
At a Glance: Pixel Approximate Entropy
as a Measure of Line Chart Complexity

Fig. 1: Visualization of four line charts: 3rd order polynomial, cosine, gaussian, and linear (top to bottom). Noise is incrementally
increased to each line chart from left to right in intervals of proposed approximate entropy measure (shown in upper left of each
chart). This paper demonstrates that approximate entropy can be used as a metric for the perceptual complexity of line charts.

Abstract— When inspecting information visualizations under time critical settings, such as emergency response or monitoring the
heart rate in a surgery room, the user only has a small amount of time to view the visualization “at a glance”. In these settings, it
is important to provide a quantitative measure of the visualization to understand whether or not the visualization is too “complex” to
accurately judge at a glance. This paper proposes Pixel Approximate Entropy (PAE), which adapts the approximate entropy statistical
measure commonly used to quantify regularity and unpredictability in time-series data, as a measure of visual complexity for line
charts. We show that PAE is correlated with user-perceived chart complexity, and that increased chart PAE correlates with reduced
judgement accuracy. ‘We also find that the correlation between PAE values and participants’ judgment increases when the user has
less time to examine the line charts.

Index Terms—Visualization, Graphical Perception, Entropy, At-a-glance

1 INTRODUCTION

Information visualization has traditionally approached research from
two directions: how to generate visualization forms, and how those
forms are perceived by an end user. The latter branch of research has
focused primarily on low-level perceptual questions, such as how a
single data point is read and to what degree of accuracy. While this
work has been useful and has supported an improved understanding
of visualization theory, there remains a missing link between this very
bottom-up approach to perception and the top-down approach to gen-
eration of visualization forms. In order to connect the two sides of
visualization research, a higher level approach to the problem of per-
ception is needed.

In almost all cases, especially visualization of larger, more compli-
cated data, the first impression of a visualization centers on its overall
shape and trend. Research in psychology has shown that during the ini-
tial glance of a visual stimulus, people perceive the higher-level spatial
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and functional components of the natural scene [30, 29]. Extending
this notion, we posit that a similar mechanism applies to the percep-
tion of visualizations. Many real world settings—e.g., emergencies or
viewing quickly changing stock prices—are time critical and rely on
the user to make judgements based on glances at a visualization.

Although it is anecdotally clear that more complex or noisy visu-
alizations are more challenging to perceive [44], it is unclear how to
measure this complexity outside of performing comprehensive user
studies. Developing a measure of visualization complexity that is co-
herent with perceived complexity can have impact on a number of vi-
sualization domains. For example, designers can use the complexity
measure to design more effective visualizations, especially for time-
sensitive decision making tasks. Similarly, visualization recommen-
dation engines such as the “Show Me” feature in Tableau [41] can
take advantage of the complexity measure to detect when a visualiza-
tion may be too complex and suggest an alternate design. To this end,
there are a number of desirable characteristics of visual complexity
measure:
1. Correlated with perceived complexity: The measure should corre-

late with user perception of chart complexity.
2. Correlated with noise-levels: The measure should correspondingly

increase when more noise is introduced, since it is computed ana-
lytically (rather than through human measurements).

3. Predictive of perceptual accuracy: The measure should correlate



with the user’s ability to accurately discern patterns in the chart.
4. Simple: The measure should be a single understandable value ap-

plicable to arbitrary 1D line charts.
5. Widely Applicable: The measure should exhibit the above char-

acteristics across many types of line charts without the need for
specialized tuning.

In this paper, we examine how people perceive, at a glance, the com-
plexity of a line chart visualization, where we consider ”at a glance”
to be 200ms or less, approximately the amount of time required to
visually process a scene [50]. We explore the use of approximate
entropy [46, 45], a statistical measure used to quantify the amount
of regularity and unpredictability in time-series data, as a measure to
quantify perceptual complexity.

To this end, we conducted experiments to answer several research
questions. Is approximate entropy an effective measure of time-series
visualization complexity? Do users perceive higher approximate en-
tropy visualizations as more complex and lower approximate entropy
visualizations as simpler? As the approximate entropy of a visual-
ization increases, does user accuracy in performing visual comparison
tasks decrease? When users are given less time to study charts in order
to complete a simple identification task, does the approximate entropy
measure become more correlated with user accuracy?

