconomic similarity and physiolog-

ical similarity, he or she can run Dis-Function twice to produce two distance functions. The

first time, the researcher moves points with similar socioeconomic background closer; the

second time, the researcher drag points with similar physiological makeup together. Both

resulting distance functions can be used in additional computational analysis, perhaps com-

paring how each clusters the data. (Recall that one can use the learned distance function

with clustering algorithms such as k-means [Mac67] or EM [DLR77]).

3.5.2 Possible Extensions

Thinking of Dis-Function as a framework instead of just a prototype opens some excit-

ing possibilities for capturing different types of expertise and exploring ways to express

knowledge by interacting directly with a visualization. We have provided only one simple

mechanism for capturing user input.

More techniques for incorporating user input will be tied to introducing different

visualizations amenable to similar “semantic interactions” [EFN12a]. The goal is to find

visualizations where we can discover a mapping between some manipulation of the view

and a semantic meaning for the user, and where that meaning can be translated into math-

ematics for adjusting the generation of the visualization. Not only could we offer different

types of projections, but we can learn distance functions for other types of data. For exam-

ple, when representing hierarchical data using a phylogenetic tree, the framework of Dis-

Function can be immediately applied because a phylogenetic tree is also generated from

pairwise distance data.

We can experiment with completely different classes of visualization like parallel

coordinates [ID90], RadViz [HGP99], and Dust and Magnets [YMSJ05], for which tools

exist for exploring data by manipulating the parameters. Dis-Function could allow an expert

to use those tools to discover similar data points, and then model that feedback to stretch
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dimensions for improved visualization.

3.5.3 Usage Tips

Our own informal experimentation revealed some best-practice ways of interacting with

Dis-Function. While the semantic meaning of separating dissimilar points is clear, the

optimization we have used to learn a distance function is not designed for such feedback.

As an example, consider moving two points together: they can only move in one direction:

toward each other. On the other hand, when specifying that two points should be further

apart, the two points can be moved in any direction. Indeed, when separating groups of

points, Dis-Function occasionally introduces re-orientation of all data points in a way that

is difficult to correlate to the previous layout. In some cases, this behavior is desirable – for

example to separate tightly overlapping clusters. However, in most cases, it makes sense to

perform the transformation “move set A further from set B” as two iterations of feedback by

moving points closer: move A closer to points far from B, then B closer to points far from

A. This way it is clearer in which direction to spread sets A and B.

3.6 Summary

In this chapter we presented a prototype implementation, named Dis-Function, that allows

a user to interact with a visualization to define a custom distance function. In particular,

through a set of coordinated views, the user can explore data and find points to drag closer

together. Based on a series of these interactions, the system learns a weighted Euclidean

distance function that can be used in any data analysis algorithm requiring the definition

of a distance function. The weights are human-readable as importance ratings of each

dimension, giving the user a way to understand what facets of the data are most relevant.

We demonstrated the scalability of Dis-Function in both data size and complexity, and

illustrated empirically by using a well-known dataset that an expert user could use Dis-

Function to build a distance function that can be used to improve classification or clustering.
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Chapter 4

EigenSense: Saving User Effort with

Active Metric Learning

This chapter is based on the work-in-progress workshop paper:

Eli T. Brown and Remco Chang. EigenSense: Saving User Effort with Active Met-

ric Learning. 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

workshop on Interactive Data Exploration and Analytics (IDEA). 2014.

4.1 Introduction

Learning distance functions from user interactions with a visualization is a compelling

mechanism for empowering users to create helpful data models without understanding com-

plicated algorithms. However, in the prototype introduced in Chapter 3, we have left open

the question of how exactly a user would choose with which points to interact. In order to

provide feedback about what points should be grouped closer together, a user might have

to compare large, even infeasible, numbers of points. User feedback is expensive, since

human throughput at reviewing data is far lower than a computer’s throughput at analysis.

What is needed is a mechanism to use computing throughput to guide the user’s investiga-

tion. Ideally, to the user this looks like making sure that his or her efforts are leveraged as

well as possible. One possiblity is to program the machine learning back-end to help the

user identify what data points are important.
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The machine learning community of active learning researchers develops tech-

niques to query users for feedback in ways that will most help the machine learner. A

common approach is to query users about points chosen so that the user feedback will

resolve uncertainty in the model. Emphasizing the interactive learning perspective, our

approach keeps the user in control, providing suggestions only when the user initiates a di-

rection of inquiry. We target our active learning method toward predicting the impact of any

given user input. Using our method, a user can judiciously spend the effort of developing

feedback on data that will affect the underlying model as much as possible.

In this chapter, which describes work in progress, we first introduce EigenScore, a

measure that leverages “eigenvector sensitivity” to predict how much a potential user input

will change an underlying metric learning model. We then propose EigenSense, which uses

EigenScores to guide a user toward making the most productive feedback while minimizing

his or her effort (in terms of data points examined). Finally we provide two types of evi-

dence of the efficacy of this algorithm. First, we compare EigenScores to the ground-truth

of what they estimate: the amount that particular constraints would change the metric learn-

ing model. Second, we show with simulations that the few points selected for user review

by EigenSense often include the best possible choices as evaluated by an oracle.

4.2 Motivation: Eigenvector Sensitivity to Find Critical Points

The eigenvectors of a matrix have been used to represent its underlying structure for applica-

tions in many domains including connectivity graph analysis [PBMW99], face recognition

[TP91], and clustering [Wei99]. The eigenvectors of symmetric matrices A for which entry

Ai j represents some measure of distance between objects i and j is of particular relevance.

For example, the PageRank [PBMW99] algorithm uses an n×n pairwise matrix to represent

the transition probabilities between pairs of the n webpages. Here entry Ai j corresponds to

the probability of landing on node (page) j during a length-one random walk, having started

at node i. Raising that matrix to the power k gives a matrix of the probabilities of landing

on node j having started a length-k random walk at node i. Increasing powers of Ak will

show the asymptotic behavior of flow through the graph. Conveniently, following from the
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definition and orthogonality of eigenvectors, the dominant eigenvector approximates this

quantity. For a real, symmetric matrix A, suppose we have the eigenvalues λ1, . . . ,λn sorted

in order of decreasing magnitude, and their corresponding eigenvectors v1, . . . ,vn. Because

the eigenvectors are orthogonal, any vector x ∈ Rn can be written as a linear combination

of the eigenvectors, with coefficients αi. We can observe the asymptotic behavior:

x = α1v1 +α2v2 + . . .+αnvn

Ax = α1Av1 +α2Av2 + . . .+αnAvn

Akx = α1λ
k
1 v1 +α2λ

k
2 v2 + . . .+αnλ

k
n vn

= α1λ
k
1

(
v1 +

α2

α1

(
λ2

λ1

)k

v2 + . . .+
αn

α1

(
λn

λ1

)k

vn

)

Note that because the dominant eigenvalue, λ1 ≥ λi, i = 2 . . .n in the final sum, the v1 term

dominates.

When studying population dynamics, biologists take advantage of this fact with a

matrix L, called a “Leslie” matrix, where each element Li j represents an organism’s survival

prospects to age i from age j 1. To see the equilibrium point of a population, biologists study

the dominant eigenvector of this matrix [EG11].

Extending this technique to see how the population can be affected by environmen-

tal factors, biologists adjust survival rates at different times in the lifecycle by editing the

matrix, and reconsider the new dominant eigenvalue. This sensitivity of the eigenvalue to

change in particular matrix entries is the eigenvalue sensitivity [EG11].

Motivated by biologists’ successes with eigenvalue sensitivity in Leslie matrices,

we consider the behavior of the dominant eigenvector of our related n×n pairwise distance

matrices, and we adapt the concept of sensitivity to the context of active metric learning.

We will use the dominant eigenvector of a pairwise distance matrix as a stand-in for its

overall structure, and calculate the sensitivy of that eigenvector with respect to changes in

entries of that matrix. Since each entry corresponds to a pair of data points, we will use

this approach to estimate how individual user inputs, i.e. user constraints that certain pairs

1The matrix represents different age groups’ rates of survival and reproduction by setting the first row to the
fertility rate of each age group, and the lower off-diagonal entries to organism survival probabilities from one
age group to the next.
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of points have small distances between them, will affect the structure of the distance matrix

and the underlying distance metric.

4.3 Application Context

Figure 4.1: EigenSense demonstrated on an interactive scatterplot of projected data – all
data points are laid out with multidimensional scaling (MDS) and colored by a spectral
clustering. The point with a red X is the one the user clicked, asking what other data should
be considered in relation to that point. The colored squares show the EigenSense response,
with darker colors indicating higher EigenScores (see Section 4.4.1). Only the top five
percent of scores from each cluster are highlighted, helping the user target the most fruitful
data to examine.

The EigenSense method is best understood within a real interactive learning context.

In Chapter 3 we described Dis-Function, a system that shows an analyst high-dimensional

real-valued data in a 2D projection, and learns a distance function iteratively though user
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feedback. Feedback is provided by dragging together points that should be closer together.

The method is effective with appropriate user feedback, but the user is given no information

about what points would be helpful to the metric learning backend.

To illustrate how EigenSense can help to close this information gap, we have inte-

grated EigenSense into Dis-Function. When a user clicks a point of interest, EigenSense

responds by showing several points that may be relevant to the first. Figure 4.1 presents a

screenshot of this modified Dis-Function, specifically the data projection portion. The data

have been arranged using multidimensional scaling (MDS), and colored based on a spectral

clustering. The user has clicked the point marked by a red X. In response, EigenSense adds

colored squares showing which points may be of interest relative to that X. Darker colors

indicate a higher eigenvector sensitivity score, or EigenScore (see Section 4.4.1).

A user might pick a point of inquiry for many reasons, e.g. looking at outliers to

find false ones or looking at the most familiar data first (perhaps a doctor examining a

data point representing an especially familiar patient record). Alternatively, as pictured in

Figure 4.1, a user could decide to look near the center of a cluster. As shown, clicking

such a point near the middle of the blue cluster marks it with an X and causes EigenSense

to respond by marking with colored squares some points that the user should compare to

X. In the example, most points that EigenSense identifies as potentially interesting are in

different clusters from X, or are outliers in the data. It makes sense that EigenSense would

mark those points because if the user provided feedback that tightly linked any of these

faraway points to X, the model would have to change significantly to account for such a

large alteration.

The example also includes points recommended by EigenSense that are within the

same cluster as X (drawn with the same color circle). They are in the same cluster as X

because the clustering algorithm concluded they are similar to X, but that is not necessarily

correct. If the user were to specify that these points are in truth very similar to X, that

would tighten the cluster by improving the underlying distance function. The specific points

EigenSense has highlighted in the cluster are those that are expected to result in the strongest

updates.

In the example of Figure 4.1, the three highlighted points in the same cluster as X
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are in fact in the same class as X in the ground truth labels for these data. The next-closest

point, which has been placed in the green cluster, also belongs to the same actual class as

X. Since the clustering is tightly connected to the underlying distance function, following

the recommendation from EigenSense to consider this point and then fixing its association

to X by correcting its distance from X could improve the model substantially.

These predictions of which points could provide the strongest update to the model

are intended to guide the user towards giving the machine learner fruitful feedback. Look-

ing at the highlighted points from EigenSense could prevent wasted time looking at less

productive comparisons, and help to take best advantage of precious expert user time.

4.4 The EigenSense Method

In our interactive machine learning context, we have presented a user with data and need

useful side information to improve our learned model. More specifically, in the context pro-

vided by Section 4.3, we assume a user examines a visualization of data and notices points

of interest, perhaps outliers, cluster exemplars, or points aligned with personal expertise.

We aim to answer, given one point of interest selected by the user, which are other points

that the user should examine. We chose this interaction paradigm for two reasons: first, the

user guides the process as opposed to simply being used for point comparisons, and second,

having an initial point sharply reduces the computational complexity (see Section 4.4.2). In

deciding which points to suggest for user examination, our ideal is to uncover the point that

would make the strongest update to the model with the user’s feedback, leveraging expertise

efficiently to minimize effort.

In this section, we introduce a technique using eigenvector sensitivity on a pairwise

distance matrix to provide these predictions of strong model updates. First we associate

a score (called the EigenScore) with any pair of data points. The EigenScore of a pair is

designed to predict the strength of a model update corresponding to user feedback about that

pair. We then present the EigenSense algorithm, which uses EigenScores to recommend top

candidate points to the user.
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4.4.1 Calculating EigenScores

The EigenScore between two points represents our prediction for how strongly a change

in distance between them would affect the underlying structure of the pairwise distance

matrix. Specifically, it is a measure of the sensitivity of the dominant eigenvector of that

matrix to changes in its elements, which correspond to pairs of data points.

Given a distance function and a data set with N points, we calculate the pairwise

distance matrix

D ∈ RN×N where Di j = distance(xi,x j)

Note that no specific type of distance function is required. To model how that matrix

changes with specific xi and x j assumed to be perfectly close together, i.e. because the

user specified so with feedback, we construct a new distance matrix D′ which is identical to

D, except that we set Di j = D ji = 0. These entries now reflect that xi and x j should be close

to one another.

We next compute the dominant eigenvector for D, called v1, and for D′, which we

indicate with v′1. We compute the cosine similarity between v1 and v′1. Note that we desire

a dissimilarity metric, showing how much v′1 is different from v1, so we define

EigenScore(xi,x j) = 1−CosineSimilarity(v1,v′1)

Algorithm 1 summarizes this process.

Note that computing a function eig(D) that returns all the eigenvectors, e.g. using

a factorization method like SVD or the Cholesky decomposition, is computationally ex-

pensive [Hea01]. However, because computing the EigenScore requires only the dominant

eigenvector (and because we are restricted to a real-valued symmetric matrix), we can dra-

matically improve performance by using the Lanczos method [Hea01], which returns only

the dominant eigenvector and which we denote eigs(D,1) as in MATLAB.
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Algorithm 1: EigenScore
Input: Data points xi,x j, distance matrix D
Output: ESi j ∈ [0,1]

1 Calculate v1 = eigs(D,1) [dominant eigenvector]
2 Let D′ = D
3 Set D′i j = D′ji = 0
4 Calculate v′1 = eigs(D′,1)
5 Set ESi j = 1−CosineSimilarity(v1,v′1)
6 return ESi j

4.4.2 Using EigenScores to make EigenSense

The EigenScore algorithm maps a pair of points to a scalar value representing potential

impact on the distance metric, and thus implicitly provides a ranking over pairs of points.

This section addresses how to use this ranking with the goal of reducing user effort.

Calculating EigenScores over all pairs of points is prohibitively expensive for an

interactive context. However, recall that in our usage context, the user has selected one

point of interest and we must suggest options for a second point to pair with the first for

a potential user constraint. Evaluating possibilities for just the choices of a second point

requires only (N−1) evaluations of EigenScore. We further limit the number of suggestions

the user sees to some proportion k ∈ (0,1] of the total data to save the user from examining

every point. Rather than returning a fully ranked list of the top k ∗ (N− 1) of the (N− 1)

total points, we want to choose a diverse set of points for consideration. Our rationale is that

we expect high EigenScores to correspond to pairs of points where user constraints would

cause big updates to the model, but these may not be good updates. For example, outliers

in the dataset will often contribute to high EigenScores, but should not necessarily be used

in constraints.

To create the desired set of suggestions, we first cluster the data (using the current

learned distance function), then sort the points in each cluster c by their EigenScore and

return the top k ∗ |c| points within each cluster. This process is detailed in Algorithm 2.

The performance of our implementation is critical to demonstrating the feasibil-

ity of this technique for interactive systems. Our prototype system provides EigenSense

recommendations on demand as response to interaction with a visualization. The current

48



implementation connects to MATLAB from C# via a COM interface to take advantage of

the Lanczos algorithm for quickly calculating the dominant eigenvector. Still, as an exam-

ple of performance capability, on a laptop with an Intel i5 480M processor, for a dataset

of about 200 points with about 20 dimensions, an EigenSense response takes about one

second.

Algorithm 2: EigenSense
Input: Initial point xi, distance matrix D, set of clusters C, threshold k
Output: S, a set of model-critical points

1 foreach cluster c ∈C do
2 foreach point x j ∈ c do
3 Compute ESi j = EigenScore(xi,x j,D)

4 Let Sc be the set of k×|c| points with the highest ESi j

5 Let S =
⋃

Sc

6 return S

4.5 Experiments and Results

We validate the accuracy and effectiveness of our proposed method through two experi-

ments on test datasets from the UCI Machine Learning Repository[BL13]. First, we com-

pare EigenScores against actual values of the quantity they estimate and see that they could

be an effective low-cost estimator of model change. Second, we evaluate the accuracy

of EigenSense by considering the quality of the sets of points it offers to users compared

against the ground-truth best points. We show that guided by EigenSense, a user could pick

high-quality inputs while reviewing small amounts of data.

