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ABSTRACT
We present a novel brain-computer interface (BCI) integrated
with a musical instrument that adapts passively to users’
changing cognitive state during musical improvisation. Tra-
ditionally, musical BCIs have been divided into camps: those
that use some mapping of brainwaves to create audio signals;
and those that use explicit brain signals to control some as-
pect of the music. Neither of these systems take advantage of
higher level semantically meaningful brain data or implicit
brain data which could be used in adaptive systems. We
present a new type of real-time BCI that assists users in mu-
sical improvisation by adapting to users’ measured cognitive
workload. Our system advances the state of the art in this
area in three ways: 1) We demonstrate that cognitive work-
load can be classified in real-time while users play the piano
using functional near-infrared spectroscopy. 2) We build a
real-time system using this brain signal that musically adapts
to what users are playing. 3) We demonstrate that users pre-
fer this novel musical instrument over other conditions and
report that they feel more creative.
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brain-computer interface; fNIRS; functional near-infrared
spectroscopy; music; adaptive; workload; passive BCI

ACM Classification Keywords
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INTRODUCTION
Brain-computer interfaces (BCIs) have been used to increase
the effective communication bandwidth between the human
and the computer by passively obtaining and using extra in-
formation about the user [2, 37]. In a musical instrument in-
terface, such as a piano keyboard, the user’s communication
channels may be limited by the paucity of input devices, body
parts, and attention. An adaptive BCI can increase this band-
width by providing a cognitive communication channel that
passively measures user cognitive state without requiring ad-
ditional effort or attention on the part of the user. It can then
use it as an additional input channel that modifies the music
at appropriate times, almost acting as a user’s third hand.

Traditionally, many musical BCIs have been based on differ-
ent variations of mapping brainwaves to soundwaves. For ex-
ample, the magnitude spectrum of the brain signals are used
to shape the spectrum of musical frequency [22, 23, 27] or
certain features are mapped to certain musical features [25,
43]. More recently, the power spectrum of EEG signals have
been used to map algorithm selection to create music [25].
However we seek the ability to go beyond the lower level sig-
nal and to extract meaningful information from the brain data
about cognitive activity [23, 26, 33, 34].

Recent events in the field of brain sensing point to such a
way of measuring and using higher level meaningful cogni-
tive data. Cognitive workload has been measured by fMRI
[7, 20], EEG [9, 18] as well as fNIRS [4, 5, 29]. Solovey et
al. [37] demonstrated the first real-time BCI that adapted to
users’ cognitive state with fNIRS. Ayaz et al. [4] and Afer-
gan et al. [1] used cognitive workload to assist user load in
unmanned aerial vehicle (UAV) simulations with fNIRS.

BCI technology has now reached the point where this
is an opportune time to introduce a musical system that
adapts in real-time to users’ cognitive state. We introduce
BRAAHMS: BRain Automated Adaptive Harmonies in a
Musical System. BRAAHMS is a real-time musical BCI sys-
tem that calculates cognitive workload to adapt to users in the
creative task of musical improvisation. BRAAHMS adapts
to the users cognitive workload by adding or removing mu-
sical harmonies that are related to the notes that the user is
currently playing, hence augmenting their music without al-
tering their original general direction.

In order to develop such a system, we first demonstrated that
high and low cognitive workload could be automatically clas-
sified when users were playing the piano. Our next chal-
lenge was to create appropriate ways in which a novel mu-
sical instrument might respond in real-time to pianists’ cog-
nitive workload/brain activity. This required several design
iterations and pilot studies to investigate how and when the
musical adaptations would occur. Finally, we ran a second
experiment to evaluate our resulting system and found that
15 out of 20 users preferred our brain-controlled musical in-
strument over other conditions because it helped them feel
more creative.
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Thus, the contributions of the paper are as follows:

1. Discovery and demonstration that high and low cognitive
workload can be measured using fNIRS when users play
the piano.

2. Iterative design and demonstration of a novel musical in-
strument system that uses cognitive workload in real-time
to passively adapt to pianists.

3. Experimental evidence from interviews and subjective
rankings show that users prefer this novel musical instru-
ment to other conditions because they felt more creative
and that the system was responsive to them.

RELATED WORK

Music and BCI
Traditionally, most musical BCI systems have been based on
a mapping of brainwaves to audio signals. In 1965, the first
musical piece was performed with a BCI by directly mapping
the players alpha brainwaves over loudspeakers to resonate
onto percussion instruments [19]. In their biosignal musical
interface, Knapp et al. used EEG alpha waves in the occipital
cortex to change the MIDI program [15]. In their demonstra-
tion they gave they example of changing from a violin to a
glockenspiel sound [15]. More recently, Miranda et al. built
a BCI-Piano that responded to certain frequencies of EEG ac-
tivity with assigned musical passages [23, 24]. Arslan et al.
used a combination of eyeblinks based on EEG alpha-bands
and motor imagery stimulation from the motor cortex to ap-
ply a mapping to note triggers and diffusion of sound over
loudspeakers [3]. Mealla et al. used the magnitude spectrum
of EEG to shape the spectrum of white noise in their musical
table-top interface [22].