We first ran an analytical experiment to compare approximate en-
tropy with synthetically generated noise levels in visualizations. We
then ran four perceptual experiments on Amazon Mechanical Turk [2]:
the first asks users to select the most or least complex visualization
from a line-up of visualizations with different approximate entropy
measures. The result of the study confirms that users perceive vi-
sualizations with higher (lower) approximate entropy as more (less)
complex. The second measures how the visual complexity (as defined
by our entropy measure) of a chart affects the user’s ability to detect
changes in the chart. The third experiment is similar to the second, but
studies the user’s ability to identify basic shapes in charts of varying
complexity. We find that visual complexity has a significant and large
effect on judgement accuracy for both tasks, and that there is a thresh-
old beyond which judgement accuracy degrades to random chance.
The last experiment measures the interaction between the amount of
time the user has to view a chart (the glance time) with their ability
to perform the change detection task in from the second experiment.
As the glance time is reduced to < 200ms, chart complexity becomes
more highly correlated with judgement accuracy.

Our first perceptual experiment provides the basis for using approx-
imate entropy to measure perceived complexity, and the subsequent
perceptual experiments are based on real-world use cases. Under-
standing how people perceive visualization of complex data within a
brief period of time can impact real-world usage in multiple ways. In
disaster response scenarios, relief workers have limited time to exam-
ine data, and need to quickly get a gist of the available information.
Similarly, in many real-time health care monitoring tasks, the typical
visualization assumption of time to examine data in detail does not
hold true. In all of these situations, the data seen at a glance is the
only data the user sees. Understanding how this data is perceived is
vital for design and evaluation of such cases, and we describe possible
applications of this measure in the Discussion section.

2 RELATED WORK

The use of Approximate Entropy as a measure of perceptual complex-
ity is related to research in psychophysics, perceptual psychology, and
information visualization (infovis).
At a Glance Perception: The idea of at a glance perception has been
widely studied in perceptual psychology. A well studied area is how
people can recognize natural scenes in a short amount of time. Tasks
such as rapid scene categorization and object recognition have been
found to rely on a broad focus. Greene and Oliva found that in rapid
scene categorization, people interpret a scene based on global, eco-
logical properties that describe its spatial and functional aspects rather
than by breaking it into objects [30, 29]. Similarly, Biederman et al.
found that a person’s ability to detect an object in a scene is depen-
dent on specific relations between the object and scene as opposed to

specific characteristics of the object itself [8]. In contrast, data vi-
sualization tasks involve recognizing and decoding visually encoded
trends and data values. This paper can be viewed as an initial exten-
sion of these ideas towards a potential measure of visual complexity
for viewing data visualizations at a glance.
Perception of Salient Features: One method for quantifying per-
ception of an image or visualization could be with a method capable
of identifying its most salient features, or a measure quantifying the
busy-ness of the image. Rosenholtz’s work on “visual clutter”, for
example, seeks to quantify the amount of clutter in natural image dis-
plays. Notably, one of the measures from this work, Subband Entropy,
uses entropy to quantify the redundancy in a natural image display
and was found to be a reasonable measure of visual clutter [58]. Mea-
suring clutter is related to measuring “visual complexity” in natural
images [42], where a pattern is described as complex if the parts are
difficult to identify or separate from each other.

In the visualization community, research has sought to quantify the
salient features of a visualization. Scagnostics is one such example by
Wilkinson et al., where multiple metrics were proposed to categorize
the perception of scatterplots [68, 43]. This work has led to a number
of advances, including research that extend the concept of Scagnostics
to parallel coordinates [22], pixel-based displays [59], and general-
ized techniques for dimension reduction of high-dimensional data [7].
However, scagnostics primarily focuses on identifying meaningful re-
lations to visualize with scatter plots, while pixel-based diagnostics fo-
cus on intensity-based visualizations like Jigsaw Maps and Pixel Bar
Charts. Our work is similar in spirit to these prior work, but instead
we focus on the perception of 1D line charts and the quantification of
the visual complexity of these visualizations.

Other work has been done on visual analysis and simplification of
time series data. Heer et al. measure the effect of chart size and layer-
ing on speed and accuracy in visual comparison tasks [33]. ASAP uses
kurtosis to guide time-series smoothing to preserve trends and anoma-
lies while reducing cyclic patterns and noise [57]. Numerous mea-
sures, such as L1 Local Orientation Resolution, have been developed
to select aspect ratios for line charts [66]. Our complexity measure
is complimentary to these approaches and can help guide selection of
visualization parameters or smoothing.
Perception of Visual Marks and Visual Forms: The study of at
a glance perception has led to much cross pollination between infovis
and perceptual psychology. Substantial work from perceptual psychol-
ogy suggests that modeling a holistic shape envelope could capture a
fundamental aspect of perceptual encodings of visualizations. At the
first glance of an image, users tend to focus on the “big picture” [38],
which should produce a far more compact representation of the most
salient information in the image [25]. For line charts, this initial big
picture is likely to be the holistic shape envelope that surrounds the
values.