4.5.1 Experiment 1: Compare To Ground Truth

In this experiment we evaluate the EigenScores by comparing them directly to the value

they are attempting to estimate. Recall that in our interactive metric learning context,

EigenScores are an estimate of how much the distance matrix, as a stand-in for the dis-

tance metric itself, would be changed by constraining a given pair of points. The ground

truth is prohibitively expensive to calculate for an interactive system, but can be prepared
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(a) Wine (b) Ion

(c) Parkinsons

Figure 4.2: Experiment 1 – In this comparison between EigenScores and the quantity they
estimate, each point in each graph represents a pair of data points from the appropriate
dataset. The horizontal axis shows the actual amount the underlying distance function
changes when a given pair of points is constrained together. The vertical axis shows the
EigenScore for that pair of points.

offline.

For three datasets, starting from scratch with no constraints, we used our proto-

type system (with interactive metric learning based on Brown et al. [BLBC12]) to calculate

for each possible pair of points the actual change in distance function resulting from con-

straining the pair. The graphs in Figure 4.2 show the comparison of these values to the

EigenScores. We use weighted Euclidean distance functions, thus the initial distance func-

tion is parameterized by the vector Θinit = (1/M, ...,1/M) of length M. In the graphs, the

horizontal axis is the change in the distance metric from applying the constraint and the

vertical axis is the EigenScore:

1−CosineSimilarity(Θinit ,Θpost constraint)
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Although the correlations between EigenScores and actual distance metric change

are not obvious linear relationships, it is apparent from visual inspection that the quantities

are related. This first pass evaluation shows the promise of EigenScores as an estimate of

distance metric change, which implies that it could be an inexpensive way to predict model

change for interactive machine learning.

4.5.2 Experiment 2: Evaluate Suggestion Quality

The goal of this experiment is to determine the quality of EigenSense recommendations by

comparing them to the choices an oracle would make. Given an oracle that can rank all user

feedback options in terms of which yield the best distance functions, we look to see how

the EigenSense recommendations rank in that list.

We simulate choices of a point of interest xi by the user, and then compute both the

oracle’s ranking of all possible constraint pairs with xi, and the set of EigenSense options

that would be presented to the user. Specifically, the oracle takes advantage of the labels for

our test datasets to calculate, for all pairs of constraints that include xi, the accuracy (with k-

NN) of the distance metric resulting from an update with the given constraint. That is, given

one point xi, the oracle applies the system’s metric learning algorithm with each constraint

pair (xi,x j) ∀x j, and evaluates each resulting distance function at classifying the data with

k-NN. The accuracy scores of these evaluations provide a ranking over the constraint pairs.

We compare the EigenSense options against the oracle ranking by finding the EigenSense

recommendation with minimum oracle rank.

Figure 4.3 shows the results of our experiment. Each graph line corresponds to a

different dataset, and each plotted point represents an average over ten simulations, each

of which simulated ten user inputs. Simulated users picked a first point randomly then

some (not necessarily optimal) EigenSense recommendation for the second. In total, each

plotted point represents 100 uses of EigenSense. The horizontal axis is the k parameter

of EigenSense (see Algorithm 2 and Section 4.4.2), which determines how many points

will be shown to the user. Because the vertical axis shows the best oracle ranking of the

EigenSense points, lower scores are better. It is no surprise that with larger values of k,

where the user is being shown more points, the opportunity for the best-ranked points to be
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included is higher. Using a low value of k means showing the user few points and saving

effort, whereas using a high value means showing more points but having a better chance

to show the absolute best ones. The results of this experiment suggest that, depending on

the dataset, a user could give strong feedback to a metric learner while only reviewing less

than ten percent of the data, or in some cases, substantially less.

Figure 4.3: Experiment 2 – The horizontal axis shows values of the k parameter to
EigenSense, i.e. how much data is shown to the user. The vertical axis shows the minimum
(best) rank of the EigenSense recommendations in the oracle’s ordering of all possible point
pairs. Note that, as expected, as more data is shown to the user (k increases), there is more
chance of the best possible options being revealed (rank decreases). Even with a small
amount of data revealed, the EigenSense suggestions provide strong options.

4.6 Future Work

Although we have collected the presented evidence of EigenSense’s effectiveness, there are

opportunities for improving the algorithm itself. For example, there are several variations

on how to generate pairwise distance or similarity matrices. Further, the performance of

the implementation could be improved by using a library implementation of the Lanczos

method for calculating the dominant eigenvector, instead of using MATLAB via COM calls.

52



The performance improvement is critical for the main thrust of future work, which is

to complete the evaluation of the technique by testing it with human subjects. In particular,

participants in a user study will use the tool to cluster some images with known classes.

We can then evaluate their comfort with the tool, confidence in the recommendations, and

progressive accuracy of the distance metrics learned from their inputs to see if they do better

with or without EigenSense.

4.7 Summary

This chapter contributes to the study of interactive metric learning by applying active learn-

ing to reduce the workload of the human actor. We introduced the concept of EigenScores

based on eigenvector sensitivity of distance matrices, and then applied these to create the

EigenSense algorithm, which identifies and recommends points for user consideration given

an initial exploratory direction. We presented evidence of the effectiveness of the algorithm

by demonstrating its correlation with ground-truth values of the quantity it estimates, and

then by showing the frequency with which EigenSense presents the best possible option

to users. Our results indicate that EigenSense could help save human workload by vastly

reducing the number of data points to be considered while maintaining near-optimal metric

learning results.
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Chapter 5

Doc-Function: Visual Text Analytics

with Interactive Model Learning in

Keyword-Centric Spatializations

This work is based on a paper submitted to Visualization and Graphics, Transactions on

(TVCG) 2015:

Eli T. Brown, Kris Cook, Remco Chang and Alex Endert. Doc-Function: Visual

Text Analytics with Interactive Model Learning in Keyword-Centric Spatializations.

5.1 Introduction

The approach explored through this dissertation focuses on capturing user interactions and

codifying the generated hypotheses numerically by learning data models using back-end

machine learning. Chapter 3 demonstrates, via the Dis-Function prototype, the potential of

such systems, and Chapter 4 shows how to improve their efficiency with respect to users’

time. However, the techniques presented so far are only applicable to numerical data. A

different kind altogether, text data abounds and is of critical interest to multiple parties,

including for intelligence and anti-terrorism purposes. Fortunately, text data lends itself

well to this type of implicit model-building.

One effective visual metaphor for exploratory sensemaking of text corpora is spatial
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layout. The use of space as a means for users to express meaning without requiring formal

reasons, annotations, or other direct descriptions has been shown to be beneficial to analyt-

ical reasoning and the discovery processes [SIM99]. Further, Andrews et al. showed how

the ability for analysts to organize documents spatially enabled them to maintain and build

insights over the duration of a sensemaking task [AEN10]. Similarly, computationally-

generated spatializations exist that create layouts where similarity is visually encoded by

distance. For example, the IN-SPIRE Galaxy View shows documents in a spatialization,

from which analysts can observe groups and regions of documents that pertain to a spe-

cific data-driven concept of set of topics [WTP+95]. Such visual metaphors are effective

for sensemaking of text corpora as they enable inherent flexibility and subjectivity on the

part of the analysts. This flexibility of spatializations provides an effective bi-directional

medium for user interactions to couple with visual outputs of data analytic models. The

challenge, then, is in how to combine the user’s domain expertise and feedback into the

computational processes.

Model steering has been used with text applications in previous work. For example,

in IN-SPIRE’s Galaxy View, users can focus on some subset of topics in a document corpus

by emphasizing specific keywords, then re-run the model to create a new spatialization,

and generate an updated view [BCBN11]. Directly interacting with such model parameters

requires high formality and expressiveness in context of the analytic model being used

[ENCZ]. Depending on the domain expertise of the analyst, and the stage of the analytic

process, this may not be desired [SIM99].

Text data has also been tackled with automatic model-steering, i.e. performing up-

dates based on user interactions with visual forms as opposed to parameters [EHR+14]. For

instance, re-positioning documents in a spatialization is interpreted by the system as updat-

ing the parameters of the distance function representing similarity (as opposed to requiring

users to update those parameters directly) [EFN12b, BNH14]. These methods create bi-

directional spatializations, where the visual metaphor is used not only for communication

of the model’s approximation of the data relationships, but also to enable users to commu-

nicate their expertise and prior knowledge of these relationships. For example, users can

create groups and clusters of documents in the spatialization, from which the system solves
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for the distance function or dimension weighting that corresponds to those relationships. In

contrast to direct manipulation methods above, such automatic model-steering approaches

require less formality and knowledge of the underlying models being used.

The approach presented in this chapter falls into this automatic category of model

steering. However, instead of directly manipulating the location of documents (or obser-

vations [EHM+11b]) in spatializations, our technique enables users to re-arrange terms

extracted from the documents. In “document-centric” approaches, analysts must first read

some of the documents to discover the relevant terms, and decide which documents to repo-

sition spatially. As dataset sizes increase, it may take longer for analysts to locate two or

more documents for which a similarity assessment can be made.

In this chapter, we present a novel visual analytic technique for “keyword-centric”

spatializations for visual data exploration of text. As opposed to the traditional methods

of visualizing a spatial layout of documents, our approach first extracts a set of keywords

from the documents and encodes the similarity between keywords spatially. The keyword-

centric spatialization is similar to context-preserving word clouds [CWL+10], in that pair-

wise distances between keywords encodes their relative similarity. As a result, clusters of

keywords represent related concepts. Analysts interact with the keywords using the same

implicit model steering technique. However, the keyword-centric approach bypasses the

requirement for the analyst to read the documents before being able to manipulate the spa-

tialization. Instead, by reading the keywords on the screen, the analyst can immediately

begin to form hypotheses and gain a high-level gist of the concepts within the documents.

We present an implementation of our technique in the prototype, Doc-Function, designed

to enable sensemaking of text corpora.

We evaluate the utility of Doc-Function through an exploratory user study consist-

ing of analysts performing a sensemaking task. We show that users were successfully able

to use Doc-Function to perform a text sensemaking task. Finally, leveraging the conceptu-

alization and the high-dimensional space created using our keyword-centric approach, we

demonstrate that each analyst’s interaction trails can be visualized and compared. We call

this high-dimensional space “Model Space” and show that this approach represents an ef-

fective method for encoding and visualizing multiple users’ analytic provenance. visually
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explore and compare the incremental adaptation of the data model over time for each ana-

lyst. We show that this method effectively shows the analytic provenance of the analysts in

our user study.

The primary contributions to visual analytics described in this chapter are:

• A visual analytic technique for creating and interactively steering keyword-centric

spatializations

• A prototype application, Doc-Function, demonstrating the utility of our technique for

visual text analysis

• An evaluation of our prototype, showing the effectiveness of our approach for per-

forming a sensemaking task

• A novel visualization called ModelSpace for visualizing users’ interaction history and

analytic provenance based on the implicit, keyword-centric model steering technique

5.2 Learning Inverted Document/Keyword Models

Similar to previous work on learning models from user input we use an iterative interaction

process [BLBC12], as illustrated in Figure 5.1. We present a visualization of data and ask

users to manipulate data directly. A back-end machine learning algorithm processes the

input to learn a new model and the system uses that model to present a new visualization

that is closer to the user’s intended mental model. This iterative process allows incremen-

tal improvement, and when the user is content with the visual representation, the model

representation can be used for analytical purposes.

In this particular work, the data is a text corpus, the data points users interact with

are keywords extracted from the documents. The features of information corresponding

to each keyword, i.e. the dimensions of the dataset, are the documents in which the key-

words appear. The visualization is a multidimensional scaling (MDS) [BG05] of keywords

extracted from the document collection, and the back-end machine learning algorithm is

based on the work of Brown et al. [BLBC12] (discussed in Chapter 3), producing a dis-

tance function based on the user changing distances between groups of data points. This
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Figure 5.1: This figure shows the iterative feedback model. The first time through, a user
views and explores an initial visualization. His or her manipulations are fed to a machine
learner in the back-end, which produces a new model and thus a new visualization for
further exploration. Iteratively, the user approaches a visualization that corresponds to his
or her mental model, and can use the corresponding machine learning model.

section first covers the specifics of the keyword extraction and projection, and then explains

how user feedback is used to update the model.

5.2.1 Extracting Keywords from the Document Corpus

Traditionally, layout mechanisms for analysts to review bodies of text have been based on

showing representations of documents [EFN12b, WTP+95, CLKP10]. Instead, we show

the user a layout of keywords extracted from the documents. Similar to the concept behind

word clouds [VWF09], we believe that these keywords are more likely to map to users’
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concept maps than the full documents, and thus the layout of the keywords will be a better

proxy for the user to express his or her mental model.

In order to extract keywords from the documents, we apply Rapid Automatic Key-

word Extraction (RAKE) and Computation and Analysis of Significant Themes (CAST)

[RECC10, RBC+09]. First, RAKE scans each document and extracts short sequences of

words separated by stop words and phrase delimiters (e.g. punctuation). A graph of co-

occurrence of constituent words within the candidate keywords is computed and statistics

over that graph are used to score keywords. Those keywords with high enough score are re-

tained. Note that in order to preserve keywords that may include stop words, like the phrase

time of day, RAKE creates extra possible keywords to test out pairs of extracted keywords

when they appear at least twice in the same order within a document [RECC10].

The CAST algorithm [RBC+09] is applied to the result of RAKE. The keywords

are evaluated to discover keywords, or themes, in the text corpus, which can envelop mul-

tiple keywords. The CAST algorithm scans all keywords from all documents and builds

a hierarchical agglomerative clustering based on the idea that two keywords are similar

if they co-occur in documents. Themes are chosen from among the clusters based on an

evaluation formula detailed in Rose et al. [RBC+09], and the themes are named after their

keyword with the highest association to the documents covered by the theme. These themes

then include sets of keywords that tend to appear in the same sets of documents [RBC+09].

Using RAKE and CAST allows us to show the user higher-level concepts like denver bank

accounts or egyptian passport as opposed to just single words or even single keywords. We

continue to call these extracted themes keywords, k1, . . . ,kN , and use them as the entities in

our spatial text visualization.

5.2.2 Generating the Text Layout

In a model-steering system, the visualization used to gather feedback from the user should

reflect the model so the user can see his or her model-steering influencing the visual repre-

sentation of the data. In this case we are building a distance-metric model, which means the

visualization must reflect the distances between data points (i.e. keywords). To determine

the distances between these keywords, we use a modified Bray-Curtis dissimilarity metric
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[BC57]. The original Bray-Curtis formula defines the dissimilarity between two keywords

ki and k j based on their co-occurrences in documents and is defined as:

BC(ki,k j) = 1−
2|docs(ki)

⋂
docs(k j)|

|docs(ki)|+ |docs(k j)|
(5.1)

where docs(k) is the set of documents that include keyword k. This function indicates what

proportion of the total possible documents in common the two keywords share. Thus the

Bray-Curtis dissimilarity measure ranges from 1 (the keywords are used in none of the same

documents) to 0 (the keywords are used in all of the same documents).

The original Bray-Curtis formula in (5.1) is based on sets of documents that con-

tain keywords. In order to convert this formula into a vector formulation that better fits our

needs, we adopt the equation provided in the CAST algorithm [RBC+09]. First, consider

each keyword to be represented by a vector with length equal to the number of documents

in the corpus. Thus each keyword’s vector, i.e. ki for keyword i, has an element kil corre-

sponding to keyword i’s relationship to document l for all M documents. That relationship

is encoded by the inverse document frequency (IDF) [MRS08a]:

id f (ki) = log
M

|docs(ki)|
(5.2)

kil =


id f (ki) if ki is in docl

0 otherwise
(5.3)

Note that the denominator is never zero because there are no keywords that do not appear

in a document. Then using the vector specification of 5.3, the vector-based Bray-Curtis is:

vectorBC(ki,k j) =
∑

M
l=1 |kil− k jl|

∑
M
l=1 kil + k jl

(5.4)

Finally, in order to use this equation in a model-steering context, we require that it

be dependent on a model. Similar to Brown et al. [BLBC12], our model is a weight for each
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dimension of the data, i.e. for each document, expressing the relative importance of that

document in determining the similarities of keywords. Therefore we propose a version of

the Bray-Curtis dissimilarity that applies a vector Θ = [θ1, . . . ,θM] of weights, one for each

document. When a system is initialized, Θ will be initialized to θi = 1/M ∀i, but updates

from the user will change these values to incorporate knowledge about the data. Using the

vector representation and applying the weight vector, we rewrite Bray-Curtis:

weightedBC(ki,k j,Θ) =
∑

M
l=1 θl|kil− k jl|

∑
M
l=1 θl(kil + k jl)

(5.5)

One further adjustment is required for this application. Due to the sparseness of the

data from CAST, we augment the space of documents with dummy documents that each

represent one keyword. We define the document kwdocki for any keyword ki as a docu-

ment containing all the keywords that co-occur with ki in any document, i.e. the document

kwdocki contains the set of keywords:

{k j : |docs(ki)
⋂

docs(k j)|> 0} (5.6)

With the appended document set, the vector for keyword ki has an entry associated with

each real document, and then an entry associated with each dummy document The entries

for the dummy documents are calculated as for normal documents, following Equation 5.3.