There have also been examples of BCIs where direct brain
signals are used to control a grid of options to select icons
as a replacement for a keyboard and mouse in order to com-
pose music using the P300 signal [6] and steady-state visu-
ally evoked potentials [17]. While such systems are excellent
designs for users with motor disabilities, they are slower to
operate than a mouse and keyboard for able-bodied users.

A clear need for higher level semantically meaningful
brain data has been highlighted in the field of musical
BCIs [23, 26]. Rosenboom [33] discussed the possibility
of using Event-Related Potentials with EEG. Miranda et al.
[26] ran a pilot study on a EEG-based BCI that detected ac-
tive versus passive listening. Active listening is when a user
would imagine the riff continuing for 2 bars after it finished
whereas passive listening involved no extra effort. However,
they reported difficulty in reliably detecting listening behav-
ior [25]. They also discussed building another musical BCI
that would direct the tonality of the music based on auditory
cortex stimulation. However they reported that only the gen-
erative music system had been built so far which is based on
hypothetical brain data [25]. Girouard et al. used fNIRS to
classify between two non-music related tasks and changed the
background music according to the predicted task [10]. They
found no effects of background music on the tasks but their
main goal was to produce a proof-of-concept passive adaptive

(a) (b)

Figure 1: FNIRS equipment and experiment setup. a)Subject
is playing the piano keyboard while wearing the fNIRS sen-
sor. Imagent is visible on the right. b)An fNIRS sensor with
light sources (left) and one detector (right).

BCI rather than a musical BCI [10]. Grierson et al. [13] have
used the Neurosky headset’s attention and meditation levels
to control Brainemin and Brain Controlled Arpeggiator in live
performances. However there has been no user evaluation or
controlled experiment using these cognitive states.

Brain Sensing in the Prefrontal Cortex with FNIRS
FNIRS is a non-invasive imaging technique that can be
used to measure levels of oxygenated hemoglobin (oxy-Hb)
and deoxygenated hemoglobin (deoxy-Hb) concentrations in
brain tissue When an area of the brain, such as prefrontal cor-
tex, is activated, it consumes more oxygen which leads to an
increase in blood flow to that area. The increase in oxygen
consumption, however, is less than the volume of additional
provided oxy-Hb, hence resulting in an increase in oxy-Hb [8]
and a decrease in deoxy-Hb. This hemodynamic response can
be measured by emitting frequencies of near-infrared light
around 3 cm deep into the brain tissue [41] and measuring
light attenuation to determine how much oxy-Hb and deoxy-
Hb is flowing in the area.

We can therefore use fNIRS to measure levels of cognitive ac-
tivation in the anterior prefrontal cortex by placing the sensors
on the forehead. The prefrontal cortex is the seat of higher
cognitive functioning such as complex problem solving and
multitasking [16]. In this paper, we measure activation in the
anterior prefrontal cortex with fNIRS to analyze and respond
to differences in cognitive activity when users are faced with
a musical task that varies in difficulty level.

The fNIRS signal has been found to be resilient to respiration,
heartbeat, eye movement, minor head motion, and mouse and
keyboard clicks [35]. It is generally more tolerant of motion
than EEG and has a higher spatial resolution. However it does
have a slower temporal resolution than EEG with a delay of 5-
7 seconds due to the hemodynamic response of blood flow to
the brain. Due to its general ease in setting up with users and
its relative tolerance of minor motion, fNIRS is an increas-
ingly popular method of brain sensing in the HCI community
[1, 2, 4, 29, 36, 37].

Passive Brain Computer Interfaces
Many musical BCIs have used brain signals as a direct input
to an application, such as using the P300 signal to directly
control a synthesiser [12] or select harmonies [40]. Icons
from a grid have been selected to compose music instead of

2



the standard keyboard and mouse using the P300 signal [6] or
steady-state visually evoked potentials [17].

While such active BCIs can be invaluable to people with mo-
tor disabilities, to the general population they are slower and
less accurate than their standard mouse and keyboard. Re-
cently, however, fNIRS and other brain-sensing technologies
have been used for passive brain computer interfaces, where
the user performs a task normally, but the user’s brain sig-
nals act as an additional communication channel that are used
to assess cognitive state and adapt the interface accordingly.
Passive BCIs are characterized by implicitly state measur-
ing user cognitive state without any additional effort from the
user [45] and without the purpose of voluntary control [44],
thus resulting in a more natural interaction between the hu-
man and system [46].

One of the most promising signals to control real-time BCIs is
cognitive workload, which has been used since the first fully
adaptive loops [31, 42], and has been shown to successfully
adapt an interface using fNIRS [1, 10]. In addition, fNIRS has
also been used to control passive BCIs using preference [28]
and multitasking signals [2, 37]. In this paper, we build and
evaluate a passive BCI that analyzes and responds to users’
cognitive workload in a musical task.