Infovis research has studied visualization perception for short
glance times. However, the emphasis has been on pre-attentive pro-
cessing of properties of visual marks [32] (e.g., color, orientation, etc).
Fewer works focus on perception of higher-level visualization forms.
Szafir et al. recently measured how people can quickly perceive sum-
mary statistics (for instance centroid, or density) from visualizations
such as scatterplots [62]. They investigated four visual statistical tasks:
identification of sets of values, summation across values, segmentation
of collections, and estimation of structure. Related works show that
some visual tasks—such as correlation from scatterplots [52], mean
size of homogenous elements in an array [18]—occur within the pre-
attentive processing phase (<200ms).

Another related area is the interplay of glance time and a person’s
processing of visual information. Based on findings from cognitive
science, it may be that shorter glance times are difficult for users be-
cause they need to make use of short-term memory to perform vi-
sual analysis [39]. Short-term memory is limited [20], decays over
time [14], and is expensive to use. For instance, in an experiment
conducted by Ballard et al., subjects serialized their tasks in order to
avoid using short-term memory [5]. This relationship between latency
and memory is consistent with other recent papers in the visualization



Fig. 2: Linear line and its shuffled variant will both have the same
level of entropy based on Shannon Entropy. However the linear line is
intuitively less complex than its shuffled variant.

community related to the measure of memorability [40, 11]. We study
the interaction effects between glance time and the user’s ability to
perform basic visual judgements.

Use of Entropy in Visualization: There has been a long history
of the use of entropy in the field of visualization. A recent book by
Chen et al. summarizes a wide range of applications of entropy and
information theory in visualization [15]. Further, scientific visualiza-
tion research has leveraged entropy to e.g., allocate computational re-
sources [65], choose rendering properties [64], and select compression
techniques [63].

In the field of information visualization, similar to scientific visu-
alization, entropy has been used to measure the amount of noise and
information in the data. For example, Chen and Jaenicke use entropy
to detect the amount of information in a visualization, and ways to
optimize the design of visualization [16]. Dasgupta et al. use entropy
to measure visual uncertainty to preserve privacy in parallel coordi-
nates [21]. Biswas et al. use entropy to measure importance and model
relationships of variables in a multivariate dataset [9]. Lastly, Karloff
and Shirley use entropy to determine an optimal summary tree for
large node-weighted rooted trees [37].

However, these works primarily use entropy to measure data qual-
ity, rather than as a proxy for visualization perception. In fact, Chen et
al. note that while related, information theory is about efficient com-
munication rather than perceptual and cognitive processes [15], and
that compressing the data in a visualization into the minimum set of
bits may not result in the best visual representation. In contrast, this
paper establishes, quantifies, and explores the relationship between in-
formation theoretic notions of randomness (approximate entropy) with
graphical perception.

Recent work by Rensink et al. theorized that the perception of cor-
relation in scatterplots can be explained by measuring the entropy of
the data points in the scatterplot [54]. Although our study of approx-
imate entropy focuses on the perception of complexity of line charts,
we share the same research goal of evaluating entropy as a possible
perceptual complexity measure.

3 A LINE-CHART COMPLEXITY MEASURE

Since entropy has traditionally been used to measure the amount of
“disorder” in data and has been utilized in perceptual psychology as
a proxy of “visual clutter”, it is reasonable to apply the same concept
to measure the complexity of a line-chart visualization. However, the
classic measure of entropy is computed over an unordered set of val-
ues, and does not work for ordered visualizations. Figure 2 illustrates
an example—both the linear line (red) and its shuffled variant (blue)
have the exact same entropy measure.

We therefore surveyed the signal processing, information theory,
and statistical modeling literature and identified 8 candidate entropy
measures for line charts. We then selected a subset based on the five
desirable characteristics of a complexity measure described in the In-
troduction. These were selected to described their scope and ease of
application, as well as relation to user perception, rather than reliant
on any particular notion of complexity. For instance, we do not want
to assume that “more jagged” shapes are more complex.