For vector elements corresponding to dummy documents, e.g. document kwdock j , the value

is nonzero only when keyword ki co-occurs with keyword k j in some document. In total, the

vector corresponding to a keyword has elements representing documents with the following

structure:

ki = [doc1, . . . ,docM,kwdock1 , . . . ,kwdockN ]

These adjusted vectors have length M+N, but because these vector elements corresponding

to keywords are dummy documents, we now redefine the value of the symbol for the number

of documents, M, to be this new value that includes the count of the dummy documents,

and use M to mean this quantity going forward.

Using the modified Bray-Curtis distance between these keyword vectors, we cre-
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ate an MDS projection of the keywords for a two-dimensional visualization by creating a

matrix of pairwise dissimilarities between keywords, applying Principal Component Anal-

ysis (PCA), and projecting onto the two strongest principal components. This projection

space optimizes for maintaining the similarities from the Bray-Curtis space down to the

two-dimensional viewing space.

5.2.3 Interpreting User Interaction

Creating a visualization of the text data is only the first step. The projection described is

intended to represent a learned model, Θ. To create a model-building experience, we must

be able to convert user feedback with the visualization into a model update. We can refer

to the model-parametrized Bray-Curtis distance of Equation 5.5 as a parametrized distance

function:

D(ki,k j|Θ) = weightedBC(ki,k j,Θ)

In this form, we use it in the machine learning back-end formulation from Brown et al.’s

work, Dis-Function [BLBC12], by using optimization over the objective function

Θ
t = argmin

Θt ∑
i< j≤N

Lt
i j
(
D(ki,k j|Θt)−U t

i j ·D(ki,k j|Θt−1)
)2

(5.7)

After a user has interacted with a visualization that encodes an underlying model

Θ(t − 1), we learn a new model Θt that encapsulates the feedback from the user. This

feedback is encoded in the form of the matrix U where each entry Ui j shows the amount of

change the user made to pairs of keywords (i, j).

In our approach, we support two methods for a user to update the model. Either the

user provides two groups of points Y 1 and Y 2 and requests the groups be moved relative to

each other (this is referred to as a “two-group update”), or the user provides a single group

of points, requesting that the points in the group be updated relative to each other (referred

to as “one-group update”). In both cases, entries in U corresponding to keywords the user

did not include in any group are set equal to 1, while those involved in the update are set
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equal to the ratio

user adjusted distance
original distance

(for distances in the projected space)

More specifically, in the case of the two-group update, the entries Ui j corresponding to

points where xi ∈ Y 1 and x j ∈ Y 2. For the one-group update, there is only one group, Y 1

and the entries of U are updated where xi ∈ Y 1 and x j 6=i ∈ Y 1. Note that the Lt
i j coefficient

simply encodes a scaling factor to ensure terms of the summation that include interaction

points have higher weighting. For a more detailed explanation of Equation 5.7, refer to

Chapter 3, Figure 3.3.

The optimization seeks to minimize change to the overall system while taking into

account changes to relative distances imposed by users [BLBC12]. The algorithm produces

a new value of Θ that includes the feedback, and this new model is used to regenerate the

visualization as well as becoming the new representation of the user’s mental model.

5.3 The Prototype

To evaluate the efficacy of keyword-centric model-steering sensemaking, we built the Doc-

Function prototype. While Section 5.2 explains the technical aspects underpinning the sys-

tem, this section describes the Doc-Function prototype and shows the interface that partici-

pants in our experiment used to uncover a fictitious terrorist plot (see Section 6.2).

The Doc-Function system is designed around the concept of keyword spatialization,

with additional features to facilitate exploration and discovery. The main interface is shown

in Figure 5.2. Occupying most of the window is the projection of the keywords. In this

region, a user can drag and drop keywords to explore. When the mouse cursor is over one

or more keywords, the corresponding documents are shown in the panel on the right for

perusal. This way, the user can immediately relate the concepts he or she is considering

to the content that is responsible for their relationship and that underscores the objective.

Further exploration or comparison of document sets can be achieved using alt+click on a

keyword, bringing up a window containing the related documents. Multiple windows can
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Figure 5.2: The Doc-Function prototype shows a projection of the important keywords from
the collection of documents (see Section 5.2.1), and allows a user to move them around and
provide feedback on their placement to a machine learning back-end (see Section 5.2.3).
The right column shows the documents that use the keyword the mouse cursor is over
(”arrested”), and the buttons along the top provide helpful functionality like undo, reset
and search. This figure also illustrates the search capability. The pop-up window allows a
user to search for one or more string tokens, and shows all the documents that include those
tokens. The Highlight button draws circles around all of the keywords that contain those
documents, as seen in the figure.

be opened this way, allowed comparison of document sets side-by-side.

To communicate to the system that certain groups of keywords should be closer or

further away, a user holds the control button while moving them. The keywords are written

in red or blue based on which mouse button was used (left or right respectively). There

are two ways of using this point-marking mechanism to update the model. The user can

order a one-group update or a two-group update. As explained in Section 5.2.3, these two

types of update are encoded differently for the back-end machine learning, but both results

in a model update that takes user feedback into account. The separate groups of keywords

marked in red and blue with the two different mouse buttons are used as the two different

groups, Y 1 and Y 2 for the learner, or just Y 1 in the case of a single-group update.
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Either update is ordered with a button on the toolbar, after which Doc-Function

learns a new model based on the feedback. Through an optimization, this process results in

a new underlying model, i.e. a new distance function that takes into account the changes to

relative positioning of keywords given by the user’s feedback feedback. The new distance

function is used to regenerate the visualization, which is directly dependent on the distances

between points (see Section 5.2 and Figure 5.1). After updating the model, Doc-Function

highlights the moved keywords in the new projection so the user can see how the changes

affected those points. Those highlights, as well other types, can be turned off with a toolbar

button. Another toolbar button gives the user a view of the model directly, showing which

documents are weighted most highly by providing a popup window with all the documents

ordered from most strongly weighted to weakest, along with the actual weight values.

If the user is unhappy with the visualization given by a new model after an update,

the second-from-left section of the toolbar provides features for undoing the changes. There

is an undo button and a reset button. While the first undoes only one step, returning the in-

ternal model to its previous state and re-rendering the visualization accordingly, the reset

button returns the model and visualization to the original state, i.e. with an evenly-weighted

distance function. Finally, the user also has the ability to undo only the interaction per-

formed since the last update. This option does not change or update the model, but it only

puts anything the user has moved or highlighted back to its original location and state.

The Doc-Function prototype also includes features to facilitate the process of sense-

making. Most importantly, there is a search function seen in use in Figure 5.2. The small

text box on the pop-up window can be used to search for a phrase, or the presence of any

of the included strings (based on the option button beside it). The larger box shows all the

documents that were found in the search. On the bottom of the window, the Highlight (and

corresponding No Highlight) buttons toggle circles around keywords in the main visual-

ization window that appear in the documents that responded to the search. In the figure,

highlights have been turned on, and several circled keywords are visible on the keyword

spatialization in the main window, helping the user see where the search could direct them

to look in the spatial layout.

The prototype system Doc-Function is built in C# (.NET Framework version 4.5)
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using Windows Forms and GDI+ with the ALGLIB library [BB13] for optimization and the

Accord [dS12] library for calculating principal component projections.

5.4 Evaluation

To evaluate the the proposed prototype, Doc-Function, and its underlying model construc-

tion, as well as to collect data on how users took advantage of model-steering and spa-

tialization, we conducted a user study. In this section, we explain the source data, the

characteristics of the groups of participants, the task they performed, our procedure for the

experiment, and the data we collected.

5.4.1 Data

Using a dataset designed for intelligence training, we asked our participants to find a ficti-

tious terrorist threat embedded in the data. Specifically, the data consists of 49 documents

and the keyword extraction identified 165 keywords (see Section 5.2). Each document con-

tains on average 7.7 of the keywords (σ = 3.5, mode tied for 4 and 10). Correspondingly,

each keyword is found in 2.3 documents (σ = 1.5, mode = 2).

Information about the threat is spread out over several documents. To make the task

more difficult, the corpus contains distracting documents that are superficially suspicious

but are not actually helpful for the task. In total, the task is reasonably difficult, but can

certainly be performed successfully without intelligence training.

5.4.2 Participants

Our study population consisted of 13 participants at the Pacific Northwest National Lab-

oratory (PNNL) in Richland, WA. They included 7 males and 6 females. We chose our

participant group to include varied levels of experience with intelligence and text analysis

to see how a spectrum of expertise would be applied to Doc-Function. Our participant group

includes personnel who are professional analysts (2), scientists and engineers (5), interns

(5), and administrative staff (1). The scientists and engineers were from varying research

backgrounds including Mathematics, Biology and Computer Science.
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5.4.3 Task

We asked each participant to use the Doc-Function prototype to uncover a fictitious terrorist

plot threaded through a document corpus. These documents include mock field reports and

mock reports from other intelligence gathering and collection. The threat is not written in

a single document, but rather must be pieced together from other intelligence and extracted

from false leads. The participants could use all the features of Doc-Function described in

Section 5.3. The scheduled experiment periods were one hour, but the participants were

given flexibility. They all continued until satisfied that they had discovered the plot or

found everything they would be able to, using no more than an extra twenty minutes. Using

a talk-aloud study, we encouraged the participants to explain their reasoning processes as

they worked.

5.4.4 Procedure

After filling out a participation agreement, each participant was given a writing utensil and

a sheet of scrap paper (and told they could have more). The administrator of the task, who

was the same for all participants, then provided a tour of the Doc-Function system and its

features. We explained to all participants the nature of the talk-aloud study and continued to

encourage them to talk during the course of the task. We also continued to encourage them

to use the model update mechanism to maximize our data collection, especially when they

were unsure what step to take for their analysis. Whenever asked, we provided help with

how to use any of Doc-Function’s features. The time required to calculated model updates

varied, and so we took advantage of extra time when possible to probe participants for extra

information about their though process and direction.

Finally, when the participant was finished, we administered a survey to check that

the plot was uncovered and learn what features were useful and what could be improved. We

asked for a summary of findings, evidence to support those, and organizations, people and

places involved. We also asked for hypotheses considered but not pursued, and examples

of backing up (often corresponding to when the participant used the undo or reset features)

during analysis. We also asked for feedback with the tool, including favorite functionality

67



and proposed missing functionality.

5.4.5 Data Collection

With their consent, all participants’ efforts at the task were recorded on video (with audio).

The Doc-Function system logs all types of interactions: mouse-over document viewing,

alt+click document viewing, searching, search highlighting, viewing document weights,

reset, undo, undo since previous model, and both types of model update, including infor-

mation about which keywords were moved to where.

Those records are accompanied by copious notes taken by the administrator. These

notes include comments of participants about their processes and descriptions of times when

participants had certain insights about the plot. Further they show when participants took

advantage of the spatialization, used the reset feature, or discussed people or certain places.

All these observations were recorded with timestamps and have been coordinated with the

software logs.

5.5 Results

In this section, we discuss the results of our evaluation with our keyword-centric, model-

steering text analytics prototype for sensemaking. We partition the results into two sections.

First we cover the participants’ success with the prototype tool, and second, we discuss their

feedback.

5.5.1 Participant Success with the Tool

Perhaps most important to note is that nearly all of the participants discovered the fictitious

plot in the document corpus. Because we had a range of skill levels involved in the task,

there is certainly a range of depth of understanding of the plot, but every participant but one

was able to identify elements of the threat for further consideration. This proportion yields

a success rate of 92 percent.

More interesting are the ways in which we can characterize the different uses of

the tool and utility of the different features. The spatial layout was useful to almost every-
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one. Participants were not always explicit upfront that they were taking advantage of the

layout. Rather they were often able to leverage the spatial layout apparently through intu-

ition and based on their understanding and our explanation of what the layout of keywords

represented and how it is made (i.e. similar or related keywords should be closer to each

other). Because of the talk-aloud nature of the experiment, we were able to ask participants

what influenced their choices of which documents to read and recorded that their responses

involved reasoning about the layout. For example one participant mentioned, “[These] are

all about intercepting plans,” and when asked how he came to find that set of documents

he pointed, “They were all crammed in there together.” As one analyst started reading, the

administrator asked, “How did you decide to look at that keyword,” and in response the

analyst pointed to part of the screen and said simply, “I just decided I was spending too

much time over there.” Another example was a participant who pointed at the screen and

explained, “Seems like the weapons stuff is all over in this area now, which is good.” Over-

all, in our observations of the participants and discussions during their reasoning process,

we found that all but one of them took advantage of the spatial layout in deciding what to

read or what to interact with. The one participant who did not use the spatialization is also

the one who did not satisfactorily uncover the plot. Of course, this is not enough evidence

to conclude that the spatialization was strictly necessary for the task, but it was certainly

part of the process of successful investigations.

Some features of Doc-Function were more popular than others. For example, only

one participant used the two-group model update. In our previous work with model-steering

systems, we have seen that even when a model update requires specifying two groups, users

may think about providing feedback in terms of grouping one set of data points together.

The single-group update may have been more popular because it was more intuitive. The

one participant who did use the two-group update liked the feature and explained using

it like an OR operator among the keywords in each group. This is a semantic meaning

of the operation that the authors had not considered. Further, the new semantic intent of

this participant is a reminder of the rich possibilities for further interaction techniques that

are possible with keywords. For example, performing a search has been investigated as

semantically useful in related model-steering work with documents, [EFN12b], but with
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the keyword-centric approach and the search-and-highlight functionality of Doc-Function,

we could leverage the connection between the search and the set of highlighted keywords

to ask the user which were the most useful highlights, and update the model by reinforcing

those highlighted keywords’ connections to any search keywords.

Most participants took advantage of either the undo or reset function. In total,

five participants used undo and two used reset, with no overlap between the two groups.

They used it for different reasons, but overall it was because the model built from their

interactions was not helping. For example, one participant said he had made a mistake by,

“Collecting too many [keywords] at once.” Giving participants the ability to undo or start

over gave them more control over their investigations.

Every single participant made use of not only search but search highlighting. For

example, participants would notice people or places in documents and then search for their

names to see what other keywords were relevant to those entities. Participant 12 described

searching for a person’s name and then using the highlight feature to see a useful group-

ing in the spatial layout. The name appeared in documents whose keywords were grouped

together in the spatialization. The search feature connects the keyword space to the doc-

ument space, and the highlight connects the document space back to the keyword space.

Together, these features helped people understand connections between one keyword and

others through documents.

5.5.2 Participant Feedback

In the course of discussions with the study participants and in the post-task survey, we

collected feedback on Doc-Function itself. Participants had overall good impressions, but

we also uncovered potential areas for improvements and features to test in future research.

In the survey at the end of the study we asked participants what features they liked

and what features may have been missing. Again, search was popular: “I liked a lot. [I]

Liked the search..., the search is nice because I can just pull up a keyword thing and then...

being able to read the documents in that format helps.” Another participant, “[I liked] that

I could do a search and highlight all the [keywords] that contained documents that had

that search [keyword] in it (sic).” And another included the pop-up showing all documents
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associated with a keyword, saying, “”[I liked] both the search and the alt-click, those things

were excellent, that helped a lot.” Participants went further and suggested ways to make

search more powerful, like an option to select keywords in the layout and have all the

corresponding documents show.