RESEARCH GOALS
Our primary research goal was to use semantically meaning-
ful brain data to develop and evaluate a passive, musical BCI
that would measure, analyze and adapt to user cognitive state.
In order to do this we conducted three main stages of experi-
mentation and design:

• Experiment 1 was a feasibility study carried out on 15 par-
ticipants to determine whether differences in brain data
corresponded with high and low difficulty levels when
users played the piano.

• Through a iterative design process and pilot studies we
built BRAAHMS, a passive real-time BCI that adapts to
the brain signal established in Experiment 1 during musical
improvisation by adding or removing musical harmonies.

• Experiment 2 was an evaluation study of BRAAHMS car-
ried out on 20 participants. Two BCI conditions were
tested along with a constant and non-adaptive condition.

Experiment 1 was an offline analysis of participants’ brain
data while Experiment 2 was carried out in in real-time in
order to respond to participant’s brain signals as they played
the piano.

EXPERIMENT 1: PIANIST WORKLOAD CLASSIFICATION
In the first study we collected data from 15 individuals with
the goal of examining the feasibility of automatic classifica-
tion of cognitive workload using fNIRS while users played
the piano.

Materials
We chose 15 easy pieces and 15 hard pieces for participants
to play on the piano for 30 seconds at a time. The criteria
for the easy pieces were that a) all notes were in C major

(a) An example of a hard piece, excerpt from Impromptu No.1, Opus 25 by
Gabriel Fauré

(b) An example of an easy piece

Figure 2: An example of a a) hard piece and b) easy piece.
Both pieces are nine measures long.

(i.e. no sharps (]) or flats ([)), b) there were only whole notes
( ¯ ) (very slow, long notes), c) there were no accidentals (i.e.
no additional sharps, flats, or naturals (\) that are not part of
the scale), d) all notes were within the C to G range so that
participants did not need to move their hands e) there were no
dynamics (i.e. volume of a note or stylistic execution). The
hard pieces were chosen by a musicologist and the criteria
consisted of pieces that a) had a harder key signature (most
pieces had a key signature of at least 3 sharps or flats), b)
contained accidentals , c) contained mostly eighth ( ˇ “( ) and
sixteenth notes ( ˇ “) ) (i.e. short, fast notes), d) required some
moving of the hands but not too excessively, and e) contained
dynamics. Figure 2 shows an example of an easy and hard
piece.

Experimental Procedure
Participants were given 15 easy and 15 hard pieces of music
in random order to play on the piano. They were given 30
seconds to sight-read each piece (i.e. play a previously unseen
piece) followed by a 30 second rest period. A metronome was
played at the start of each piece for 4 seconds at a speed of
60 beats per minute. Participants were asked to try to stick
to this speed but told they could go slower if they needed to.
Figure 1a shows the setup of Experiment 1.

Participants
Fifteen participants took part in the first experiment (7 female,
mean age of 21, SD of 2.4) and were compensated $15 for
participating. Subjects had been playing piano for a mean of
9 years (SD 5.4).
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Figure 3: Left: Mean change and standard error in oxy-Hb in
Experiment 1 across all participants. Although each partic-
ipant was modeled individually, the fNIRS signal exhibited
a general trend with higher levels of oxy-Hb corresponding
with hard pieces. Right: The mean change in oxy-Hb was
significantly higher in participants when they played an hard
piece than an easy piece (p < .01).

fNIRS System

Equipment
We used a multichannel frequency domain Imagent fNIRS
device from ISS Inc. (Champaign, IL) for our data acqui-
sition. Two probes were placed on a participant’s forehead
to measure data from the two hemispheres of the prefrontal
cortex. Each probe contains four light sources, each emitting
near-infrared light at two wavelengths (690 and 830 nm) and
one detector; thus we had sixteen data channels (2 probes x
4 source-detector pairs x 2 wavelengths) (Figure 1b). The
source-detector distances ranged from 1.5 and 3.5 cm, and
the sampling rate was 11.79 Hz. The signals were filtered for
heart rate, respiration, and movement artifacts using a third-
degree polynomial filter and low-pass elliptical filter.

Training and Modeling Brain Data
The easy and hard musical pieces were used to train the sys-
tem to learn each individual user’s cognitive activity for low
and high cognitive workload, respectively. During each mu-
sical piece, the system calculated the change in optical in-
tensity compared to a baseline measurement for each of the
sixteen channels. Markers sent at the beginning and end of
each trial denoted the segments for each piece. The mean
and linear regression slope were calculated by the system for
each 30 second trial for each channel resulting in 32 features
(16 channels x 2 descriptive features). These features were
inputted into LIBSVM, a support vector machine classifica-
tion tool, with a linear kernel [1]. We also carried out 10-fold
cross-validation in order to verify that the model was accu-
rate.

Experiment 1 Results and Discussion

Figure 3 shows the mean and standard error in the oxygenated
hemoglobin of participants while they played easy (blue) ver-
sus hard (green) pieces on the piano. Although we built an
individual model for each participant, we present the mean
findings across all 15 participants across all 30 trials in Fig-
ure 3 to illustrate this general trend.