In reviewing possible measures, we encountered a wide variety
of complexity measures with correspondingly varying definitions of
complexity for a given chart. Our goal when conducting this review
was not to attempt to define complexity itself, but to identify a mea-

sure that approximates how well users will be able to perceive and use
a chart. To this end, we only imposed two analytical constraints based
on the first and fourth desired criteria: that the measure should identify
more noisy signals as more complex, since noisy signals are anecdo-
tally more difficult to perceive [44], and that the measure computes a
single scalar number.
• Signal to Noise Ratio: SNR is a signal processing method that mea-

sures the relative power of the desired signal to the noise overlaying
that signal.

• Auto Correlation: A method commonly used in Signal Processing
that quantifies the amount of repetitions in a time series by measur-
ing the correlation of the time series with a lagged version. Since a
more random time series will have less repetition, this approximates
the amount of randomness in the time series.

• Fourier Analysis: Fourier Analysis [12] is also a common method in
signal processing. It transforms the data into the frequency domain,
making it possible to quantify the extent to which the data is made
up of different frequencies. Since more random data should result
in higher frequency changes, this can also be used to approximate
randomness by measuring the high frequency components of the
signal.

• Approximate Entropy: Approximate Entropy [45, 46, 36] is a ro-
bust statistical measure of repetitiveness. It is based on randomness
statistics for chaotic functions from Information Theory. Like Auto
Correlation, it measures how much components of the signal repeat,
but derives an entropy measure for time series data.

• Sample Entropy and related statistics: These modifications of Ap-
proximate Entropy remove possible biases [56, 69, 17].

• Multiscale Entropy: This applies approximate or sample Entropy
multiple scales to analyze how a signal may be more or less chaotic
at varying scales [19].

• Flattened Signal Length: This method can be understood as
’stretching’ the data until it becomes flat, intuitively, more complex
charts will result in longer flattened lines [6].

• Sequential Modeling: Measuring the ability of a Hidden Markov
Model to predict the signal. This is a classic statistical modeling
method for sequential data. Intuitively, a signal that cannot be easily
modeled will be more random [4].

Although we started with these measures, we found that most were
not appropriate, or did not satisfy the desirable criteria listed in the In-
troduction. Fourier analysis and auto-correlation did not analytically
correlate closely with added noise to a given line chart (e.g., those
shown in Figure 1). Hidden markov models require tuning a number
of hyperparameters—such as dimensionality and the initial state—that
vary across charts. Similarly, SNR requires a pre-existing model for
the desired signal that is unlikely to exist in a real world application.
Flattened Signal Length does not account for repetition in the data,
thus it can, for example, assign a sinusoid a higher complexity than
random data, although the random data visually appears more com-
plex.

Approximate, Sample, Fuzzy, and Multiscale Entropy are all simi-
lar, in that Sample Entropy and Fuzzy Entropy are both bias corrected
versions of Approximate Entropy, and Multiscale Entropy applies Ap-
proximate/Sample Entropy at multiple scales. Multiscale Entropy vio-
lates the goal of a simple measure because it generates measurements
for each scale. We found that in practice, Approximate Entropy and
Sample Entropy tend to be very close in value, however, Sample En-
tropy is sometimes not defined for low entropy charts. We therefore
selected Approximate Entropy as the the candidate measure for study
in this paper.

3.1 Approximate Entropy

Approximate entropy is a family of system parameters and related
statistics developed by Pincus to measure changes in system complex-
ity [46]. In particular, the statistic is designed to be effective at distin-
guishing complexity in low dimensional systems when only relatively
few (tens to low thousands) points are available. This property makes



Fig. 3: Example of time series taxi usage in New York City and a
smoothed variant.

Fig. 4: Example of a curve (grey) and two windows (w0 and w5) on
the left. The right side shows that the distance function d(wi,w j) is
simply the maximum difference between aligned pairs of y values.

it an effective measure for line chart visualizations, which are low di-
mensional and often contain hundreds of pixels (at most one point per
pixel).

Approximate entropy quantifies the unpredictability of changes in a
series of points. Intuitively, a series of points with more repeated pat-
terns is easier to predict. Approximate entropy reflects the probability
that such similar patterns will not be repeated. A line chart without
any repetitions, such as stochastic noise will have a very high entropy.
In contrast, taxi cab demand in New York City (Figure 3, top), which
exhibits very large changes between high and low demand periods,
will tend to have a lower entropy because the demand follows a regu-
lar daily and weekly pattern. Notice though that the smaller variations
in the original plot cause it to have larger entropy than the smoothed
version (Figure 3, bottom).