One common theme participants thought could be improved was the visual layout

of keywords. One explained, for example, wanting to “be able to spread the keywords

enough to see them.” Keywords were drawn with overlap, making it difficult to see some

words before items had been moved around. Based on this feedback, as part of future iter-

ations of the Doc-Function system, we aim to add jitter to the keywords to remove overlap

between the text. In addition, to further encode more information into the visualization, we

will integrate Word Cloud techniques including using font size and color to indicate such

properties as read vs. unread, keyword frequency, of the keywords and color to indicate

While participants found the spatial layout of keywords useful, several suggested

that the next step toward helping them build mental models would be tools or even automa-

tion that could help keep track of people, places and dates. We aim to include a mechanism

for indicating when keywords belong to these categories so that they can be made promi-

nent or even visualized separately, i.e. with coordinated views of a graph for connected

people, a map for places, and a calendar for dates.

Overall we are encouraged by the reactions of study participants to our prototype.

They took advantage of most of the features provided and gave us helpful insight into how

the software could be improved to better enable their analysis experience in the future.

5.6 Numerical Provenance

In this section, we explain ModelSpace, our novel method for leveraging the numerical

models produced during model steering to examine the provenance of users’ analysis (see

Figure 5.3). We first explain our specific instance of numerical provenance. Next we de-

scribe how we leverage that provenance information along with other data collected during

the Doc-Function evaluation to build a visualization. Finally, we discuss findings about our

participants’ use of the software uncovered by this visual analysis.
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Figure 5.3: This figure shows ModelSpace visualizing the paths multiple participants took
through the space of possible models during the course of the Doc-Function evaluation.
The dots represent models, i.e. some Θt

u achieved by some participant at some point in
the analysis task. The lines connect the models and represent the time in between model
updates. User identity is encoded with color. Arrows on the lines indicate the ordering
of the models. An example of mouseover text is included for both a dot and a line. For
a dot, this shows the ten most highly-weighted documents, and for a line, this shows all
the activity that occurred between the models that the line connects. Note that this view is
zoomed in and some of the lines connect to dots outside the viewing window.

5.6.1 Participant Exploration Space

During the course of their explorations, our participants saw several spatial layouts of the

data. Each layout was a manifestation of the model built from their model-steering inputs,

and each model is represented by a vector in RM. The models are a special form of prove-

nance information - a set of numerically encoded models in sequence that track the user’s

progress through the space of possible models, i.e. the “model space”. We sought to take

advantage of this unique, numerical provenance data by examining and comparing the paths
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different participants took, providing insight into how participants used Doc-Function dif-

ferently, and how their provenance paths and features of the software brought them to their

conclusions.

The particular numerical provenance notation in our case is the series of model vec-

tors that participants encountered during the model-steering operations using Doc-Function.

Recall that for each time a Doc-Function user completes a model update, we learn a weight

vector Θ ∈ RM explaining the importance of each of the documents to the user’s current

understanding (see Section 5.2.3). Each model corresponds to some time t and some user

u, and is denoted Θt
u. Thus a user u has a model trail through model space that is the se-

quence {Θ1
u, . . . ,Θ

t
u, . . . ,Θ

T
u } based on his or her interactions. In similar fashion to Mao et

al. [MDL07], we take advantage of the real-valued vector nature of this model sequence

and create a projection of the models themselves. Specifically, we calculate pairwise Eu-

clidean distances between all the model vectors across all users and all time steps and apply

multidimensional scaling (MDS) to build a spatial layout of the models themselves, show-

ing all their relationships to each other. Figure 5.5 (a) illustrates how the models are related

to each other in a projection.

5.6.2 Exploring Model Space with ModelSpace

Figure 5.3 shows ModelSpace, the interactive visualization we created for visualizing the

type of numerical provenance data produced by the Doc-Function prototype. The dots rep-

resent models, i.e. vectors Θt
u, achieved by some participant at some point in the analysis

task. The lines connect the models and represent the time in between model updates. User

identity is encoded with color. All the participants1 start with the same unweighted model,

so there is a line in each color emanating from the middle. In Figure 5.3, the view is

zoomed-in, and so some of the lines connect to dots that are outside the viewing window.

The small arrows on the lines indicate the ordering of the models. ModelSpace shows undo

and reset with a curved line pointing from the model the participant saw when request-

ing the undo or reset back to a previous model, either one step back or to the beginning,

1Note that two participants’ data was excluded from the visualization because they had been forced to take
a break during the task and this compromises the timestamp information used to build the visualization.
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Figure 5.4: This figure illustrates how the series of models created by a user’s path of
exploration can be written as a series of functions that can be represented by vectors and
thus projected into two-dimensional space for examination. Each dot represents a vector
Θt

u which specifies the internal model of Doc-Function for one user, u, at one timestep, t,
of the analysis, i.e. one model the user built with feedback in Doc-Function.
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(a) Highlighting User 9, Document 41

(b) Highlighting Document 41

Figure 5.5: Subfigures (a) and (b) show views of ModelSpace for our numeric provenance
data. The dots represent models, i.e. some Θt

u achieved by some participant at some point
in the analysis task. The specific user is encoded by the color. Each line connects two dots
and represents the time between the two models. Arrows on the lines indicate the ordering
of the models. In (b), we have indicated in blue the trails through model space of the two
professional analysts. Note they are quite similar. In (c), we show a search for “doc41”.
Models in which Document 41 is one of the top ten most important documents (i.e. has
one of the highest weights) are thus highlighted in black. Note that Document 41 is only
important in a couple regions of the ModelSpace, illustrating how the technique can help
find such regions.
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respectively.

The visualization shows more than just the spatial relationships and the sequence of

events. The information used to create it includes the full logs from Doc-Function, which

contain the keywords included in each model update, all searches conducted, and every

instance of the participant placing the mouse cursor over a keyword (as a proxy for what

documents were seen). In addition, the user study administrator of the user study took

careful notes about what insights the participants discovered a what times, including when

they discussed certain people and places and when they took advantage of the spatialization.

These observations are digitized and collated by timestamp. They are coordinated with the

logs so that ModelSpace can provide a fuller picture of the participants’ analysis processes

and show not only what models they created, but how they forged their paths to these

models.

The information from the administrator’s observations is associated with the lines,

telling the story of what participants did between model updates. While mouse-over text

for the dots indicates the ten most important documents for the corresponding model, the

mouse-over text for a line shows everything that happened during the interval between the

two dots the line connects. Events between model updates include information from the

logs (keywords moused-over, searches conducted, keywords in applied mode updates) and

observations from the administrator’s notes (insights discovered). With all this information

compiled, coordinated based on timestamps, and associated with lines connecting models in

the visualization, ModelSpace can provide a detailed impression of what a given paticipant

was doing that lead to different models.

Two additional features to this exploratory visualization facilitate finding the pat-

terns we discuss in the next section. First, a search feature that highlights all lines and dots

containing the search text with black makes it easy to examine where in the model space

different documents were important and when participants had certain insights or read cer-

tain documents. Second, a token set intersection feature shows a list of all the tokens in

common among the most recent dots and lines clicked. The list resets with a clear button

and then continues to update the intersection as items are clicked. Using this feature, we can

see what keywords several models have in common just by clicking the dots in sequence.
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5.6.3 ModelSpace Insights

ModelSpace provides ample opportunities for exploration of the interaction data. It be-

comes clear immediately from this view that while all the users start in the same place, they

diverge in different directions, with some directions more similar than others. This is dif-

ficult to ascertain without such a numerical provenance representation and accompanying

visualization.

The data are not large enough to provide significant statistical results about how

different types of participant differed (e.g. interns vs. professionals). However, with ex-

ploration, interesting patterns emerge. First, the two professional analysts had remarkably

similar paths, as seen in Figure 5.5 (b). Of course, two paths are not enough to prove a

pattern, but we can see potential for this analysis technique to unveil such similarities.

Following each participant’s trail using the ModelSpace feature that shows docu-

ments in common between models, (see the token intersection feature explained in Section

5.6.2), we can see what the models along the individual trails have in common. In par-

ticular, we see the intersection of the sets of documents that were most important at each

model. We found that for all participants included in ModelSpace, in each participant’s fi-

nal trail, i.e. the one that ended with the close of the evaluation as opposed to with an undo

or reset, there is at least one document in common along the whole trail. That means that

once a participant went down a path of analysis, some elements of the participant’s initial

model update carried through the rest of the process. This could be a visual manifestation

of the inertia inherent in the learning mechanism. Whether it is intentional on the part of

the participants or not, we clearly see through ModelSpace that without using undo or reset,

participants do not escape the effects of their initial inquiries.

For a further example of how ModelSpace reveals patterns in our provenance data,

consider Figure 5.5 (c). In this figure, a search has been performed for “doc41”, the name

of a document. The black dots, circled in blue, highlight the models in which Document

41 was weighted as one of the most important. The figure shows how the visualization can

reveal that models where Document 41 was important appear in a limited number of areas

in this spatial layout of the model space.
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We believe this numerical provenance opens up new avenues for using visualization

to explore users’ interaction patterns as model-steering gains a place in common applica-

tions. Unlike traditional visualizations of user’s interaction logs, the use of ModelSpace al-

lows immediate comparison of the analysis trails between multiple participants. Although

a thorough examination of the benefits and limits of this approach is out of the scope of

this work, we believe that the use of this broader technique for visualizing and analyzing

users’ analytic provenance can lead to new techniques and evaluation methods. In section

6.9 we will further discuss the potential implications of evaluation and analysis using this

approach.

5.7 Discussion

One of the grounding principles of the work presented in this chapter is the concept that en-

abling interactions on spatializations of keywords is an effective approach for sensemaking

tasks of text corpora. Our user study showed the utility of this approach, and also raised

interesting and important questions that can further extend our knowledge of the role (or

science of) user interaction for visual analytics [PSCO09, YKSJ07]. Additionally, the inte-

grated technique for visualizing and evaluating the implicit model steering in our technique

allows for a novel method of understanding how the system adapts over the course of the

investigation. These points are discussed in the subsections below.

5.7.1 Document Weighting and Query Refinement

The user feedback and interaction on the keyword positioning enables our technique to

solve for weights on documents. Such keyword weighting mechanisms are also used in the

information retrieval and query refinement. For example, Ruotsalo et al. [RJMK14] show

how providing user feedback on terms via relevance feedback techniques [Roc71] enables

query refinement based on the user’s interest. Similarly, the work presented in this chapter

makes use of the document weighting to compute updated spatial layouts of the keywords.

However, the ability to refine and filter the document set based on the weighting could lead

to a more scalable approach for visual text analytics. In theory, the amount of words in the
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English dictionary has a lower upper limit than the number of unique documents that one

can create with those words. As such, the keyword-centric approach to model-steering and

visual analytics may provide a scalable approach to large-scale document analysis.

Additionally, prior studies have shown that analysts reason about text data during

sensemaking tasks using concepts and insights that are typically single words [EFN12a].

However, these studies further showed that the spatial constructs created by users through-

out their sensemaking tasks tend to be described by them using multiple words or short

phrases. Together, these findings suggest that our keyword-centric approach that makes use

of compound words and phrases can better support the users’ analyses as they better reflect

the users’ insights and hypotheses about a topic or a thread of investigation.

5.7.2 Does Insight Result from the Visual Analytic Process, or a Single Vi-

sual?

Studying and developing the science of user interaction for visual analytics is becoming

increasingly important. There has been more literature recently that discuss the potential

ways to describe insight in the context of visual data exploration [CZGR09]. In general, two

schools of thought include that insight is either the process, or the product of the analysis

[NCE+11]. The method of visualizing and analyzing the analytic provenance in this chapter

shows the model evolution over time. Each user interaction perturbs the model, and this

update creates a new spatial representation of the information. Thus, we can observe more

directly if the paths or sequences of these states (caused by user interactions) lead to similar

insights, or if any specific points or regions in the visualization attribute to similar insights

or findings.

In our analysis of the users’ analytic provenance using ModelSpace, we discovered

evidence that support both the process and the product arguments. As noted in Section

5.6.3, we observed that two expert analysts trails coincide with each other, suggesting that

the process itself is important. However, at the same time, we also discovered certain

documents that appear near each other in the spatialization, thus indicating that certain

products are particularly relevant to the users’ understanding. While we unfortunately are
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not able to resolve this debate in this study, the successful use of the ModelSpace approach

indicates that numerical provenance can be a rich direction for future research in analytic

provenance and the evaluation of visual analytics systems.

5.8 Future Work

As interactive model steering continues to become a more popular method for integrating

user feedback into visual analytic systems, the challenge of evaluating these techniques

will become more critical. It is understood that researchers in this area see the potential

for increasing automation and computation. However, there is the realization and open

challenge that maintaining user control is also critical [ENCZ, KAF+08]. At a more holistic

level, studies have tested the utility for successfully performing sensemaking tasks (e.g.,

[EFN12b, BLBC12]).

While the Doc-Function system and its evaluation adds to our understanding of how

keyword-centric model steering can be used in analyzing a text corpus, it remains difficult

to objectively determine how the Doc-Function system effectively integrates user-driven

and automated analyses. Our ModelSpace approach has shed some light on how analysts,

with the help of automated analysis, explore keywords and documents to discover plots and

patterns in the corpus. However, even with the use of ModelSpace, it is still difficult to

discern which of the analysts were more effective and why. Traditional evaluation methods

based on task completion and performance metrics and the more modern approaches based

on user-reported insights are both insufficient in determining the effectiveness of a series

of a user’s interactions and analysis steps. As the the visual analytics community contin-

ues to grapple with balancing user-driven analysis with automated techniques, it becomes

increasingly important for the community to develop additional methods and metrics for

evaluating how these model steering techniques support and improve sensemaking.
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5.9 Summary

In this chapter, we presented a prototype visual analytics tool, Doc-Function, for interac-

tive model-steering and analysis of document corpora. Unlike traditional model-steering

methods that require the users to directly manipulate the text documents in a spatializa-

tion, the Doc-Function system takes a keyword-centric approach in which the user interacts

with the (compound) keywords extracted from these documents. We evaluated the Doc-

Function system with participants who range from having little or no analysis training to

professional analysts and found that almost all participants were able to successfully use

the system to discover topics within the given document corpus. In addition, with the use of

the keyword-centric approach, we were able to capture the participants’ interaction trails as

numerical models. When viewed with a visualization, these interaction trails reveal inter-

esting patterns about each participant’s analysis pattern and allow us to further investigate

the process and products generated by these participants during their investigations.
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Chapter 6

Finding Waldo: Learning about

Users from their Interactions

This chapter is based on the paper:

Eli T. Brown, Alvitta Ottley, Helen Zhao, Quan Lin, Richard Souvenir, Alex Endert,

Remco Chang. Finding Waldo: Learning about Users from their Interactions. Transactions

on Visualization and Computer Graphics (TVCG), 2014. (Presented at VAST 2014)

6.1 Introduction

With ModelSpace in Chapter 5, we showed a technique for analyzing users’ analytic trails

through the space of possible machine learning models in a text analysis task. In doing

so, we saw a hint of the potential for using computational methods to examine numerical

representations of user activity. However, ModelSpace makes use of the numerical repre-

sentation to create an interactive visualization of the users’ provenance. A human must still

be involved to gain knowledge from the other users’ interaction trails. In considering what

a computer-only approach can do with such numerical provenance data, we transition to the

second prong of this dissertation as described in the Introduction (Chapter 1) with Figure

1.1. We turn the model-learning around and use the user’s interaction data to learn about

the user as opposed to the data. We work towards future systems that can learn about their

users and adapt appropriately.
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Figure 6.1: The interface from our user study in which participants found Waldo while we
recorded their mouse interactions. Inset (a) shows Waldo himself, hidden among the trees
near the top of the image. Distractors such as the ones shown in inset (b) and (c) help make
the task difficult.

Since visual analytics fundamentally requires the close collaboration of human and

computer [TC05], it is critical that we enable such partnerships by empowering the com-

puter to understand the human more effectively. While the computer can communicate

large amounts of information on screen via visualization, the human’s input to an analytic

system is still largely limited to mouse and keyboard [LIRC12]. This human-to-computer

connection provides limited bandwidth [JLMP93] and no means for the human to express

analytical needs and intentions, other than to explicitly request the computer to perform

specific operations.

Researchers have demonstrated that although the mouse and keyboard appear to be

limiting, a great deal of a user’s analytical intent and strategy, reasoning processes, and even

personal identity can be recovered from this interaction data. Machine learning researchers

have recovered identity for re-authenticating specific users in real time using statistics over

raw mouse interactions [Max03, PB04, RM06, Yu10] and keyboard inputs [LB99], but

classified only identity, no user traits or strategies. In visual analytics, Dou et al. [DJS+09]

have shown that strategies can be extracted from interaction logs alone, but at the cost

of many hours of tedious labor. Unfortunately these manual methods are not feasible for

real-time systems to adapt to users. The techniques needed to learn about users and their

strategies and traits in real time do not exist to our knowledge.