To investigate differences between hard and easy pieces,
we performed a t-test on the mean change in oxygenated
hemoglobin. This revealed a significant difference between
conditions when participants played an easy piece (µ =
−0.1, σ = 0.1) versus a hard piece (µ = −0.02, σ = 0.1)
on the piano (t(14) = −3.04, p < .01). Means and standard
errors are shown in Figure 3.

The significantly higher levels of oxy-Hb when participants
were playing harder pieces on the piano correspond with the
hemodynamic literature, whereby, when there is increased
cognitive activity in an area of the brain, excess oxygen is
provided to that area. The increase in oxygen consumption is
less than the volume of oxy-Hb provided, resulting in more
oxy-Hb [8].

Although it seems at first glance that the two different musi-
cal scores in Figure 2 would cause a great difference in hand
motion, participants actually only managed to play one or two
measures from the hard pieces very slowly. This is because
the hard pieces were purposefully chosen by a musicologist
to be complex. Furthermore, sight-reading (playing a piece
that you have never seen before) is a challenging task by it-
self. Therefore the difference in hand motion between the
easy and hard pieces was minimal.

The fNIRS signal is resilient to minor hand movement [35] as
caused by the simplicity of the easy pieces and the complexity
of the hard pieces. This is an advantage of fNIRS over EEG in
a musical study such as this. Thus, the significant differences
in oxy-Hb reported in Figure 3 can be related to differences
in cognitive workload in users when playing easy versus hard
pieces on the piano.

BRAAHMS: ITERATIVE AND FINAL DESIGNS
Experiment 1 established that there were differences in the
fNIRS signal when participants played easy vs. hard pieces
on the piano. We therefore built upon these findings to
design and create a novel musical brain-computer interface
BRAAHMS: BRain Automated Adaptive Harmonies in a
Musical System.

Design Iterations and Pilot Studies
Prior to designing the musical adaptation used in Experiment
2, a number of design iterations and pilot studies took place.
These iterations explored the space of possible musical addi-
tions that an adaptive system could provide, and resulted in a
final design that selected the musical enhancements indicated
as most helpful or pleasing by users in the pilot studies.

Preliminary Interviews
We discussed the topic of a brain-based adaptive musical
interface with one professor of music and engineering, one
professor of music and machine learning, and several music
graduate students before designing and building the system.
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The main outcomes were that 1) expert musicians would not
appreciate interference in their creativity, and 2) most people
who take piano lessons are classically trained to play musi-
cal scores, but are not generally taught how to improvise (this
was also later reflected in our participants’ improvisational
experience in Experiment 2). We therefore decided to focus
on building a system designed to aid beginner to intermediate
pianists at musical improvisation.

Melodic fragments from all piano pitches
The starting point of the iterative design process was a sys-
tem that inserted precomposed melodic fragments while the
user was playing, making use of any pitches present on a stan-
dard piano keyboard. We determined that this form of musical
addition did not complement the user input and was instead
experienced as contrarian, such as the following report from
a participant: “[The additions] made composing/improvising
much more difficult because it distracted my hearing and
what I was playing and distracted me”. This starting point
had two main drawbacks. First, since the melodic fragments
were precomposed, they did not tend to coincide with the
users’ playing. Second, the unrestricted availability of all
pitches on the piano resulted in pitch additions that altered
the harmonic content of the users’ music in a confusing way.

Layered melodic fragments with harmonic consistency
To address the confusing harmonic alterations, a restriction
was added to force all system additions to match the same
harmonic center (or “musical ke”) as the user input. For ex-
ample, in the key of C major, only white keys on the piano
are available to the system. To further refine the exploration,
four layers of musical additions were created and tested. The
layers were:

- Simple melodic additions in conjunction with the user input,
which used a subset of pitch classes from the major scale (e.g.
for a piece in the key of C, using a subset of the white keys
only).
- More complex melodic additions, which played more notes
faster in conjunction with the user input.
- Harmonic additions to the melodic portion of the user input,
using harmony rules derived from Western music theory.
- Harmonic bass additions to accompaniment portion of the
user input, using harmony rules derived from Western music
theory.

As the user maintained a low level of measured cognitive
workload, additional layers were added every ten seconds,
starting with simple melodic additions and ending with all
four layers combined. If the measured cognitive workload
became higher, layers were removed.

User feedback on these musical additions was more positive
than the precomposed fragments from earlier. For example,
one user wrote: “I really enjoyed playing the simple melody
when each of the other melodies/harmonies came in - it led to
some really pretty sounding music that I felt I was controlling
with only a few keys!”. However, other users still found the
melodic portions intrusive, specifically with respect to their
experience of the tempo and rhythm of the composition. An-
other participant wrote: “Sometimes the timing of the addi-

tions seemed to clash with the speed I was trying to play”.
Overall, the aggregated feedback suggested that the melodic
additions were experienced as mixed positive and negative by
participants, whereas the harmonic bass additions were con-
sistently experienced as pleasing enhancements to the music
created by the user without compromising creative control.

This iterative design process made it clear that the best ap-
proach for the adaptive system was to use a simple harmonic
addition to reinforce the user input while making sure to
respect the rhythmic and tempo choices of the user. This
formed the basis for the musical system design used in Ex-
periment 2.