Conceptually approximate entropy is computed using a sliding win-
dow approach. Given N samples of a continuous curve, each window
of size m is compared with every other window of the same size. If
there are many pairs of similar windows, then there is more regularity
in the curve and the score should be lower.

Formally, let yi be the ith sample of the input curve, and wm
i =

[yk|k ∈ [i, i+m]] be the ith window of size m. Thus, there are a to-
tal of W = N−m+ 1 possible windows of size m for a line with N
values. Figure 4 illustrates a grey curve and two examples windows
w5

0 and w5
5 of size m= 5. We define the distance between two windows

as the maximum difference between aligned values:

d(wm
i ,w

m
j ) = maxk∈[0,m]|yi+k− y j+k| (1)

Then, the similarity Sm
i (r) for a given window wi is defined by the

percentage of windows whose distance is below a threshold r1:

Sm
i (r) =

|{wk|k 6= i∧d(wm
k ,w

m
i )< r}|

W
(2)

We can now combine the similarity scores for all possible windows
into Φm(r) by summing their log transforms. This can be understood
as taking the log probability that windows will be closer than r. Note
that there is a Φ for each user-defined window size and threshold.

Φ
m(r) =

1
W

W

∑
i=1

log(Sm
i (r)) (3)

Pincus [46] originally defined the approximate entropy to be the dif-
ference Φm(r)−Φm+1(r) as the number of samples from the curve N
increases to ∞. Intuitively, this difference measures the increased prob-
ability that sequences will be greater than r apart when the sequences
length increases by one.

E(m,r) = limN→∞[Φ
m(r)−Φ

m+1(r)] (4)
1r is in the same units as y.

However, sampling infinite points is not realistic, and thus approxi-
mate entropy is estimated using a fixed N:

E(m,r,N) = [Φm(r)−Φ
m+1(r)] (5)

This is a natural fit for visualizations, where we can set N to the width
of the chart in pixels.

3.2 Pixel Approximate Entropy
We define the pixel approximate entropy as the approximate entropy
of a line chart visualization. To do so, we use the following procedure:
1. Scale the dataset by mapping its values into the visual domain as

positional variables, so that the x and y data values are in terms of
pixels.

2. Construct a vector Y = [yi|i ∈ [0,N]] where yi is the pixel y-
coordinate for the curve’s ith pixel along the x coordinate. N is
the pixel width of the chart.

3. Compute E(m,r, |Y |).
Pixel approximate entropy (PAE) calculates approximate entropy
based on pixels in the visualization itself. The benefit is that it is in-
dependent of the data complexity, and provides a consistent range of
entropy values for a given chart resolution.

Finally, note that we have chosen to compute PAE as a single global
complexity measure based on the positionally encoded data in the line
chart. Alternative measures that e.g., capture both local and global
complexities, or account for additional visual encodings, are promis-
ing extensions of this work.

3.3 Examples of Pixel Approximate Entropy
To provide a sense of PAE values for different types of line charts,
Figure 1 illustrates four base visualized curves and their PAE values
(the text in the upper left of each plot shows the PAE measure). We
show a third order polynomial (top), cosine function (2nd row), Gaus-
sian distribution (3rd row), and a linear line (bottom). We chose these
curves because they are representative of common visualized data in
practice. The linear line is the simplest shape that users commonly
encounter and we chose it for its simplicity. The gaussian distribution
is arguably the most well recognized distribution, and models natural
phenomena such as sizes of living tissue (e.g., length, height, weight),
stock distributions [10], intelligence [35], and other societal and sci-
entific data. The third order polynomial represents a more complex
pattern that is commonly used in scientific models such as thermody-
namics [61] and kinematics. Finally, the cosine function represents
cyclic patterns such as heart beats, and temperature over time.

Each column in the figure, going from left to right, adds more ran-
dom noise to the curve making it more “complex”. We can see that the
curves become seemingly more random, however the overall shapes
are still evident.

To demonstrate how Pixel Approximate Entropy works in practice,
we provide several examples of its behavior. Figure 5 shows how alter-
ing the scale of a chart effects its entropy measure. Increasing the rel-
ative height of the chart will increase the entropy, while increasing the
width will decrease entropy. These scaling effects can be understood
as either increasing the relative noisiness of the chart (for height), or
having a smoothing effect by stretching the chart out (for width).