In this chapter, we demonstrate on a small visual analytics subtask that it is indeed
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possible to automatically extract high-level semantic information about users and their anal-

ysis processes. Specifically, by using well-known machine learning techniques, we show

that we can: (1) predict a user’s task performance, and (2) infer some user personality traits.

Further (3), we establish that these results can be achieved quickly enough that they could

be applied to real-time systems.

Our conclusions draw from an online experiment we conducted to simulate a chal-

lenging visual search task that one might encounter as a component of a visual analytics

application with the game Where’s Waldo (see Figure 6.1). The participants were given a

visualization enabling a set of interactions (panning and zooming) to explore the image and

find the character Waldo. During the participants’ search process, we collect a wide range

of information about their interactions, including the state of the visualization, and the time

and location of all mouse events.

Inspired partly by our visualization of the user paths through the search image, we

used this low-level interaction data to create three encodings that capture three major as-

pects of visual analytics: data, user and interface. The encodings are: (1) state-based, which

captures the total state of the software based on what data (portion of the image) is showing,

(2) event-based, which captures the user’s actions through statistics of the raw mouse activ-

ity, and (3) sequence-based, which encodes sequences of clicks on the interface’s buttons.

The encoded information is then analyzed using well-known machine learning techniques

such as support vector machines (SVM) and decision trees to classify groups of users with

performance outcomes and individual differences.

The results of our analyses demonstrate that we can indeed automatically extract

users’ task performance, and infer aspects of their personality traits from interaction data

alone. Further, task performance can be estimated quickly enough to be used in a real-

time system. Depending on which data encoding with its corresponding machine learning

algorithm, we attain between 62% and 83% accuracy at differentiating participants who

completed the task quickly versus slowly, with state-based yielding up to 83%, event-based

up to 79% accuracy, and sequence-based 79%.

With the goal of uncovering more intrinsic user factors, we applied the same tech-

niques to classify participants on personality traits, and found promising signal. In partic-
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ular, we can classify users based on three of their personality traits: locus of control, ex-

traversion, and neuroticism with 61% to 67% accuracy. The correlation between these three

personality traits and the participants’ performance are consistent with previous findings in

the visual analytics community on individual differences [GF10, OCZC13, ZOC+13].

Finally, on applying the techniques in real-time, we show that accurate prediction of

the user’s task performance and personality traits can be achieved after observing users for a

limited time period. Using the same encoding and analysis techniques described above, we

build classifiers based on a limited amount of the user’s interaction logs. We demonstrate

encouraging results for employing this technology in real-time systems, e.g. with only

two minutes of observation on a task that requires an average of nearly eight minutes to

complete, we can correctly classify the users with an average of 84% of the final accuracy.

Overall, our contributions to visual analytics are that we:

• Show that participants can be classified as fast or slow at the visual search task by

applying machine learning to three encodings of participants’ interaction data: (1)

state-based, (2) event-based, and (3) sequence-based.

• Apply these same techniques to classify participants based on personality traits and

demonstrate success for the traits locus of control, extraversion and neuroticism.

• Evaluate the plausibility of applying this work to real-time systems by providing

results using shorter timespans of data collection.

6.2 Experiment

To investigate what interaction data encodes about users of a system, we sought a task that

would simulate realistic tasks, and be difficult enough that people would have to think about

how to solve it (engage strategies). Adopting a large visual search task satisfies our criteria:

it is easy to explain to participants, but not easy to do, and it is a basic component of typical

visual analytics tasks. Specifically, we chose Where’s Waldo [Han87], a famous children’s

game consisting of illustration spreads in which children are asked to locate the character

Waldo. Finding Waldo is not easy thanks to the size of the image, which is large enough to
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require panning and zooming, and the fact that it is craftily drawn to provide a challenge.

However, the target is known and there is a guarantee that the task is possible.

We performed an online experiment, collecting interaction data as our participants

searched for Waldo in a large image (for our interface, see Figure 6.1). While Waldo is

attired in a distinct red and white striped pattern (see Figure 6.1: his full image appears

in the panel on the right and his placement in the full spread is shown in inset (a)), he is

sometimes hidden behind objects, and the illustrations are filled with distractors specifically

designed to mislead the user (e.g., scene elements covered in red and white stripes or the

characters shown in Figure 6.1 insets (b) and (c)). To locate Waldo, users have to visually

filter unimportant data, making him sometimes difficult to find. This difficulty is also analo-

gous to real-life applications of visual search, where the target item may be partly occluded

or obscured by objects of similar color, shape or size.

6.2.1 Task

In the main task, participants were presented with a Where’s Waldo poster and were asked

to navigate the image by clicking the interface’s control bar (Figure 6.1). The control bar

was designed to resemble Google Maps’ interface and afforded six interactions: zoom in,

zoom out, pan left, pan right, pan up and pan down. However, unlike Google Maps, our

interface does not allow dragging, rather all actions occur through mouse clicks only.

The zoom levels for the interface range from 1 to 7 (level 1 being no zoom and level

7 being the highest magnification possible). The full image has resolution 5646 by 3607

pixels. At zoom level 1, the full image is shown. At zoom level k, the user sees proportion

1/k of the image. Panning moves the display by increments of 1/2k pixels.

The interface also includes two buttons not used for navigation: Found and Quit.

When the target is found, the participant is instructed to first click Found then click on the

target. The user must then confirm the submission on a pop-up alert. We require multiple

clicks to indicate Waldo has been found to encourage participants to actively search for the

target instead of repeatedly testing many random guesses. If the participant clicks Found

but does not click on the correct location of Waldo, the click is logged, but nothing happens

visually. Unless the participant quits the application, the experiment does not terminate
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until Waldo is found correctly.

6.2.2 Data Collection

For our analysis, we recorded as much mouse activity as possible, including both mouse

click and mouse move events. Mouse click events on interface buttons were logged with a

record of the specific button pressed and a time stamp. Similarly, we recorded the interface

coordinates of the mouse cursor and the timestamp for every mouse move event.

To establish labels for our machine learning analysis of performance outcomes and

personality traits, we recorded both completion time and personality survey scores for each

participant. Because researchers have shown [GF10, OCZC13, ZOC+13] that the person-

ality factors locus of control (LOC), a measure of perceived control over external events,

and neuroticism and extraversion are correlated with performance on complex visualiza-

tion tasks, the survey was chosen to collect those traits. Specifically, we use a twenty-

seven-question survey which includes the Locus of Control (LOC) Inventory (five ques-

tions) [GJE+06] and the Big Five Personality Inventory (twenty questions) [DOBL06] in-

termingled. The survey also includes two attention checks which require participants to

give an obvious and precise response. These were used to filter participants who did not

pay attention while completing the survey.

6.2.3 Participants

We recruited online unpaid volunteers, totaling 118 who successfully completed the task

by finding Waldo, of whom 90 successfully completed a personality survey and passed an

attention check. Women comprised 39 percent, and men 61 percent. Each participant used

his or her own computer and completed the task via the Internet. They were required to

have basic computer skills and to have never seen the poster in the experiment before. The

participants had a median education level of a master’s degree. Ages range from 18 to 45

(µ = 24 and σ = 2.8). Average task completion time was 469.5 seconds (σ = 351.9).
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6.2.4 Procedure

Participants were first asked to complete the personality surveys by rating a series of Likert

scale questions on a scale of 1 (strongly disagree) to 5 (strongly agree). Next, participants

read the instructions for the main portion of the experiment and were shown the main inter-

face (Figure 6.1). They were instructed to manipulate the image by using the six buttons on

the control bar to find Waldo using as much time as needed and told their completion time

would be recorded. Once they had successfully found the target, they completed a basic

demographic survey.

6.3 Hypotheses

We collected data at the lowest possible level to ensure that we captured as much infor-

mation about the participants’ analysis process as possible. Over the next four sections

we discuss how we first visualize this data, then create encodings to capture different as-

pects of the participants’ interactions based on three core aspects of visual analytics: data,

user, and interface. Specifically we encode (1) the portion of the data being displayed, as

high-level changes in program state, (2) low-level user interactions, in the form of complete

mouse-event data, and (3) interface-level interactions, as sequences of button clicks on the

interface’s controls. We analyze our data with these encodings with machine learning to

evaluate the following hypotheses. First, we hypothesize that participants who are quick at

completing the task employ different search strategies from those who are slow, and that

these differences are encoded in a recoverable way in the interactions; second, that we can

analytically differentiate users’ personality traits based on interactions; and third, that these

differentiations can be detected without collecting data for the entire timespan of the task,

but instead can be found using a fraction of the observation time.

6.4 Visualizing User Interactions

To explore our hypothesis that we can detect strategies employed by different groups of

participants, we first visualize their interactions. Figures 6.2 and 6.3 show example visu-
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(a) Slow

(b) Fast

Figure 6.2: Visualizations of transitions between viewpoints seen by participants during the
study (see Section 6.4). Subfigures (a) and (b) show slow and fast users respectively, as
determined by the mean nomed splitting method (see Section 6.5).
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(a) External LOC

(b) Internal LOC

Figure 6.3: Visualizations of transitions between viewpoints seen by participants during
the study (see Section 6.4). Subfigures (a) and (b) are split with the mean nomed method
(see Section 6.5) based on locus of control, a personality measure of a person’s perceived
control over external events on a scale from externally controlled to internally controlled.
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alizations of user movement around the Waldo image. The area of the visualization maps

to the Waldo image. Each elbow-shaped line segment represents a transition from one user

view of the image to another, i.e. from a view centered on one end-point of the line to the

other. Where these lines intersect with common end-points are viewpoints of the image

experienced by the participant while panning and zooming. The lines are bowed (elbow

shaped) to show the direction of movement from one viewpoint to the next. Lines curving

below their endpoints indicate movement toward the left, and those curving above indicate

movement to the right. Bowing to the right of the viewpoints indicates movement toward

the bottom, and bowing left indicates movement toward the top.

Zoom levels of viewpoints are not explicitly encoded, but the set of possible center

points is determined by the zoom level. High zoom levels mean center points are closer

together, so shorter-length lines in the visualization indicate the user was exploring while

zoomed in. Note that diagonal movement through the Waldo image is not possible directly

with the participants’ controls. Instead, diagonal lines in the visualization are created be-

cause of zooming, i.e. when zooming out requires a shift in the center point.

This visualization can be used to show the movements made by a whole group of

users by counting, for each flow line, the number of users who made the transition between

the two corresponding viewpoints in the correct direction. In our examples, we are showing

such aggregations for four different groups of users. In each case, the thickness of the lines

encodes how many users in the group made that transition.

The two sub-figures of Figure 6.2 compare users who were fast versus slow at com-

pleting the task. Users were considered fast if their completion time was more than one

standard deviation lower than the mean completion time, and correspondingly considered

slow with completion times more than one standard deviation above the mean (for further

explanation see Section 6.5). Users who were slow produce a finer-grain set of lines, indi-

cating they made more small movements through the image using a higher zoom level and

saw more of the Waldo image in higher detail. Further, the extra lines in the lower left of

Figure 6.2 (a) as compared to Figure 6.2 (b) suggest that these slower participants were led

astray by the distractors in the image, e.g. the people wearing similar clothing to Waldo

seen in Figure 6.1, insets (b) and (c).
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Evidence of different strategies is also salient when visualizing results based on

some personality factors. The personality trait locus of control (LOC) has been shown

to affect interaction with visualization systems [GF10, OCZC13, ZOC+13]. Figures 6.3

(a) and (b) visualize differences between participants with external (low) versus internal

(high) LOC. In these subfigures, we see that the external group zoomed in much further on

average, while the internal group performed more like the fast group and was able to find

Waldo with a smaller set of viewpoints.

These observations are readily seen through these visualizations, but cannot be seen

from inspection of the data, nor from machine learning results. Encouragingly, these visu-

alizations hint that there are patterns to uncover in the data. The rest of this work explains

our analytical results in extracting them automatically with machine learning.

6.5 Completion Time Findings

In Section 6.4, we presented visual evidence that our collected interaction data encodes

differences between groups of participants. However, being able to tell fast users from

slow is more useful if it can be done automatically. In this section, we delve into the data

with analytical methods, using machine learning to build predictors of task performance

outcomes. In particular, we adopt two common machine learning algorithms, decision

trees [Mit97], which learn hierarchical sets of rules for differentiating data, and support

vector machines (SVMs) [HCL10], which learn hyperplanes that separate data points of

different classes in the data space. We apply these, to three representations of the interaction

data, created to capture different aspects of how users interacted with the system.

Specifically, we tested three categories of representations of the participants’ in-

teractions, corresponding to some core aspects of visual analytics (data, user, and inter-

face): the views of the image data participants encountered during their task (state-based),

their low-level mouse events (event-based), and their clicks on interface controls (sequence-

based). In this section we briefly explain how we derive the target participant groups used

for our machine learning results, then show, for each representation of the data, our results

at predicting if a given user would be fast or slow in completing the task.
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Table 6.1: Completion Time Classifiers - results for state space, edge space and mouse
events were achieved using support vector machines. The n-gram space results use decision
trees. These results were calculated using leave-one-out cross validation.

Data Representation Class Split Accuracy (%)
state space mean nomed 83

mean 79
edge space mean nomed 83

mean 63
mouse events mean nomed 79

mean 62
n-gram space mean nomed 79

mean 77

We establish two different methods for labelling our participants based on the col-

lected data. Our analyses aim to classify participants into discrete classes, fast and slow,

but our recorded data includes only each participant’s actual completion time. The first dis-

cretization method is to apply the mean completion time (469.5 seconds) as a splitting point:

participants with a completion time lower than the mean are assigned to the ‘fast’ group,

and higher to ‘slow’. Participants with scores exactly equal to the mean are excluded from

the data. In our results, this splitting method is indicated as mean. In the second method, we

assume that participants whose scores are within one standard deviation of the mean have

‘average’ performance and we exclude them from the study, labelling the rest as above. We

refer to this approach as the ‘no-medium’ splitting method, indicated in results tables as

mean nomed. The no-medium method allows us to see that stronger patterns emerge for

participants with more extreme performance.

6.5.1 State-Based Analysis

In the visualization of participants’ movement through the Waldo image (see Section 6.4),

differences across groups of participants in how they examine the data become salient. This

discovery would be more broadly applicable if the differences could be determined auto-

matically. We create two data representations emulating these visual forms to search for

patterns that differentiate users based on what parts of the image they chose to look at. In

the “state space” encoding, we capture the portion of the data viewed as each participant

navigated the Waldo image. In the “edge space” encoding, we capture transitions partici-
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pants made between viewpoints of the image. Applying support vector machines (SVM)

yields high-accuracy classifiers of completion time with both representations.

The state space encoding can be represented by a vector space. We consider the set

s ∈ S of all visual states (given by view position and zoom) that were observed by any user

during completing the task. We create a set of vectors ui, one representing each user, such

that ui = (counti(s1),counti(s2), . . . ,counti(s|S|)), where counti(s j) indicates the number of

times user i landed on state j. For the data from the Waldo task, this process yields a vector

space in 364 dimensions.

A similar vector space expresses the transitions between viewpoints of the visual-

ization, encoding how participants moved the viewpoint around the image in their search

for Waldo. Their strategies may be encapsulated by how they directed the view during

their search. In this vector space, the set t ∈ T consists of all transitions made between any

viewpoints by any participant while completing the task. If each viewpoint is represented

by the location of its center, x, then T = {(k,m)} where any participant made the transi-

tion xk → xm from position xk to position xm while searching for Waldo. Each individual

user’s vector is constructed as vi = (counti(t1),counti(t2), . . . ,counti(t|T |), where counti(t j)

indicates the number of times user i made transition t j. The dimensionality of our derived

transition-based vector space (edge space) is 1134. The zoom levels are not explicitly en-

coded, but the set of possible center points is determined by the zoom level. This feature

space is most closely related to the visualization described in Section 6.4 and seen in Figure

6.2.

The calculated vectors are used as a set of data features for input to an SVM

[Vap98], a widely-applied machine learning method that works on vector space data. SVMs

are both powerful and generic, and work by discovering an optimal hyperplane to separate

the data by class. For this work we focus on results from the default implementation in the

machine learning software package Weka [HFH+09], which means a linear hyperplane, and

slack parameter c= 1. This choice of an out-of-the-box classifier is intended to demonstrate

that these results can be achieved in a straightforward manner.