Final Design for BRAAHMS
Musical Real-Time Adaptation by the System
The design iterations and pilot studies made it clear that the
most pleasing adaptation is to harmonically supplement the
music created by the user while staying true to the melodic
and rhythmic choices provided by the user. The musical adap-
tation system accomplishes this with a simple harmonic addi-
tion that re-emphasizes the melodic pitches and reinforces the
harmonic center provided by user-selected pitches, matching
the user note onset times to maintain the same rhythm as the
user. The right-hand user input (higher pitch middle C or
above) typically plays the more melodic portion of a piece.
For the right-hand input, the system adds the pitch one octave
above the user pitch (+7 notes of the major scale). The left-
hand user input (lower pitch below middle C) typically plays
the accompaniment or bass part in a piece. For the left-hand
input, the system adds two pitches: 1) one octave below the
user input pitch (-7 notes of the major scale), and 2) the third
of the chord between the octave and the user pitch (-5 notes
of the major scale). These intervals are shown in Figures 4a
and 4b. These musical additions are consistent with typical
Western harmonies [30].

The octave additions serve to re-emphasize the pitches cho-
sen by the user. The addition of the second left-hand note
provides a harmonic reinforcement of the tonal center speci-
fied by the left-hand user input. The added pitch is the third
of the chord (e.g. if the user plays a C, then the added note
will be an E). [30]. Adding this enriches the harmonic tex-
ture of the musical sound. The third of the chord is specific
to the harmonic mode of the music overall (e.g. if the user
plays a C, the added E implies C major rather than C minor),
so adding the third of the chord can help maintain a harmonic
consistency across different user inputs. This adds musical
depth to the harmonic content chosen by the user.

By providing these simple harmonic additions in this way,
the system adds depth and richness to enhance the musical
choices made by the user. The user retains a great deal of
flexibility to make melodic choices with their right-hand, and
retains complete control of the rhythmic aspects of the music
creation experience.

Sound Engine
These musical additions were implemented in Pure Data (PD)
with a piano soundfont through the software synthesizer Flu-
idSynth. QjackCtl was used to connect all systems on a Linux
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(a) (b)

Figure 4: The musical harmonies added by BRAAHMS. a)
Blue notes denote the keys the user is pressing. Red notes
denote the additions made by the system. The L and R de-
pict the fingers of the left and right hand respectively. The
* indicates middle C. b) Music notation showing a sample
user input (blue) with the additional pitches provided by the
system (red).

Operating System. Subjects played their chosen notes on an
electronic piano keyboard, which sent MIDI inputs to PD.
The combined harmonic MIDI outputs along with users’ orig-
inal notes were generated in PD and sent to the keyboard via
the soundfont on FluidSynth which converted the MIDI out-
puts into audible piano sounds. PD only added or removed
musical additions when it received a marker from the fNIRS
system, the real-time classifications of which are discussed
below.

Musical Guidance for Participants
As it is challenging even for expert musicians to improvise or
perform in a completely open-ended musical context, partic-
ipants were provided with a simple piece of notated music to
use as a basis for their musical creation. Participants were in-
vited to improvise beyond the confines of the simple skeleton
provided by the notated music. The notated music is shown
in Figure 5. The notation outlines a repeating I-IV-V-I musi-
cal chord progression, which is one of most prevalent chord
progressions in Western music and is likely familiar and au-
rally pleasing to participants [14]. In the key of C, the chords
are: C-F-G-C. This musical skeleton provides an easy way
for participants to approach the musical creation task.

Figure 5: Notated music provided as guidance only to partic-
ipants during musical improvisation.

fNIRS System
Real Time Classification
To predict user state in real time, we used the same LIBSVM
machine learning tool and training procedure as Experiment
1 to build the model. However, while the user was improvis-
ing, the machine learning model also predicted user cognitive
state in real time. The system analyzed the last 30 seconds
of real-time fNIRS data to calculate a prediction of user cog-
nitive state (high or low) along with a confidence percentage

value. Each prediction was sent every 500 ms, and the sys-
tem averaged the last 10 seconds of predictions to give a more
overall model of cognitive activity.

Confidence Threshold Automation
One of our findings from our pilot studies while designing
BRAAHMS was that a fixed threshold for confidence aver-
age values did not work for all individuals during musical
improvisation. In previous adaptive BCIs, the adaptations
would occur if confidence averages were above some fixed
percentage for low or high cognitive workload levels [37, 1].
In this work, we automated this threshold value for each indi-
vidual by setting the threshold at the 75th percentile of confi-
dence values for both high and low cognitive workload clas-
sifications during the first non-adaptive trial. In this way, the
thresholds were set at a more accurate and representative level
of each user’s cognitive workload while improvising. This
ensured that the system would only add or remove musical
additions when it was confident in the user’s cognitive state.

EXPERIMENT 2: EVALUATION OF BRAAHMS
We carried out an evaluation study of BRAAHMS in Exper-
iment 2 over 4 different conditions on a new set of 20 par-
ticipants. We investigated user preference through subjecting
rankings and post-experiment interviews .