Figure 6 depicts PAE for several real world data sets. In practice
PAE can be interpreted as the amount of space on the chart that is
taken up by unpredictable data. Charts of data that exhibit less noise,
such as the S&P 500 stock pricing data (Figure 6a) and NYC taxi ride
volume data (Figure 6c,) have relatively low PAE. Charts with more
irregular, noisy data, such as the S&P 500 trade volume data and EEG
seizure data in Figures 6b and 6d, have much higher PAE.

4 EXPERIMENTS

This section presents four experiments to evaluate Pixel Approximate
Entropy as a visual complexity measure consistent with the desired
criteria in the Introduction. We translated these criteria into the fol-
lowing hypotheses. Each hypothesis corresponds to one experiment,
and we describe the hypotheses in more detail in the corresponding
experiment subsection:



(a) Original Data, Entropy: 0.196 (b) Width ×2, Entropy: 0.0906

(c) Height ×2, Entropy: 0.459 (d) Scale ×2, Entropy: 0.229

Fig. 5: Scaling effects on Pixel Approximate Entropy. Increasing the
height of the chart will increase PAE, while increasing chart width will
decrease PAE.

(a) S&P 500 price data. (b) S&P 500 trade volume data

(c) Taxi ride volume data in NYC. (d) EEG seizure data.

Fig. 6: Examples of Pixel Approximate Entropy applied to real world
data. More visually noisy data, such as stock trading volume and EEG
data collected during a seizure, has higher approximate PAE.

• H1: There is a statistically significant correlation between PAE and
the amount of noise added to the chart.

• H2: PAE is an effective measure of perceived complexity, such that
there is a statistically significant correlation between participants’
perception of complexity and the line chart’s PAE.

• H3: Varying chart PAE affects participants’ ability to perform the
visual task of identifying changes in a line chart.

• H4: Varying chart PAE affects participants’ ability to perform the
visual task of identifying the base function of a chart.

• H5: Reducing the amount of time participants are given to study
line charts, and the PAE of a line chart “at a glance” affects com-
parison accuracy on charts.
Experiment 1 verifies that PAE is correlated with the amount of

noise added to chart (H1). We then present four user studies that use
both controllable synthetic charts as well as charts from real-world
medical and financial datasets to evaluate the user’s ability to perform
perceptual tasks at varying PAE levels. Experiment 2 uses the Line-
Up [67] protocol to test PAE’s correlation with perceived complexity
(H2). Experiment 3 and 4 test the effect of PAE on two visual compar-
ison tasks—matching identical charts and identifying the underlying
shape in a chart (H3,4). Experiment 5 studies the interaction between
glance time and PAE when matching identical charts (H5).

4.1 Experimental Setup Overview

We now describe the shared experiment setups.

Noise Generation: For the synthetic data used in our experiments, we
systematically introduce noise to control the PAE value of a chart. To
do so, we iteratively add noise to a baseline chart until its measured
PAE reaches the desired value. Figure 7 depicts how triangle noise is
added to a given curve. We sample the magnitude of the noise ∆y from
a uniform distribution U(−σ ,σ), where σ is the standard deviation of
the data, and add that value to the yi value of a random x coordinate xi.
Thus we set y′ = y+∆y. We then linearly interpolate y′ with the value
of the curve at xi±∆x.

Fig. 7: Noise ∆y is added at a point along the input curve and interpo-
lated by ∆x to each side (e.g., add triangle to a region on curve).

Approximate Entropy Parameter Selection: Approximate entropy
is parameterized by m and r (see Equation 5), which we set to m = 2
and r = 20 in our experiments. We selected these values by syntheti-
cally generating a training set of line charts with varying amounts of
generated noise and found values that maximized the average PAE-to-
noise level correlation across the training set.

Specifically, we started with four basic curves, added varying
amounts of noise (see Figure 1 for examples), and rendered the results
at different visualization resolutions ({100× 150,200× 300,400×
600}). We swept the m and r parameters and found that the m = 2,r =
20 parameter settings were most robust across the visualizations. For
consistency, all charts are 300×200 pixels.
User Study Setup: We used Amazon Mechanical Turk [2] to recruit
participants for the user studies. In the default setup, participants were
given a consent form, a training exercise that introduced the task, a
brief qualification test, and a demographics survey at its completion.
Participants were paid per task at an estimated rate of ≥ $8.00 per
hour, and all assignments included a 1.00 USD bonus for completing
all tasks. For experiments 3 through 5, which involve simulated vi-
sual tasks, participants were given an overall time limit based on the
assumption they would spend at most 20 seconds per task, with an ad-
ditional 3 minutes to read the instructions and complete survey. This
time limit was intended to keep participants focused while allowing for
the possibility of minimal interruptions. In practice, most participants
completed each task in less than 4 seconds.

