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Abstract

This position statement presents a notional framework for
more tightly integrating interactive visual systems with ma-
chine learning. We posit that increasingly, powerful sys-
tems will be built for data analysis and consumer use that
leverage the best of both human insight and raw comput-
ing power by effectively integrating machine learning and
human interaction. We note some existing contributions to
this space and provide a framework that organizes existing
efforts and illuminates future endeavors by suggesting the
categories of machine learning algorithm and interaction
type that are most germane to this integration.
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Introduction

The problem of the increasing volume and complexity of
data is well known, and is an active research area across
many disciplines, including machine learning and data vi-
sualization. In general, machine learning offers sophisti-
cated algorithms for building mathematical models from



data. These techniques have proven effective, especially in
the presence of ample training data, but may not leave the
data stakeholder with any better data understanding. Alter-
natively, data visualization focuses on presenting interactive
views of data to people in order to enable sensemaking and
building of mental models for decision making and insight.
The analytic process fostered by these tools is based on
incrementally forming knowledge and understanding in the
person exploring the data, primarily through interacting with
the visualizations to answer questions, see different views,
and gain insights [13]. Thus, building visual analytic tools
that combine machine learning and interactive visualization
techniques in a calculated way offers great potential to help
people make sense of data. At the same time, consumer
software and electronics increasingly advertise features
that depend on machine learning, from self-parking cars

to cell phones apps that alert users that when to leave for
the airport to catch a flight. The fundamental understand-
ing of how generally to create these integrated human and
machine-learning systems remains an important, yet open
challenge.

The machine learning community offers sophisticated al-
gorithms for building models and making predictions from
data. These algorithms may involve complex, opaque pa-
rameters, and present themselves to data-stakeholders as
black-boxes. Expertise in these algorithms is often outside
the realm of the analysts. They may be glad not to have to
understand how the result is achieved, but they may also
not inherently trust a result handed to them from an opaque
process. Further, many open-ended problems are beyond
the scope of what a computer can handle automatically, es-
pecially for cases in which ground-truth, expertly-labeled
data examples are scarce.

Human reasoning is better suited to those open-ended

problems, where the tasks and questions shift and the de-
sired pattern, query, or question is unknown apriori. The
visual analytics community enables data stakeholders to
take control of their own analytics process by providing
techniques and systems that allow them to leverage their
expertise to explore the data and discover patterns on their
own. However, visual analytics systems generally do not
quantify these insights in the form of computational models
for explaining patterns and re-using on other data (i.e., lit-
tle, if any, training of machine learning models is generally
supported).

In this position statement, we advocate for tightly integrat-
ing human-centered interfaces and visual data exploration
tools with data-driven machine learning techniques. A spec-
trum of approaches exists for this combination, and so we
provide a framework for how interaction methods and ma-
chine learning algorithms can be combined. Specifically,
we present the framework of Figure 1 and explain the rela-
tionships between interactions and machine learning that
it characterizes. We provide examples of existing work to
illustrate these relationships in practice. We then provide
a brief discussion of a series of examples of human-and-
machine research and characterize their position in the
framework.

The Beginnings of a Framework

In this section, we sketch a framework for systems that
integrate humans and machine learning as groundwork

for future progress in this growing field. The remainder of
this section provides a discussion of our framework, dia-
grammed in Figure 1, and explains the types of interactions
and machine learning techniques that can be used, with
examples of how they have been integrated in the past.

Aside from the data and the potential output of the model
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Figure 1: This diagram sketches a framework for interactive model-learning systems. It includes types of learning algorithm and types of

interaction as described in in this paper.

learning, the framework can be seen as two interacting
components: the user and the system. The user interacts
with the system through a set of curated interactions with
a graphical user interface (GUI). Within the system, the
flow is cyclical, as new information flows through the GUI
to model-learning and is then reflected back in the GUI.
The interactions of the user with the GUI are translated
into information for the machine learning algorithm, which
updates the internal models. The updated model is then
reflected in the GUI, allowing further interaction from the
user. This can happen in real time or with on-demand iter-
ation. It can be based on explicit intent by the user to im-
prove the model, or the user can reap the benefits while
being completely unaware. For an explanation of the types

of interactions included in the diagram, which are incidental,
exploratory, parameter tuning, explicit model steering and
implicit model steering, see the sidebar.

There are two types of models: (1) models of the data con-
stitute the analytical results and affect how data is displayed
as well as the final analytic product, and (2) models of users
can be learned from their interactions and used to optimize
the interface for that type of user (e.g. a future application

of Brown et al. [5]). Once a set of interactions has been
used to update one or both of the models, the GUI can be
updated to reflect the new model information, presenting a
new opportunity for feedback from the user.

In the machine learning component, we list the top-level
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categories of machine learning algorithm ( supervised,
semi-supervised and unsupervised ) as well as call atten-
tion to specialties that may be especially relevant (online,
metric and active learning). Any of the different types of
machine learning could potentially be used in an interactive
context. Although unsupervised learning does not allow for
any information about the data by definition, it can benefit
from parameter tuning. Direct parameter tuning requires
some expertise in the algorithm, as in iPCA [10], which al-
lows a users to manipulate principle component analysis
visually. Without user expertise, unsupervised algorithms
can be used to cluster data either as part of its presenta-
tion, or in order to strategically display only subsets (e.g.
WireVis [6]).