Experimental Design
In order to evaluate user preference, we tested BRAAHMS
over 4 different conditions of musical adaptation. We did
not assume whether to add and remove the harmonies when
cognitive workload was high or low to account for individual
differences and to investigate user preference. We therefore
tested 2 different BCI conditions as well as 2 non-BCI condi-
tions:

• BCI1: Musical harmonies are added when brain signals
correspond with low cognitive workload and are removed
when brain signals correspond with high cognitive work-
load.

• BCI2: Musical harmonies are added when brain signals
correspond with high cognitive workload and are removed
when brain signals correspond with low cognitive work-
load.

• Constant: Musical harmonies are always present.

• Non-adaptive: There are no musical harmonies.

Users first carried out the training task described in Experi-
ment 1 in order to build a model from their brain data. They
then carried out the 4 conditions described above in ran-
dom order except for the non-adaptive condition which had
to come first to extract the automated threshold for low and
high cognitive workload. Participants had no knowledge that
some conditions were brain-controlled or not as they wore the
fNIRS sensors throughout the experiment and were simply
asked to improvise and that this would be repeated 4 times.
Each of the 4 conditions were filmed with the participants’
consent.

We also carried out and recorded post-experiment interviews
during which participants watched each condition back on
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Figure 6: Left: Mean change in oxy-Hb and standard er-
ror across all trials and participants. Although each partic-
ipant was modeled individually, the fNIRS signal exhibited
a general trend with higher levels of oxy-Hb corresponding
with hard pieces, consistent with the findings of Experiment
1 (Figure 3). Right: he mean change in oxy-Hb was signifi-
cantly higher in participants when they played an hard piece
on the piano versus an easy piece consistent with the findings
of Experiment 1 (p < .001, also see Figure 3).

video and were asked three questions as they watched each
condition: 1) Do you have any comments about this trial? 2)
Do you have any comments about the additions in this trial?
3) Do you have any other comments? They were still blind
to differences in conditions. At the end of the interview they
filled in a short questionnaire where circled their favorite trial
out of the 4 options: ‘System 1’ ‘System 2’ ‘System 3’ and
’System 4’ and then rank each trial with 1 being their favorite
and 4 being their least favorite.

Participants
Twenty participants took part in the second experiment (14
female, mean age of 21, SD of 1.9) and were compensated
$20. We requested beginner to intermediate pianists. Mean
length of time participants had played piano was 7 years (SD
5 years) while 10 of them no longer played piano and 4 only
played once a year. Seven had never improvised and seven
only improvised rarely.

Experiment 2 Results and Discussion
Technical evaluation
The fNIRS data in Experiment 2 was consistent with the
findings from Experiment 1 whereby brain signals corre-
lated with high vs. low levels of difficulty when participants
played the piano (Figure 6). Similar to our findings in Ex-
periment 1, we performed a t-test on the mean change in
oxygenated hemoglobin which revealed a significant differ-
ence between when participants were playing an easy piece
(µ = −0.1, σ = 0.1) versus a hard piece (µ = 0.1, σ = 0.1)
on the piano (t(18) = −4.50, p < .001). The means and
standard errors of these conditions are shown in Figure 6.

The increase in oxy-Hb during the hard pieces and decrease
in oxy-Hb during the easy pieces are once again consistent
with harder tasks resulting in higher levels of oxy-Hb [8].

Participants Prefer the BCI conditions
Participants were asked to state their favorite trial at the end of
the post-experiment interview, after they had watched footage
of each trial. They were blind to the conditions of the trials
and wore the brain sensors during all trials.

Fifteen out of twenty participants responded that their favorite
condition was a brain-controlled condition. Figure 7 shows
the favorite conditions of participants.

Figure 7: Favorite conditions of 20 participants in Expt 2

To investigate why participants preferred the BCI conditions,
we turn to the interview data. Both BCI conditions were pre-
ferred by different individuals, and while we discuss this in
terms of musical expertise, the discussion of why the BCI
conditions were preferred in general over non-BCI conditions
can also help shed some light on this.

Participants felt more creative in their favorite BCI condition
Findings from interview data revealed that out of the 15 par-
ticipants who ranked a BCI condition as their favorite, 12 of
them commented that the BCI additions helped them to mu-
sically perform in a way that they would not have been able
to do by themselves. In contrast, only 2 participants made
such comments about the constant condition, 1 of which had
ranked the constant condition as their favorite. Participants
commented that they felt more creative during their favorite
BCI condition, such as:

“[BCI2] was my favorite. I felt I was at my creative peak.
Obviously it’s clunky because I’m not a real pianist, but I felt
like I was playing a real song. I was combining my comfort
zone with the additions.”

“Being that I am not as experienced and I’m able to get a
chord out of just one key, I can do sounds that I probably
wouldn’t know how to make on my own.