Due to the simplicity of the task in Experiment 2, the qualifica-
tion task was not included, and participants were simply paid a bonus
based on the number of correct answers. Workers were required to
have an approval rating of at least 80% and be residents of the United
States. We selected an approval rating less than 95% to engage work-
ers that would attempt to perform the tasks quickly and without too
much effort—thereby simulating a routine visual task.

4.2 Experiment 1: PAE and Synthetic Noise

Fig. 8: Correlation between noise level and entropy measure
Our experiments rely on controlled experiments that carefully vary

the “complexity” of a chart by adding or removing noise as described
above. Since we use PAE as a proxy for complexity, this experi-
ment first establishes the correspondence between the amount of noise
added to different basic line chart functions, and the resulting chart’s
PAE. We select basic functions that tend to appear in many different
types of charts: linear, Gaussian distribution, cosine, and 3rd order
polynomial.



Figure 8 plots the relationship between noise and PAE. Addition-
ally, for each base function, we test correlation through linear regres-
sion between the independent (amount of noise) and dependent (PAE)
variables. We evaluate the regression with a t-test against the null hy-
pothesis that there is no correlation, and by the coefficient of determi-
nation R2. To summarize the t-test and R2 for each base function: 3rd
Order Polynomial (t = 37.3, p < .0001, R2 = 0.91), Linear (t = 37.8,
p < .0001, R2 = 0.91), Cosine (t = 36, p < .0001, R2 = 0.90), Gaus-
sian (t = 31.7, p < .0001, R2 = 0.88).

Based on these findings, we accept H1, that the PAE of a chart
correlates closely with the amount of noise added to the chart. We use
this result in the synthetic data generation used in other experiments,
in which we add noise to control the PAE of a given visualization.

4.3 Experiment 2: PAE and Perceived Vis Complexity

Does PAE correlate with user perceived notions of visualization com-
plexity? In this experiment, we test the hypothesis that PAE is posi-
tively correlated with perceived line chart complexity. To understand
whether PAE is effective beyond synthetically added noise, we run two
studies—one using synthetic charts and one using charts drawn from
medical and stock datasets. We hypothesize that participants’ identifi-
cation of the most and least complex chart from a line up will correlate
with (H2.1) the chart’s PAE, and (H2.2) the underlying base function
of the chart.

User Tasks: We use two user tasks: one for charts that vary PAE using
synthetically generated noise, and one for charts of real data that nat-
urally have varying PAE levels. For both, the training page informed
the participant that she would be shown 20 (for synthetic noise, or 16
for real data) sets of similar charts, and asked to pick the most or least
complex chart in a given set. It also showed a figure of three exam-
ple charts and labeled the most and least complex. Participants then
completed the 20 (or 16) judgments. Each judgment consisted of se-
lecting the most or least complex chart out of a set of eight charts with
varying PAE. Because we are interested in discovering whether or not
a correlation exists between perceived complexity and PAE we use the
LineUp method from [67] for this experiment.

The synthetic noise tasks generate charts based on five base func-
tions: linear, cosine, gaussian, third order polynomial, and S&P 500
stock data. For the sample of stock data, we use a 300 sample win-
dow of S&P 500 daily closing prices that has the median PAE taken
from a dataset of S&P 500 stocks over a 15 year period. Each judg-
ment set consists of eight charts from the same base function perturbed
with noise to meet a target PAE from 0.1 to 0.8 (in steps of 0.1), and
arranged in a random order. For example, the set shown in Figure 9
shows the judgment for the cosine function.

The real data task used data from three datasets (S&P 500 histori-
cal stock price and volume data, the MIT-BIH Arrhythmia Database,
and the Bern-Barcelona EEG Database [3, 28]), and randomly selected
time intervals of the data such that the resulting charts had PAE from
0.1 to 0.8 (in steps of 0.1); they are arranged in random order.

Fig. 9: Example judgement set for cosine function in Experiment 2.