Table 6.1 shows the accuracy of our completion time predictions, calculated via

leave-one-out cross validation. Both state and edge space provide strong completion-time
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prediction results, with maximum accuracies of 83%. However, these classifiers can only

take into account high-level changes in the software, as opposed to the lower-level physical

actions that may characterize different participants, which leads us to investigate different

encodings for further analyses.

6.5.2 Event-Based Analysis

Users move their mouse throughout the process of working with a visual analytic system.

Sometimes they move the mouse purposefully, e.g. to click on a control, other times they

hover over regions of interest, and sometimes they make idle movements. Where the state

and edge space encodings fail to make use of this information, the event-based data encod-

ing described in this section derives from the most raw interaction information available to

capture innate behavioral differences.

Previous machine learning work has shown that mouse event data contains enough

information to re-authenticate users for security purposes [Max03, PB04, RM06, Yu10]. We

adapted the data representation of Pusara et al. [PB04] for our interaction data by calculating

their set of statistics over event information. Because we are predicting completion time, we

removed any statistics that we found to be correlated with completion time. Table 6.2 shows

the set of functions we used to encapsulate the participants’ mouse movements and raw

clicks. This set includes statistics on click information (number of clicks and time between

clicks), raw button click information (percentage of clicks on a particular button, e.g., “%

Left” refers to the percentage of button clicks on the “Pan Left” button), and derived mouse

movement information (such as the number of moves, and the mean, standard deviation

and third statistical moment of the distance and angle between them). The set does not

include total counts of clicks on different buttons or the total number of mouse movement

events, because those were strongly correlated with the total completion time. In total, we

use twenty-seven features, listed across the two columns of Table 6.2.

As with the state-space representations, we apply SVMs to the mouse-event data.

Table 6.1 shows the accuracy achieved with the mouse-event data using SVM classifiers,

calculated using leave-one-out cross-validation. This approach manages a maximum score

of 79%, which shows that there is strong signal in this low-level mouse data. The input fea-
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Table 6.2: Features calculated for SVM analysis of mouse movement and raw mouse click
data. µ , σ , and µ ′3 refer to the mean, standard deviation, and third statistical moment.
Pairwise indicates functions of pairs of consecutive events.

Click Event Features Move Event Features
Clicks per second Movements per second
Avg. time between clicks Pairwise Euclidean distance (µ,σ ,µ ′3)
% Left, %Right Pairwise x distance (µ,σ ,µ ′3)
% Up, % Down Pairwise y distance (µ,σ ,µ ′3)
% Zoom in, % Zoom out Pairwise speed (µ,σ ,µ ′3)
% Found, % Quit Pairwise angle (µ,σ ,µ ′3)
% Clicks on Image

tures may reflect subconscious mouse movement habits more than actual intended actions,

so the results indicate that the differences between populations may be driven by innate

differences in approach or cognitive traits. Even though none of the features is individually

correlated with the completion time, these low-level interaction statistics taken together are

enough to analytically separate fast from slow users.

6.5.3 Sequence-Based Analysis

The most direct representation of a user’s process may be the sequence of direct interactions

with software. Clicks are conscious actions that represent the user’s intentions, and thus

building classifiers based only on these semantically relevant interactions may provide more

insight into why and how participants’ analytical strategies differ. For our sequence-based

analysis, we examine the sequences of button clicks used by participants to achieve the task

of finding Waldo. We connect n-grams, a method from information retrieval for extracting

short subsequences of words from collections of documents, to decision trees, a class of

machine learning algorithms that produces human-readable classifiers.

6.5.3.1 N-Grams and Decision Trees

The n-gram method from information retrieval is intended for text, so an n-gram feature

space must start with a string representation of data. We assign a unique symbol to each

of the seven buttons in the interface: ‘L’ for pan left, ‘R’ for right, ‘U’ for up, ‘D’ for

down, ‘I’ for zoom in, ‘O’ for out, and ‘F’ for declaring Waldo found. Each participant’s
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total interactions are thus given by an ordered string of symbols. We derive an n-gram

vector space by considering each symbol a word, and each participant’s sequence of words

a document. Each dimension in the vector space then corresponds to one n-gram (i.e. one

short sequence of user actions). Participants are represented by a vector of counts of the

appearances of each n-gram in their interaction strings.

In our analyses we apply the J48 decision tree algorithm and NGramTokenizer from

Weka [HFH+09] to classify participants based on task performance, and report accuracy

scores from leave-one-out cross validation. The effectiveness of n-grams is sensitive to

the choice of n. We empirically chose a combination of 2- and 3-grams as we found that

to best balance accuracy and expressiveness of our eventual analytic output. Our results at

classifying participants on completion time are shown in Table 6.1, revealing a top accuracy

of 77% calculated with leave-one-out cross validation.

6.5.3.2 Decision Tree Interpretation

One advantage to using a decision tree with n-grams is that the resulting classifier is human-

readable. Figure 6.4 shows the decision tree produced for the completion time data in n-

gram space, using a mean split for classes. Each internal node shows a sequence of button

clicks and the branches are labeled with the number of occurrences needed of that n-gram

to take that branch. We can make several inferences about strategy from this tree. The root

node indicates the strongest splitting criteria for the data. In this case, that node contains

“L D”, the n-gram corresponding to a participant clicking “Pan Left” then “Pan Down”. If

that sequence was clicked more than three times by anyone, that indicated the person would

finish slowly. This makes sense because Waldo is in the upper right of the image. Moving

in the wrong direction too many times can be expected to slow down progress at the task.

The “F U” and “D F R” nodes are also revealing. The “F” corresponds to telling

the program that Waldo is found. These “F” button presses are not the last action, meaning

they do not correspond to correctly finding Waldo. Instead, these sequences show partici-

pants’ false guesses. Thus the tree suggests that participants who made several false guesses

finished the task more slowly.

Finally, the “O O I” and “L O I” nodes correspond to behavior where the partici-
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Figure 6.4: This is the decision tree generated as a classifier for fast versus slow completion
time with mean class splitting. Each internal node represents an individual decision to be
made about a data point. The text within the node is the n-gram used to make the choice,
and the labels on the out-edges indicate how to make the choice based on the count for a
given data point of the n-gram specified. Leaf nodes indicate that a decision is made and
are marked with the decided class.

pant zoomed out and then back in again. The “O I” component could indicate participants

zooming out to gain context before zooming in again. Alternatively, the same subsequence

could indicate participants zooming out and immediately back in, wasting time.

The readability of this technique shows promise for identifying trends in strategies

and behaviors. We cannot guarantee that these interpretations reflect the participants’ actual

intentions, but rather submit these as possible reasons for what is shown in the tree. The

real power of using n-grams and decision trees on interaction sequences is that it makes

this type of hypothesizing possible, leading to deeper investigation when it is beneficial to

understand how people are solving a given task.
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Table 6.3: Personality Classifiers - all of these results are with SVM except when using
n-grams, which we pair only with decision trees

Data Representation Class Split Accuracy (%)
LOC

n-gram mean 67
Neuroticism

mouse events mean nomed 62
edge space mean nomed 64

Extraversion
edge space mean 61

6.6 Personality Findings

Prior research by Ziemkiewicz et al. [ZOC+13] and Green and Fisher [GF10] suggests that

users will use a visualization system differently based on their personality traits. Motivated

by these findings, we explore the efficacy of extracting personality traits from interactions.

Specifically, we apply the same data encodings and machine learning algorithms used for

the completion time analyses to predict users based on their personality traits.

Instead of classes derived from completion time, we separate users into low and high

groups based on their scores on each personality inventory: locus of control, extraversion,

agreeableness, conscientiousness, neuroticism and openness to experience. Consistent with

our completion time analysis, we test both mean and mean nomed splits (see Section 6.5).

Table 6.3 summarizes our analysis results.

Across several techniques, we successfully classified users based on their LOC,

neuroticism, and extraversion scores. Of the personality traits, our techniques were best

with LOC, yielding classification accuracies as high as 67%. This supports the findings of

Ziemkiewicz et al. [ZOC+13] that of the personality traits, LOC was the strongest predictor

of users’ performance on visualization search tasks. Consistent with our findings, prior

work also found significant effects with neuroticism and extraversion [GF10, ZOC+13].

6.7 Limited Observation Time

The participants in our study were given as much time as they needed to complete the Waldo

task. So far, the presented results have taken advantage of the full timespan of the collected
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(a) State Based (b) Edge Based

(c) Mouse Events (d) Sequence Based

Figure 6.5: Graphs showing the ability to classify participants’ completion time as a func-
tion of the extent of data collected. The x-axis represents the number of seconds of obser-
vation, or number of clicks for the sequence based data. The y-axis is the accuracy achieved
after that amount of observation. Accuracy values are calculated with leave-one-out cross
validation, and use the mean splitting method (see Section 6.5).

data from their interactions to classify them. Investigating the minimal timespan required

for this type of analysis is crucial for potential real-time applications, so we evaluated our

classifiers’ performance as a function of the data collection time.

Figure 6.5 shows, for each of the different data representations, graphs of how task

performance classification improves (on trend) with more observation time, i.e. more infor-

mation available. Figure 6.6 shows one example of this behavior from personality trait clas-

sifiers. The x-axis is the amount of data collected, and the y-axis is the accuracy achieved

by training and classifying with that amount of data. For all but the sequence-based anal-

ysis, the x-axis represents time. For the button click sequences, the x-axis is based on the

number of clicks instead. Leave-one-out cross validation (LOOCV) and the mean-based

class definition are used for all these results.

These graphs demonstrate two things. First, accuracy scores comparable to the

final score can be achieved with much less than the maximum time. Note that close to
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Figure 6.6: This graph shows the dependence of the ability to classify the personality trait
extraversion on the amount of time the participants are observed. The x-axis represents the
number of seconds of observation. The y-axis is the accuracy achieved after that amount
of time. This example uses the edge space encoding and the mean splitting method (see
Section 6.5). Accuracy values are calculated with leave-one-out cross validation.

the mean completion time, the encodings are achieving much of their eventual accuracy

scores: state-based, 64% instead of its eventual 83%; edge-based, 60% compared to 63%;

and sequence-based, 61% as opposed to 77%. These correspond to 77%, 95% and 79% of

their final accuracy percentage scores, respectively.

Second, as expected, in most cases using more data allows for better results. In the

case of the mouse event data, the accuracy peaks before reaching the average participant’s

finishing time, about 470 seconds.

6.8 Extended Results

In this work, we focused on machine learning results produced with off-the-shelf algorithms

to emphasize that they could be re-applied in a straightforward way. However, in the course

of our investigation, we applied a number of additional customizations to find the most

accurate classifiers possible with our data representations. These extended results can be

found in Appendix 6.11. In the appendix, we explain the additional methods we used and
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show the results we achieved by customizing the classifiers. We show cases in which our

tuning produced higher-accuracy classifiers, and revealed signal with feature spaces or class

splitting criteria that otherwise could not encode certain traits.

6.9 Discussion and Future Work

In this work, we have shown, via three encodings, that interaction data can be used to

predict performance for real-time systems, and to infer personality traits. Our performance

predictions ranged in accuracy from 62% to 83%. On personality traits, we were able

to predict locus of control, extraversion, and neuroticism with 61% up to 67% accuracy.

Further, we found that with only two minutes of observation, i.e. a quarter of the average

task completion time, we can correctly classify participants on performance at up to 95%

of the final accuracy.

Given the above results, there are some fascinating implications and opportunities

for future work. In this section, we discuss the choice of task and data representations, and

how they may be generalized, differences between the personality results versus those for

completion time, and future work.

6.9.1 The Waldo Task and Our Encodings

The Where’s Waldo task was chosen because it is a generic visual search task. It is a simple

example of an elementary sub-task that comes up often in visual analytics: looking for a

needle in a haystack. The user can manipulate the view, in this case with simple controls,

and employ strategy to meet a specific task objective. In this section we address how this

experiment and our analyses may scale to other systems. Because our set of encodings

is based on three core aspects of visual analytics, data, user, and interface, we frame the

extensibility of our approach in terms of data and interface.

The data in our experiment is the image in which participants search for Waldo. At

a data scale of twenty-megapixels, our state-based interaction encodings, which are closely

tied to the data because they capture what parts of the image a participant sees, reach hun-

dreds of features to over 1000 features. As the size of the data (image) increases, the state
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space and edge space may not scale. However, the event-based and sequence-based encod-

ings depend only on the interface, and thus could scale with larger image data.

Conversely, the interface in our experiment is a simple set of seven buttons. Increas-

ing the complexity of the interface affects the event-based and sequence-based encodings.

The mouse-event features include statistics about how often each button is pressed, and

the sequence-based encoding requires a different symbol for each button. While these two

encodings may not be able to scale to meet increased interface complexity, the state-based

encoding is unaffected by the interface and thus could scale with the number of controls.

The three encodings we used in this chapter can all be extracted from the same in-

teraction logs. Each one of them provides enough information to recover task performance

efficiently. Because of their complementary relationships with the core concepts of inter-

face and data, their strength, as an ensemble, at learning from interaction data is not strictly

constrained by either interface or data complexity.

The scalability of the ensemble of encodings raises the possibility that our approach

could be generalized to other visual search tasks and to complex visual analytics tasks. In

particular, since users’ interactions in visual analytics tasks have been shown to encode

higher-level reasoning [DJS+09], we envision that our technique could be applied to other

sub-tasks in visual analytics as well. Specifically, we consider the Waldo task as a form of

the data search-and-filter task in the Pirolli and Card Sensemaking Loop [PC05]. We plan

on extending our technique to analyzing user’s interactions during other phases of the ana-

lytic process such as information foraging, evidence gathering and hypothesis generation.

6.9.2 Personality

Being able to demonstrate that there is signal in this interaction data that encodes personality

factors is exciting. However, none of the results for personality factors are as strong as those

for completion time. Not only are the overall accuracy scores lower, but we found that in

examining the time-based scores (as in Section 6.7), for many personality factors, there was

not a persistent trend that more data helped the machine learning (Figure 6.6 shows one of

the stronger examples where there is a trend).

While the prediction accuracies are low, our results are consistent with prior find-
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ings [SCC13] in the human-computer interaction community on individual differences re-

search. Taken together, this suggests that although personality and cognitive traits can be

recovered from users’ interactions, the signals can be noisy and inconsistent. In order to

better detect these signals, we plan to: (1) explore additional machine learning techniques,

like boosting [Sch90] for leveraging multiple learners together, and (2) apply our techniques

to examine interactions from more complex visual analytics tasks. We expect the latter to

amplify results as Ziemkiewicz et al. [ZOC+13] have shown that personality trait effects are

dampened when the task is simple. In their work, for complex inferential tasks, the effects

were more pronounced and potentially easier to detect [ZOC+13].

6.9.3 Future Work

This work is a first step in learning about users live from their interactions, and leaves many

exciting questions to be answered with further research. The ability to classify users is

interesting on its own, but an adaptive system could test the feasibility of applying this type

of results in real time. For example, since locus of control can affect how people interact

with visual representations of data [ZOC+12], a system that could detect this personality

trait could adapt by offering the visualization expected to be most effective for the individual

user. Different cognitive traits may prove more fruitful for adaptation, but even completion

time could be used to adapt, by giving new users advice if they start to follow strategies that

would lead to their classification as slow.

Further, of the data representations we evaluated, only the mouse events, the lowest-

level interactions, encode any information about time passing during the task. The other

representations do not encode the time between states or button presses, but that information

could be useful for a future study. For our sequence-based analysis, our approach was to

pair n-grams with decision trees for readability, but there are plenty of existing treatments

of sequence data that remain to be tried for this type of data classification on visual analytic

tasks, including sequence alignment algorithms, and random process models, e.g. Markov

models. Finally, in this work we focused on encoding one aspect of data or interface at

a time, but combining feature spaces could be powerful. In fact, in experimenting with

a feature space that leverages multiple types of encodings, we achieved 96% accuracy on
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completion time with mean nomed splitting1.

The experimental task was a simple version of a basic visual analytics sub-task.

Our results could be strengthened by expanding the experiment to test Waldo in different

locations, or different stimuli like maps with buildings and cars. The breadth of applicability

could be evaluated by testing other elementary visual analytics tasks such as using tables to

find data or comparing values through visual forms.