Supervised machine learning algorithms can be applied

to a wide variety of systems, whether for directly working
with a user’s data, or working behind the scenes to im-
prove performance. Because classifiers are already so
broadly applied in data analysis, and produce important
but sometimes complex results, one way that visualization
cooperates with classifiers is to help visualize their output.
Alsallakh et el. proposed a set of visualizations that help
analyze the performance of classifiers that provide classi-
fication confidence scores for multiple classes of outcome
[1]. Parameter tuning interactions can be useful in helping
analysts get the most out of supervised algorithms. Gle-
icher [9] presented Explainers that allows a user to tune
readability vs. accuracy tradeoffs in SVMs. The Baobab-
View system by van den Elzen and van Wijk [14] allows the
user to semi-automatically refine a decision tree. Finally,
Muhlbacher et al. proposed a tool for generating regression
models using a partition-based approach [12]. There are
also numerous behind-the-scenes possibilities for these al-
gorithms. It is important to note that for both implicit and
explicit model steering, using a supervised algorithm re-

quires caution to ensure that the assumption of having all
the needed labels is appropriate. One example of how to
do this is ReGroup [2], in which a Naive Bayes classifier is
continually used to help people build groups of their Face-
book friends. In [5], the authors used supervised machine
learning on incidental and exploratory user interaction data
to build a classifier that can predict the performance of a
user on a visual search task. That work demonstrates the
possibility of detecting facets of a user automatically from
interactions, but does not close the loop by following the
arrow that updates the user interface based on the model.

Semi-supervised machine learning includes the ability to
take into account partial labeling, or side-information like
constraints about what data points are similar. This is a
powerful concept for applications where the user may (1)
not know the final labels of any of the points and (2) be pro-
viding information on data points incrementally, which are
common problems with both explicit model steering and im-
plicit model steering. Metric learning algorithms are espe-
cially germane and have seen wide use because they can
be used in a semi-supervised fashion and result in human-
readable models. For example, prior work has shown how
user interactions with projected data points can be used

to build a distance function that models how important dif-
ferent data dimensions are to a user’'s mental model [4, 8].
Similarly, user interactions on a spatial grouping layout can
be used to learn distance functions to make suggestions [3]
or provide computational support for the visual grouping [7].

There have been many successful efforts to use machine
learning interactively with human users. However, further
work is needed to flesh out the full extent to which these
integrated systems are possible and guidelines for how to
build them. Innovation will come from both the HCI and ma-
chine learning fields.



Challenges

Making integration of human and machine learning a ubig-
uitous feature of software and analytics will requires that
both disciplines address certain challenges. In this section,
we briefly outline some problems that remain unsolved.

Challenges for Human-Computer Interaction

The most important challenge for the interactive component
of mixed-initiative systems is that the interface or visualiza-
tion reflects the model. If updates to the model cannot be
seen, the feedback loop of the user’s iterative improvement
will be broken. Second, though the learner is responsible
for the update time of the model, there may be significant
computation required to update the GUI accordingly. The
interactive component must ensure that calculations for up-
dates to the visualization are part of the limited time-frame
available for showing the user the result of feedback at in-
teractive speed. Finally, there must be some mechanism

in the interface for collecting information that can be useful
to the machine learning back-end. There are many forms
from raw interaction logs to specific buttons for labeling data
points. Perhaps among the most subtle challenges is that in
cases where the user is not explicitly improving the model,
i.e. the model is used to improve the user experience but
the user is unaware of the model, the GUI must facilitate,
even encourage, providing feedback without disrupting the
main use of the software.

Challenges for Machine Learning Techniques

This framework discusses several types of machine learn-
ing algorithms; in fact the machine learning community has
produced myriad algorithms to choose from for creating
integrated systems. However, in terms of supporting in-
teractive learning systems, there are challenges yet to be
fully met. The most important challenge is that interactive
systems must support short round-trip times between user

feedback and newly learned models. Many machine learn-
ing methods are built to offer improvements in accuracy
and may not run quickly enough for an interactive environ-
ment. The second challenge relates to the first — one way of
creating algorithms that respond quickly is to formulate the
algorithms to accept incremental information. A focus on
online algorithms that get strong model-learning results one
piece of feedback at a time fit this context perfectly. Finally,
it is important in many use cases of integrated systems that
humans be able not only to build a model interactively, but
to understand the result (the topic of research in compre-
hensible machine learning [11]). Ideally, when the user is
finished, the model can be exported as a product of the
analysis and can itself be instructive. This is not a require-
ment for the learning process, but to get the best analytical
results out of a human-computer partnership.

Working Together

Overall, it is important that the visualization and machine
learning be chosen together so that they match up on data
types and they can communicate. To ensure trust and inter-
pretability, the models learned and the visualizations of data
should be closely coupled. This means researchers across
the fields must collaborate so the best of both disciplines
can leverage the best of both worlds for the user.

Conclusion

As the size and complexity of data continue to increase, uti-
lizing machine learning techniques in visual analytics sys-
tems will be ever more critical. Consumers will expect more
and more automation in the software that controls their ev-
eryday devices. However, there has yet to be a systematic
guideline for integrating user interfaces and interaction tech-
niques with back-end machine learning techniques. This
position statement presents a notional framework that cat-
egorizes interaction types and explains how they fit with a



variety of machine learning algorithms for this interactive
context. Further, we present open challenges to both the
machine learning and human-computer interaction commu-
nities to spur further research directions.
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