In addition, we present some quotes on how subjects’ fa-
vorite BCI condition would help them creatively in contrast
with their constant condition. One subject found the additions
helpful in their favorite BCI condition:
“During [BCI2] I thought the additions were pretty helpful.
It’s hard to say how. Maybe because introducing another note
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leads you in a slightly different direction than you were head-
ing originally, that can be nice.”
However the same subject did not like the constant condition:
“I thought that sometimes the additions were confusing be-
cause I thought that the note that I was trying to play wasn’t
the note that was coming out. For some reason in this last
trial I started to notice them [the additions] more.”

Similarly, another subject commented that their favorite BCI
condition helped them develop new ideas:
“I liked the additions, I felt like they almost made it easier to
come up with ideas because I was staying in the same octaves
before and I was like ‘Oh, it sounds pretty when its outside of
that’.” However the same subject did not feel the same way
about the constant condition:
“I felt like there were a lot of them [additions]. I remember
at least in the beginning it felt like every note, it was kind of
weird to have every single note [with additions].

These findings suggest that the favorite BCI conditions
helped participants achieve a musical level that they would
not achieve by themselves or be taken in new directions that
they would not have alone. The high number of participants
(12 out of 15) who all made similar unprompted comments
on their favorite BCI condition in response to open-ended in-
terview questions suggests that this was an important factor
in their preference. The contrast in comments between the
favorite BCI condition and the constant condition within sub-
jects suggests that adaptive musical additions in response to
cognitive state could take participants to a creative place that
simple, constant musical additions could not.

Participants felt their favorite BCI condition was responsive
Out of the remaining 15 participants who stated a BCI con-
dition as their favorite, the other reason that was given for
preference was the responsiveness of the musical additions.
Comments on their favorite BCI condition included:

“[BCI2] was my favorite... I felt like I was responding to the
additions and they were responding to me”

“[BCI1] was my favorite of all of them. I think because I
didn’t know if the additions were going to come in and out it
was fun and felt very fluid with the combination of just regu-
lar piano [and additions]. I felt that in this one it was respon-
sive.”
However in contrast the same subject felt that the their con-
stant condition was not responsive:
“In [constant] I remember that the additions took a bit more
adjustment, I didn’t feel that they were as responsive because,
I would be in the middle of a very quiet part and all of a sud-
den it would be doubled and it would be jarring.”

Another example from a subject who felt that their favorite
BCI condition was responsive to them:
“In [BCI2] for some reason I felt that the changes were more
responsive and I couldn’t tell you why... I couldn’t quite fig-
ure out any pattern of when they were coming and out so I
couldn’t tell if I was influencing them but for some reason it
didn’t feel random, I dont know why.”
And this same subject felt that the other (non-favorite) BCI

condition was not responsive:
“The additions generally seemed random coming in and out...
they didn’t seem responsive at all.”

These comments suggest that responsiveness is an important
factor in participants’ preference of a condition. This is sup-
ported by the fact that there were several comments made
about other conditions that were not the favorite where re-
sponsiveness was lacking. It seems therefore that it is not
enough for musical additions to be arbitrary, that they must
subjectively feel responsive to a user, even if the user does
not understand why.

Years of experience affected preference of conditions
Of 20 participants, 5 did not rank a BCI condition as their
favorite, instead picking either the Constant (3 participants)
or Non-Adaptive (2 participants) conditions as their preferred
adaptation strategy. We noticed an interesting characteristic
in this group in that 4 of these 5 participants had more years
of experience playing the piano (17, 13, 12, and 10 years)
compared to the median of 6.5 years of the total group. To
investigate these results statistically, we divided the partici-
pants into two groups based on years of experience via a me-
dian split (at 6.5 years) and examined their rankings of the
conditions.

Analyzing the participant’s rankings using a Friedman test,
there was a statistically significant difference in both the low
experience χ2 = 25.74, p < 0.0001) and high experience
groups (χ2 = 27.96, p < 0.0001). To investigate relation-
ships between conditions, we perform post hoc comparisons
using the Wilcoxon rank-sum tests, and correct for multiple
comparisons using the Bonferroni technique, resulting in a
significance level set at p < 0.01 [11]. Figure 8 shows the
resulting rank-sums and significant differences.

For the participants with low (≤ 6.5 years) experience (n =
10), post hoc comparisons show that participants signifi-
cantly preferred both BCI conditions to the Constant and
Non-Adaptive conditions (p < 0.001). There was no sig-
nificant difference between the [BCI1] and [BCI2] conditions
(p = 0.18), nor was there a difference between the Constant
and Non-Adaptive conditions (p = 0.59).

In contrast, for participants with high (> 6.5 years) experi-
ence (n = 10), post hoc comparisons revealed that partici-
pants significantly preferred the [BCI1] condition to both the
Non-Adaptive and Constant conditions (p < 0.001). How-
ever, the [BCI2] condition was not significantly different than
either the [BCI1] (p = 0.04) (due to the conservative thresh-
old of the Bonferroni correction) nor the Constant (p = 0.31)
conditions.