Our plans to extend this work expand on three fronts: (1) evaluating additional

personal traits, like cognitive factors such as working memory, to our analyses, (2) try-

ing further machine learning algorithms and encodings to learn from more of the informa-

tion being collected, like the times of the interactions and (3) extending experiments with

different tasks including deeper exploration of visual search. We believe there are many

opportunities to extend this work, both experimentally and analytically.

6.10 Summary

In this chapter, we presented results of an online experiment we conducted where we

recorded participants’ mouse interactions as they played the game Where’s Waldo. We

broke the users into groups by how long it took them to find Waldo (completion time) and

their personality traits. Visualizing the participants views of the data, we showed that there

are differences in strategies across groups of users. We then applied machine learning tech-

niques, and demonstrated that we can accurately classify the participants based on their

completion time using multiple representations of their interactions: visualization states,

low-level mouse events, and sequences of interface button clicks. By examining artifacts

of our machine learning work with these sequences, we were able to identify short sub-

sequences of interactions that identify groups of users. These human-readable classifier

results hint at user strategies across groups. We were also able to detect and classify the

participants based on some personality factors: locus of control, extraversion, and neuroti-

cism. Finally, we showed the dependence of the machine learning results on the observation

time of the participants.

1 Specifically, we tested a modified state space encoding where the zoom level information is replaced by
an identifier of the button click that caused the state.
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6.11 Appendix: Extended Results

Though we demonstrated that completion time and personality can be modeled from raw

interactions can be done directly with off-the-shelf tools using default settings, further at-

tention to detail can yield stronger classifiers. In this appendix, we discuss some additional

results that we achieved by tuning the algorithms, including applying principal component

analysis (PCA), and optimizing the parameters of support vector machines (SVMs).

Table 6.4: Additional SVM Results - all results are calculated using leave-one-out cross
validation.

Data Representation Class Split Classifier Accuracy (%)
Completion Time

edge space mean nomed SVMpoly 87
mean SVMpoly 72

mouse events mean nomed SVMpoly 88
mean SVMpoly 82

LOC
edge space mean SVMpoly 62
state space mean nomed SVMpoly 63
state spacePCA mean nomed SVM 63

Neuroticism
edge space mean nomed SVMpoly 68
state spacePCA mean nomed SVM 68

The SVM algorithm is sensitive to a slack parameter [CV95] and to the choice

of kernel. Common practice is to address this by using a parameter search to find the

best parameter values [HCL10]. In the context of deploying the best possible classifier

for a given dataset, that entails simply trying different choices of the parameter (or sets of

parameters) and evaluating the classifiers until the best can be reported. Since our goal

is instead to evaluate the classifiers and encodings themselves for this type of data, we

take the approach of validating the algorithm of classifier+param-search. As usual for cross

validation, the data is split into k folds. Each fold takes a turn as the test data, while the other

folds are used for training, providing k samples of accuracy to be averaged for a total score.

In testing a classifier+param-search algorithm, the algorithm being evaluated on one fold is

one that chooses a parameter by testing which value produces the best classification result.

To evaluate “best classification result”, another (nested) cross validation is needed. The
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original fold’s training data is split into folds again and cross validation is used over those

inner folds to pick the optimal parameter. Weka implements a more sophisticated version

of this practice that allows optimizing two parameters at once (generally referred to as grid

search) and uses optimizing heuristics to limit the number of evaluations [PHf14]. We have

used this implementation to run a grid search that optimizes over (1) slack parameter and (2)

degree of polynomial for kernel (1 or 2, i.e. linear or quadratic). In Table 6.4, this classifier

is called SVMpoly. This table shows highlights of the results that we produced with this

technique.

Another helpful factor in working with SVMs on high-dimensional data is princi-

pal component analysis. PCA projects the high-dimensional data into a lower-dimensional

space defined by the eigenvectors of the original data. The number of eigenvectors is chosen

to make sure that 95% of the variance in the data is accounted for in the low-dimensional

approximation2. Applying PCA to the data space was particularly helpful in data repre-

sentations like state space, which has a high degree of dimensionality. In Table 6.4, data

representations with PCA applied are indicated by the subscript PCA.

Overall, the results in Table 6.4 show cases in which our tuning produced higher-

accuracy classifiers, and revealed signal with feature spaces or class splitting criteria that

otherwise could not encode certain traits. The completion time results for the edge space

and mouse event feature spaces are improvements of up to 32%. Specifically with edge

space encoding and mean split, SVMpoly offers 82% accuracy instead of 62% with off-

the-shelf SVM. In our earlier analyses, we did not find sufficient signal to report on LOC

with any state-based encodings, but using PCA or parameter search makes that possible.

Through applying standard methods for tuning SVM, we gained higher accuracy over our

existing results, and demonstrated connections between encodings and traits that were oth-

erwise obscured.

2We used the Weka filter implementation with this option enabled.
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Chapter 7

Discussion

The way forward in interactive systems that leverage machine learning behind-the-scenes

will include innovation on both sides of the equation: (1) new interaction paradigms to

best capture the semantics of user intent and (2) new machine learning algorithms and

adaptations to make learning in this context plausible for more types of models. We will

need to leverage information gathered from across a wide variety of tasks, from exploring

data to reading email, and make use of a broad array of algorithms to model efficiently what

we learn. More broadly, what is needed is a framework for what is required of a machine

learning algorithm and what is required of a human interface in order for this paradigm to

be efficacious. In particular, we must bound what features of a machine learning algorithm

are necessary to be effective for learning in this interactive context, and what features of a

human-computer interface are required to collect valid information for a machine learner

effectively.

Such a framework, complete with examples of successes and the knowledge gained

in building them, is future work. In this section, I will lay out the groundwork of this

project: a discussion of machine learning for use in interactive systems. First, I provide a

sketch of a framework for how such systems can be put together, including what types of

user interaction can be supported. Second, I review the broad categories of machine learn-

ing, focusing on explaining how different types of algorithm are suited to the interactive

context and fit into the framework. I add a discussion of some research areas within ma-

chine learning that have specific advantages for application to an interactive setting. Finally,
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Figure 7.1: This framework diagram sketches a framework for interactive model-learning
systems. It includes types of learning algorithm and types of interaction as described in
Section 7.1.

I connect the framework and the machine learning techniques to produce a table showing

how combinations of interaction types and machine learning algorithms can lead to a wide

variety of systems and applications. This discussion will include examples of how machine

learning has been and could be used in interactive systems in both HCI and visual analytics,

as well as my thoughts from experience gained so far in conducting research on this type of

system.

7.1 The Beginnings of a Framework

If the way forward in interactive systems is to have interaction between human and com-

puter that maximizes the strengths of each, using machine learning back-ends to aide and

amplify user efforts at analysis, then innovation is needed in both machine learning and

HCI. In this section, I sketch a framework for such systems as groundwork for future

progress. A full framework explaining all possible uses of machine learning and visual-

ization or HCI together is beyond the scope of this dissertation. Instead, I will include some
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thoughts about what is needed from a machine learning algorithm, and what is needed from

a graphical user interface or visualization to make these systems effective. I begin with a

diagram (Figure 7.1) that shows how the components of such a system fit together, what

types of interactions mechanisms can be used, and what types of machine learning algo-

rithm. In the rest of this section, I provide a discussion of the diagram, explain the types

of interactions, and overview the machine learning concepts included in the diagram along

with notes on their applications.

Figure 7.1 illustrates that all user interactions are affected through the visual inter-

face, but the information is prepared and forwarded to the machine learning algorithm. As

described in the rest of this chapter, there are a variety of types of algorithm to be used in

this component. A special note is that active learning, which uses the model to help guide

the user’s analysis, has a direct line to affect the GUI without affecting the model. Other-

wise, the learners take into account the data and feedback from the user to build models,

and those models are used to update the interface. Note that there are two types of model:

(1) models of the data constitute the analytical results and affect how the data is displayed

as well as the final analytic product, and (2) models of users can be learned from their in-

teractions and used to optimize the interface for that type of user. Once a set of interactions

has been used to update the model(s), the visualization can be updated to reflect the new

model information, and the user is thus presented with a new opportunity to explore the

data and provide further feedback.

The framework shows several types of machine learning algorithm; in fact the ma-

chine learning community has produced myriad algorithms to choose from for creating

integrated systems. While there is certainly room to invent new algorithms or adapt exist-

ing ones to better fit this purpose, we start with the premise that we can pick from among

those available. The most important feature is that the algorithm be able to support fast

updates when new information from the user is available. The update must happen quickly

enough that the result can affect the visual interface without breaking the user’s focus. In

order to update quickly, some learners can support incremental updates. These algorithms

can accept a single piece of feedback to update the model without recalculating everything.

If the algorithm cannot perform an update for a single piece of feedback, the entire model
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can be relearned as long as the process is fast enough. Incremental updates are critical to

the exploratory, sensemaking and model-building process because in order to shield a user

from reviewing all possible instances, the user must be able to supply feedback as it suits his

or her process. Ideally, when the user is finished, the model can be exported as a product of

the analysis and can itself be instructive. This is not a requirement for the learning process,

but to get the best analytical results out of a human-computer partnership, the human must

understand the result. Comprehensible machine learning includes a variety of model types

like metric learners, which can produce weightings of data dimensions, and decision trees

and rule learners [LRMM12]. It is, of course, necessary, as with choosing visualizations, to

pick an algorithm that uses the same data type as the data at hand (e.g. nominal, numerical,

etc.). Finally, it is important, as with any machine learning application, to try to choose

a learner that builds a type of model that can handle the kinds of patterns expected in the

actual data.

The requirements for the visualization component are more vague because the human-

facing component can be flexible. Most important is that the interface or visualization re-

flects the model. If updates to the model cannot be seen, the feedback loop of the user’s

iterative improvement will be broken. Further, though the learner is responsible for the

update time of the model, any calculations for updates to the visualization are part of the

limited time-frame available for showing the user the result of feedback, and must be capa-

ble of interactive speed. Finally, the most flexible constraint, there must some mechanism in

the interface for collecting information that can be useful to the machine learning back-end.

There are many forms from raw interaction logs to specific buttons for labeling data points.

Overall, it is important that the visualization and machine learning be chosen to-

gether so that they match up on data types and they can communicate with each other.

Figure 7.1 shows a sketch of how the components of and interactive learning system fit

together. The data is input to the system through the learner, so it can be part of the model

that gets shown to the user (certainly the data could also bypass the model as some part of

the display, but we concentrate here on the interactive system flow). The user can observe

the GUI and interacts with the system via certain types of interactions:
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1. Incidental — interactions that are not part of the data exploration or model-steering,

i.e. interactions with other parts of the interface. They can be used to learn models of

the user.

2. Exploratory — interactions involved in exploring the data, but not those that carry a

semantic meaning from the user to update the model explicitly or implicitly.

3. Parameter Tuning — interactions that change the parameters of a learning algorithm

as opposed to providing model-steering feedback.

4. Explicit model steering — interactions in which the user is intentionally updating the

data model.

5. Implicit model steering — interactions that are part of a primary task but used for

model steering, as opposed to explicitly for steering the model (e.g. a spam filter).

These types of interactions encompass all the types seen throughout this disserta-

tion and more. In Chapter 6 with Finding Waldo, we address the use of incidental and

exploratory interactions. All of the interactions with the visual search task of the partici-

pants in our study were recorded and used to create models of the user but there was no

analytical model steering, explicit nor implicit. Parameter tuning is a common usage of

machine learning in visualization, and includes systems like iPCA [JZF+09a], where the

principle component analysis algorithm is controlled through a visualization. During the

intelligence analysis task of Chapter 5, participants using Doc-Function could move key-

words around the canvas without affecting the model. The associated interaction data is

considered exploratory. That application also involves explicit model steering, in the same

fashion as Dis-Function from Chapter 3, when participants in the studies mark and move

data points (Dis-Function) or keywords (Doc-Function) and then click an update button.

The user understands that those changes are interpreted as feedback on the data model, and

used to update it for another iteration. In contrast to those analytic systems, implicit model

steering is used for applications where the machine learning back-end is assisting the user

with a primary task. One classic example is spam filtering, in which a user cleaning his

or her inbox by marking some emails as spam will also be helping to train an algorithm

112



that detects such emails automatically. The important difference between the explicit and

implicit cases is subtle, but for the former, the user is engaged with the task of building

the model, as opposed to providing feedback during some other primary task. The explicit

case may be preferred for professional contexts, where the implicit one may be for end-user

software. There is room for applications to contest this distinction one way or the other.

These five interaction types characterize how a user can interact with a visual an-

alytics system that is integrated with machine learning techniques. However, much like

interface and interaction design patterns and techniques, there is a wide range of machine

learning algorithms. The appropriate pairing and combination of the interaction types and

machine learning techniques can lead to effective collaborations between the human user

and the computational system. In the section below, I will outline machine learning tech-

niques and describe their potential use in visual analytics systems following my proposed

framework.

7.2 Machine Learning in Broad Strokes

Machine learning is a massive field, growing in popularity, perhaps largely because its grad-

uates are so sought after by companies looking to make the gains that their data collection

undertakings promise. For a given dataset where a number of data points or instances are

each represented by some features (other names include dimensions and variables), the goal

of machine learning is to discover a pattern. These patterns broadly fall into two categories:

a set of groups of similar instances (i.e. clusters), or a function that maps an instance to

some target label. Though it is not usually explained this way, the top-level distinction be-

tween machine learning algorithms is actually how much human intervention is required.

Algorithms that require the every single instance be provided with a label as part of the

input are categorized as supervised learning. At the other end of the spectrum is unsuper-

vised learning, in which no labels are required at all. Clustering algorithms fall into this

latter category, and work to create structure where none is supplied. In-between, there is

semi-supervised machine learning, which can take advantage of limited human interven-

tion. Interactive systems can take advantage of all three of these branches.
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7.2.1 Unsupervised Learning

Clustering is already a useful part of many systems, providing a mechanism for automati-

cally grouping data for user consideration. Classic algorithms include k-means, expectation

maximization (EM), hierarchical clustering, [JMF99] and DBSCAN [EKS+96]. Clustering

can be used explicitly, e.g. showing a user groups of data points. With a visual layout,

cluster information can be used to assign colors to data points. It can also be used behind-

the-scenes to evaluate or group data automatically to determine what to show the user, e.g.

WireVis [CLG+08]. Without any intervention from a user about what is expected in the

data, unsupervised learning can detect structures that can guide further exploration. Note

that unsupervised learning cannot use data feedback from the user, so these algorithms can-

not be used as the primary learner for model steering applications. They can, however, be

guided by users through parameter tuning, as is the case with iPCA [JZF+09a], in which

principle component analysis is controlled with a visual interface.

7.2.2 Supervised Learning

Supervised machine learning encompasses a broad range of algorithms and is a powerful

tool for a broad range of applications. When ’ground-truth’, i.e. a label of the correct class

or group, is available for every data point, this type of algorithm learns a function that maps

a data instance to its appropriate class. The algorithm inputs a set of labeled data instances

called training data and outputs the above function, called a classifier. While that classifier

is expected to perform well on the training data, i.e. map an already-seen instance to the

correct label, its real power is mapping previously unseen data instances to their correct

label. The usual way of evaluating a classifier is k-fold cross validation, wherein a set

of data with labels is broken randomly into k chunks (called folds). The machine learner is

trained (i.e. the algorithm is used to build a classifier) with each possible set of k−1 chunks,

leaving out the ith chunk. The classifier is then queried for labels of the instances of the

ith chunk, whose actual labels it has not seen, and the accuracy percentage is recorded.

The overall accuracy of the classifier can be determined by the average score across the

different chunks. Cross validation is the baseline standard for accuracy in the machine
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learning community where one often wants to know how well to expect the classifier to do

on unseen data. Further evaluation is usually required to test how an algorithm responds to

certain parameters for a given dataset, how confident the classifier is about its results, and

how well the classifier does at retrieval metrics beyond accuracy (e.g. recall). Testing the

statistical significance of the classifier’s results requires separate evaluation as well (look

at Bilal’s reference). Further caution is required to put the accuracy results in context. If

there is a class imbalance, i.e. more data points of one class than another, than the accuracy

scores are affected. As an example, it means nothing to get seventy percent accuracy on a

data set where seventy percent of the instances belong to one class, because guessing the

majority class would be just as effective a classifier.

Classic examples of supervised machine learning algorithms include neural net-

works, support vector machines (SVM), logistic regression, naive bayes classifiers, and

decision trees. These each have different performance characteristics and learn different

types of classifying functions. While a decision tree carves out chunks of the possible input

space around known examples, [AW97] an SVM discovers a hyperplane through the input

space where examples on either side are assigned different class [CV95]. Different shapes

of data can be more effectively modeled by different types of classifier.