The results of these analyses suggest that participants with
more experience of playing the piano show more variabil-
ity in their preferences for adaptations. In contrast, partic-
ipants with less experience playing the piano show a clear
preference of the BCI conditions over the constant and non-
adaptive conditions. This is most likely due to more experi-
enced pianists’ ease with musical improvisation due to their
greater facility with the unadorned piano. It does suggest that
such a system would benefit less experienced users and per-
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Figure 8: Rank-Sums of the conditions based on a median
split (6.5 years) on years of experience playing the piano.
Rankings of participants with lower experience (< 6.5 years,
n = 10) (left) and and higher experience (> 6.5 years,
n = 10). Lower bars indicate a more preferred condition,
and bars with the same letter are not significantly different.

haps would rather interfere more with more experienced play-
ers. This is consistent with our original target audience for
BRAAHMS, which had been always been less experienced
players.

DISCUSSION
We believe this is one of the earliest demonstrations and eval-
uation of a real-time brain-based musical system that adapts
to brain signals that correspond with cognitive workload.
This need for semantically meaningful brain data in respect to
musical and/or creative tasks has been highlighted as a need
by experts in both the fields of Music and BCI [33, 26, 23]
and HCI and Creativity[21, 34].

The fact that most users ranked the BCI conditions as their fa-
vorite suggests a successful demonstration of our system. The
comments ensuing from the open-ended interview questions
suggest that one reason for this was that the system helped
them achieve a level of musical improvisation that they would
not have been able to otherwise, in other words, helped them
be more creative. Another reason given was that they felt that
their favorite BCI condition felt more responsive which sug-
gests that the timing of the additions are crucial to preference.
Adjectives participants used to describe their favorite con-
dition included “responsive”, “fun”, “enjoyed” “dynamic”,
“fluid”, and “creative” which suggests that also, simply, the
system was enjoyable to use and fun.

One of the important points brought up by musical experts
in our pre-design interviews was that experienced musicians
would not appreciate interference with their creative process.
As noted, BRAAHMS was thus designed for beginner to in-
termediate pianists. Interestingly, one of our findings was
that out of our group of beginner to intermediate players,
the relatively more experienced users did show more variance
in their preference for adaptations whereas less experienced
ones showed a clear preference for the BCI conditions over
the constant and non-adaptive conditions. In future musical
brain-controlled systems, it would be prudent to consider and
incorporate musical expertise and experience into the design
process and the adaptation strategy.

While each of the two BCI conditions were preferred over ei-
ther of the constant and non-adaptive conditions, the choice
of which of the two BCI conditions was better varied across
subjects. When designing our adaptations, we purposefully
had not assumed whether to add musical additions when par-
ticipants’ cognitive workload was low and remove the ad-
ditions when cognitive workload was high (BCI1), or vice-
versa (BCI2). We thus implemented both possible BCI condi-
tions to explore user preference and to account for individual
differences. This is a topic for further investigation to under-
stand which adaptations are best for which users or condi-
tions, or perhaps under what conditions to switch adaptations
from one to the other.

FUTURE WORK
This study has focused on music as the creative task in which
to aid participants, however, it carries implications for a
broader reach in the field of HCI where the user’s goals are
also non-specific. In previous BCI work, there is generally
a specific goal, where it is assumed that the user knows ex-
actly what they want to do, such as find the most efficient
UAV route [1] or direct a robot to its correct location [37].
In many tasks however there are occasions where we do not
know exactly what our goal will look like until it is reached,
such as in exploratory search or data analysis. In his sem-
inal paper, Tukey [39] spoke of the importance of the non-
specificity of goals in scientific fields: “Science - and engi-
neering... does not begin with a tidy question. Nor does it
end with a tidy answer.” The work in this paper could be
viewed as a demonstration of how semantically meaningful
brain data can be used in a creative task, where the ultimate
goal is non-specific, and the user does not know exactly what
the outcome will look like but has a general idea of what they
want [38].

Exploratory data analysis in the field of visual analytics is a
prime candidate for such work. Analysts are faced with large
and complex datasets that they must process, visualise, ana-
lyze, and subsequently extract the most critical information
out of. In fact, to overcome some of these obstacles, Riche
proposes and discusses the use of brain measurements includ-
ing fNIRS [32]. It is a fertile field in which to explore the use
of measuring cognitive state in non-specific goals. We thus
view future work in this direction in the broader context of
helping users achieve non-specific goals with brain-based au-
tomation.

CONCLUSION
We have demonstrated that it is possible to measure brain sig-
nals using fNIRS that correlate with high and low levels of
cognitive difficulty while playing the piano. We then used
this semantically meaningful brain data to build a real-time
brain-controlled system that adapts musically to the user’s
cognitive state. We have carried out pilot studies through
an iterative design process to determine which musical addi-
tions would add the most pleasing harmonic enhancements to
users’ playing without compromising control over rhythm or
tempo. Finally, we showed in an experiment that 15 out of 20

9



users preferred a brain-controlled condition, and we have dis-
cussed the possible reasons for this through post-experiment
interview analysis and participant expertise data.

We suggest that BRAAHMS increases the communication
bandwidth between the human and the musical instrument,
responding to the user’s cognitive state and providing appro-
priate musical additions just when they are needed, without
requiring the user’s effort or attention to control them.
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