Supervised machine learning algorithms can be applied to a wide variety of sys-

tems, whether for directly working with a user’s data, or working behind the scenes to

improve performance. Because classifiers are already so broadly applied in data analysis,

and produce important but sometimes complex results, one way that visualization coop-

erates with classifiers is to help visualize their output. Alsallakh et el. proposed a set of

visualizations that help analyze the performance of classifiers that provide classification

confidence scores for multiple classes of outcome [AHH+14]. Parameter tuning interac-

tions can be useful in helping analysts get the most out of supervised algorithms. Gleicher

[Gle13] presented Explainers that allows a user to tune readability vs. accuracy tradeoffs

in SVMs. The BaobabView system by van den Elzen and van Wijk [vdEvW11] allows

the user to semi-automatically refine a decision tree. There are also numerous behind-the-

scenes possibilities for these algorithms. It is important to note that for both implicit and

explicit model steering, using a supervised algorithm requires caution to ensure that the

115



assumption of having all the needed labels is appropriate. One example of how to do this

comes from ReGroup by Amershi et al. [AFW12], in which a Naive Bayes classifier is

continually used to help people build groups of their Facebook friends. In Chapter 6, we

discuss our work [BOZ+14] in which we used supervised machine learning on incidental

and exploratory user interaction data to build a classifier that can predict the performance of

a user on a visual search task. That work demonstrates the possibility of detecting facets of

a user automatically from interactions, but does not close the loop by following the arrow

that updates the user interface based on the model. Instead, the work paves the way for

future work to use such classifiers to optimize comfort and performance by tailoring data

views or interface features to a class of user.

7.2.3 Semi-Supervised

In between supervised and unsupervised sits semi-supervised learning. The main idea is to

leverage large amounts of unlabeled data to improve classification when labels are scarce

(see Zhu’s work for a survey [Zhu05]). However, we do not necessarily expect users of

an interactive system to continually apply labels, so we pay special attention to a subgroup

of these algorithms that deal with learning environments in which some “side information”

beyond the data itself is available only for a subset of the data points. In systems that need

human and machine cooperation, it makes sense to emphasize algorithms that can make use

of limited information as it gets revealed by the user.

This latter group of semi-supervised algorithms generally rely not on labels for data

instances but on a different type of ground-truth altogether. The usual form is constraints

over pairs of instances that specify not what class the pair belongs to, but whether the pair’s

instances belong together or separate. The notion of togetherness is somewhat fluid in that

the same notion applies to points belonging in the same cluster and points having the same

class. In this way, the techniques of semi-supervised learning fill a special niche between

supervised learning of labels and unsupervised learning of clusters. This niche may be a

sweet spot for interactive systems, because these algorithms can use partial ground-truth in

a way that can be more convenient for users to apply than knowing actual labels for data

instances. For example, when examining a data instance, a user need not know specifically
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what class that datum belongs to, but rather need only connect it to something similar or

dissimilar in her or her mental model. Known classes for groups of points can certainly be

applied, but the process of adding constraints can be performed while the user is working

through sensemaking and may not be sure of exactly what the final data groups will be.

In this way, semi-supervised algorithms can be powerful tools for leveraging explicit model

steering interactions in complex applications. The ability to take advantage of limited labels

also makes them extremely well suited to implicit model steering applications, where the

labels are provided as part of a primary task and, not being a key priority for the user, may

be scarce.

Two major categories of the semi-supervised algorithms described above are con-

strained clustering and metric learning. Examples of constrained clustering include COP

K-means [WCR+01] modeled off k-means, and Penalized Probabilistic Clustering (PPC)

[LL04], modeled off expectation maximization clustering [DLR77]. Metric learning has

a broad range of literature, which is covered in Section 2.1. In visual analytics and HCI,

metric learning has already been put to good use. For example, we demonstrated in Dis-

Function [BLBC12], discussed in Chapter 3, that certain user interactions with projected

data points can be used to build a distance function that models how important different

data dimensions are to a user’s mental model. In iCluster [BDL10], Basu et al. provide

a grouping tool that uses a learned distance function to make suggestions. Amershi et al.

have used metric learning for assisting users with network alarm triage [ALK+11], and for

improving image search by allowing example-based visual concepts [AFKT11].

7.2.4 Feature Creation

One important consideration for all machine learning methods is the features used to rep-

resent the data. Certainly the data types matter. As in data visualization, some techniques

can accept nominal data and some are meant only for real-valued data. But beyond that,

the choice of representation is part of the modeling process from the beginning and can be

at least as challenging and nuanced as picking the appropriate algorithm. For example, in

Chapter 6, we learn models of users from their interaction data. We tested four different

encodings to turn interaction logging into vector data: (1) generate a string that contains a
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symbol for every button press, treat the symbols as words, and create a vector space using

standard mechanisms for text, i.e. a vector space of the n-grams that appear [CT+94]; (2)

calculate statistics of the low-level mouse movements, like the average angle of motion or

clicks per second; (3) and (4) model the transitions between states of the interface that par-

ticipants in the study saw, and build a vector space out of the set of states and one out of the

set of transitions between states. Evaluating multiple encodings meant we could search for

signal from different meaningful representations. The choice of features has great impact

on the effectiveness of the classifiers. In terms of accuracy, no single encoding was most

effective for all target classifiers. Further, despite trying several encodings, we still were un-

able to get as strong of a result for personality prediction as we initially expected given the

immediately salient differences in our visualizations of different personality groups. This

cautionary example reveals two points - (1) it illustrates the need for using visualization

and machine learning in tandem since visualization can make some patterns more apparent,

and (2) it makes clear that just because a pattern is visually distinct for some representation

does not mean a machine learning technique can trivially build a strong classifier. Encod-

ings should be built with some understanding of what meaning will be modeled from the

data, and as with machine learning in general, the only way to know what is actually best is

to evaluate multiple methods side by side.

7.3 Metric Learning

Semi-supervised learning is especially adaptable to interactive systems, as described above.

Within semi-supervised, however, metric learning deserves special consideration1. Several

examples of its use have already been discussed in Section 7.2.3. While constrained clus-

tering uses feedback from a user to build an optimal clustering, that clustering is the final

output. Metric learning builds a distance function over the data that is consistent with the

constraints. This function that maps any pair of data points to a scalar representing their

dissimilarity takes into account all the feedback provided by the user. Pairs of points that the

user specified belong together will map to low distances, and pairs specified as belonging

1Metric learning can also be used as a supervised algorithm, but here we discuss its special strengths in its
semi-supervised capacity.
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apart will map to large distances. The function that is output by the metric learning process

can be used in clustering, to improve the notion of similarity between points, in classifica-

tion, for algorithms like k-Nearest Neighbors that depend on distance, and even information

retrieval, where knowing what points are most similar to a query enables a system to find

the right data [JKDG09].

In addition, metric learning models have the capacity to be human-readable. In

particular, the type used in Chapter 3 is a weighted Euclidean distance function, meaning

there is a weight assigned to each dimension of the data, indicating its importance. The

distance function can be used analytically, but a person can easily read from the weights

what the relative importance of the actual, meaningful data dimensions are. Though the

readability has many potential applications, this feature is especially helpful in systems

designed around an explicit model steering environment. Since part of the user’s goal is to

build a strong model, they can gain extra insight by being able to understand the result.

A further advantage of metric learning algorithms is that they can begin learning

with a small amount of user guidance. This is important in both explicit model steering and

implicit model steering contexts, where a user needs to see the fruits of his or her labels in

immediate feedback. One potential drawback is that the techniques may not be the highest

performance, owing to the need for most algorithms to compute many pairwise distance

calculations. However, there are a number of algorithms with different performance char-

acteristics depending on what is desired of the distance metric. For example, Dis-Function

[BLBC12] is intended for an interactive context and minimizes overall change to the model

at each interactive step. On the other hand, much metric learning work, including founda-

tional work by Xing [XNJR02], optimizes for as strong as possible a result with the given

labels, ignoring unlabeled data. In between, Leman et al. [LHM+13] introduced a formula-

tion that allows adjusting the strength of previous user constraints. Perhaps most promising

in terms of speed performance is the LEGO [JKDG09] algorithm, which is specialized for

quick updates (it is an online algorithm, see Section 7.4). For any algorithm, there are

substantial gains that can be made with careful engineering.

Finally, pairwise distance functions are directly applicable to visualization. In vi-

sualizing high dimensional data, including text data, one common approach is to project
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the data into a two-dimensional plane. The method for calculating this projection is often

an optimization that attempts to minimize the differences between the pairwise distances in

high dimensional space and low-dimensional space, e.g. multidimensional scaling (MDS)

[BSL+08]. When the distances in high-dimensional space are governed by a well-crafted

distance function, the visual results can be much improved. Thanks to their role in high-

dimensional visualization, metric learning algorithms can be helpful not only for model

steering, but for aiding the exploratory interactions.

7.4 Online and Active Learning

As the previous sections described, there are applications of all categories of machine learn-

ing to interactive systems. There are two smaller sub-fields of machine learning that have

additional promise for interactivity. The first tackles one of the main challenges of inter-

active machine learning: the learning algorithms must react quickly to a small amount of

feedback. The usual case of a supervised learning algorithm may not be suited to taking

a small piece of information and adjusting the model. Some algorithms take the full set

of points into account all at once. The simplest approach is to re-learn the model with

the new feedback appended to the previous feedback, but that is wasteful and can become

computationally prohibitively expensive, especially for the interactive timeframe. There is,

however, a class of algorithm designed to make small changes quickly. Online algorithms

are a subset of supervised algorithms that are built to accept one label at a time [LGKM06].

One example application is a security system that recognizes people in a video feed. It may

be expensive to train it to recognize a single person by digesting many images. However, it

is still important that the learner be able to improve when new labeled images of that person

are available, providing examples of what he or she looks like in different light or clothing.

An online algorithm can be provided one additional labeled picture and take that into ac-

count without having to reconsider all the previous training. Though this type of learner is

generally discussed in a supervised context, it can be applied to interactivity. If we remove

the assumption that we have labels for all data points but are gradually encountering more,

we can just take advantage of the fact that we have a classifier that can adjust quickly with
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new information. In an interactive context, such behavior is critical, since a user needs to

see quick updates based on incremental information. In fact, online algorithms are excel-

lent candidates to be used in interactive settings, especially with implicit and explicit model

steering types of interactions. When a supervised algorithm creates a desirable model but is

too slow for interactive use, an online implementation can sometimes address that concern.

The second pertinent subfield of machine learning is active learning, which falls

under semi-supervised learning. Researchers in active learning study ways to work most

effectively with a limited number of labels by taking control over which labels are seen.

Given the semi-supervised assumption that there is a large collection of unlabeled data,

these algorithms incrementally query users for labels on data points that will be the most

helpful to the learning algorithm. There are a number of mechanisms for choosing such

points, perhaps the most common of which is querying for labels of data points about which

the current model is least certain (uncertainty sampling) [Set10]. Active learning algorithms

are poised to be incredibly useful in visual analytics because when an actual human is

engaging with a system, one must maximize use of valuable expert time. In such a system,

keeping the user in control is important to his or her exploration, so techniques are needed

that can guide the user to fruitful exploration without controlling the process altogether.

Regrettably, in active learning literature, the human expert providing labels is generally

simulated by a label-proving oracle. The oracle is always correct, and by virtue of being

digital does not mind providing labels one at a time as an algorithm chooses. Researchers

look at how the cross-validation accuracy improves as a function of how many labels have

been applied by the simulated user. Chapter 4 is work-in-progress but provides an approach

for active learning that keeps a human user in control. Only after a user begins an inquiry

by choosing some data point, the algorithm reveals points of interest relative to that chosen

point. The points are chosen to maximize change to the model. For a type of system like

this that keeps the user in control, evaluation is more complicated. Simulating a user who

is actually engaged in an analysis process is different from just applying labels when asked.

Simulating with an oracle that is too strong makes all algorithms look the same because

all can be perfect. Simulating a weak human means that while we may be making some

strong suggestions, the human may be picking the worst among them. In the particular
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case of Chapter 4, we are recommending strong updates to the model, but we can only

estimate the strength of the change, not its quality. The worst of the suggestions could be

strongly negative. Active learning can play a powerful role in future interactive systems

by most effectively leveraging user efforts, but techniques must be developed and properly

vetted that can keep take best advantage of users’ time while keeping them in control. By

guiding exploration, these techniques will link the exploratory and implicit or explicit model

steering interactions to amplify the user’s efforts.

7.5 Summary

As the size and complexity of data continue to increase, utilizing machine learning tech-

niques in visual analytics systems will be even more critical for assisting the user in ex-

ploring and analyzing the data. However, there has yet to be a systematic guideline for

integrating user interfaces and interaction techniques with back-end machine learning tech-

niques. Although such a guideline is beyond the scope of this thesis, in this chapter I

sketched a framework that categorizes interaction types (incidental, exploratory, parameter

tuning, implicit and explicit model steering), and explains how they fit with a variety of the

most effective machine learning algorithms for this interactive context. In particular, in Sec-

tions 7.2 – 7.4, I broadly categorized machine learning algorithms, and provided examples

of their relationships to the interaction types.

The complexity and depth of the framework lies in the potential to combine the in-

teraction types and techniques in different ways. In Figure 7.1, I present a table showing

how combinations of interaction types and machine learning algorithms can lead to very

different systems and applications, resulting in a wide range of possibilities. Some of these

combinations would be helped by innovation in algorithms by the machine learning com-

munity. Currently, there is not a strong interest in human users in that community, but those

of us who see the potential for working together must continue to make the case. One com-

pelling but simple example of why this is necessary comes from the well-known illustration

given by statistician Francis Anscombe [Ans73]. He created four small datasets, each with

two variables. Visually, as seen in ordinary scatter plots of the data (Figure 7.2), it is im-
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mediately apparent that these are very different data. However, all four sets in fact have the

same mean, standard deviation, correlation, and linear regression parameters, so summary

statistics would miss the difference completely. Certainly machine learning can offer deeper

analysis than summary statistics, but there are limitations to what can be perceived without

human review of results. As machine-learning projects without appropriate visualization to

verify the results begin to cause problems in industry and science, we may see more interest

in a blended approach.

Figure 7.2: Anscombe’s quartet [Ans73], a collection of four datasets that illustrate the need
for visualization. Each scatter plot is a different dataset, but all share the same statistical
properties including mean, variance and regression parameters.

Figure 7.1 and the corresponding framework are based on my observations and ex-

perience working on Dis-Function, Doc-Function, EigenSense, and Finding Waldo. Neither

is meant to be definitive, but they are instead meant to be the start of a systematic guideline

for advancing machine learning and visual analytics research. Although a more thorough

investigation into the validity and completeness of this framework is necessary, it hopefully

can serve as a starting point for developing a much needed guideline for the field of visual

analytics.
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Chapter 8

Conclusion

In this dissertation, I have discussed my work towards analytics systems that integrate vi-

sualization and machine learning to allow data stakeholders to reap the benefits of high-end

model learning techniques while neither having to turn the process over to people out-

side their field nor gain separate expertise in data science. First, I described a prototype

system for learning distance functions by interacting directly with a visualization of high-

dimensional numerical data. Despite the relative convenience of learning models by inter-

acting with visualizations of data, the user may still find the number of data points to ex-

amine burdensome. In order to provide the kind of feedback described, many comparisons

between data points may be required. To facilitate this process and maximize the effects of

the user’s hard work, I introduced a work-in-progress system that helps the user focus in-

quiries on the most fruitful parts of the data. Next, I provided an extension to this automatic

model-building work that shows the same model-building can be performed for text data.

The models being built are weighted Euclidean distance functions, meaning that (1) they

are human-readable (they tell the relative importance of each data dimension), and (2) they

are represented as vectors. Because of the latter, I showed the possibilities for reasoning

about users’ analytical processes through a numerical provenance that considers movement

through the (vector) space of possible models. In a continued vein of improving the an-

alyst’s experience, I provided a proof-of-concept experiment showing that it is plausible

to learn about users automatically from their interactions. This technology could someday

be used to create systems that optimize their interfaces to fit with the type of user at the
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controls. Finally, I presented the sketch of a framework for how these integrated machine

learning and human computer interface systems can be designed, including the types of in-

teraction and machine learning mechanisms, and a discourse on machine learning methods

and how they fit this framework.
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