Each participant was shown the same eight chart judgment set for
each baseline function or dataset four times. Two times the participant
was asked to select the most complex chart in the set, and two times
she was asked to select the least complex. The ordering of judgment
sets and position of the target chart was randomized. We use the two
judgments of the least complex chart as the attention check to pre-
vent Mechanical Turk participants from gaming the system [26]. If a
participant does not select the same chart as least complex during the
experiment, we remove the participant’s data from consideration.

Participants for the synthetic noise (real data) task made 20 (16)
judgments. 50 participants attempted the task; after dropping those
that failed the attention check, 33 (25) remained. Of these, 45% (28%)
were female; 76% (76%) were between the ages of 25 and 49; 55%
(48%) held high school degrees and 36% (52%) held a Bachelor’s de-
gree; and 85% (80%) spend upwards of 30 hours per week on a com-
puter. Notably, 33% (52%) ranked themselves as having intermediate
expertise in statistical visualizations and 42% (28%) identified them-
selves as novices in the field.
Results and Statistical Analysis: To test our two hypotheses, we take
guidance from [24] and perform a binomial logistic regression, where
correctness is the outcome variable, and PAE and the baseline function
are explanatory variables. Correctness is defined as a binary variable
based on whether or not a participant selected the chart with the least
PAE as the least complex, and vice versa for most complex.

The result of the binomial logistic regression (and a follow-up Wald
test for baseline function, because it is categorical) indicates a sig-
nificant association between PAE and correctness (Z = −4.78, p <
0.001), and a significant association between baseline function and
correctness (χ2(4) = 10.6, p < 0.05) for the synthetic data. Similarly,
for the real data there is a significant association between PAE and
correctness (Z =−5.61, p < 0.001), but no significant association be-
tween base function and correctness.
Discussion of Results: We find that PAE might be used to approx-
imate perceived chart complexity. The binomial logistic regression
shows that for synthetic and real data PAE is significantly associated
with what charts participants select as most or least complex (H2.1).
This trend holds for charts from synthetic and real data, and suggests
that PAE is a reasonable proxy for perceived complexity of line charts
in practice. For synthetic data, we find that underlying base function
is significantly associated with what charts participants select as most
or least complex (H2.2).

In analyzing results, we notice that participants typically displayed
better accuracy in identifying simple charts than complex ones. This
suggests that small differences in PAE are easier to spot in charts with
lower PAE than with higher PAE. Figure 10 shows this case for a gaus-
sian. Increasing the PAE by ∆= 0.125 to a chart with low PAE (0.015)
is easier to discern than adding ∆ to a higher PAE chart (0.315). This
suggests a phenomena akin to just noticeable difference (JND) for
PAE, which we explore in later experiments.

Fig. 10: Gaussian function with 0.015, 0.135, 0.315, 0.435 added PAE.

4.4 Experiment 3: Find-the-Difference Task
Do varying levels of chart PAE affect the ability to perform visual
comparison judgements? In this experiment, we show participants one
chart for a short duration (the length of a saccade), hide it for some
time using a mask, and then show a copy of the initial chart alongside
another chart with higher or lower PAE. The participant is asked to
select the initial chart from the set of two. Participants were given the
following direction: “This HIT consists of a series of graph compar-
isons. For each comparison, you will first be shown a original chart
for a fraction of a second. You then be shown two similar charts and



(a) The participant clicks the button to indicate that she is
ready to make a judgment.

(b) An initial chart is flashed for the glance time, and then
hidden and replaced with a mask during the pause time.

(c) After the pause time, we show two options: the initial
chart and the initial chart with PAE added/removed. The
order of the charts are randomized.

Fig. 11: Experiment 3 screenshots.

asked to pick the one which most closely resembles the original flashed
chart. Please make quick visual judgements and only spend a few sec-
onds when picking the chart.” The charts are all generated by adding
noise to a base function as specified in the noise generation section.
We hypothesized that:
• (H3.1) Task accuracy is affected by the PAE of the initial chart

• (H3.2) Task accuracy is affected by the magnitude of the PAE dif-
ference between the initial and alternative chart.

• (H3.3) Task accuracy is affected by the sign of the PAE difference
(the alternative chart has higher or lower PAE than the initial)

• (H3.4) Task accuracy is not affected by the underlying chart type
(linear, cosine, polynomial, gaussian).
The setup for Experiment 3 was inspired by Just Noticeable Dif-

ference (JND) studies that show two slightly different charts side by
side and asking the user to pick the higher chart (for some measure of
“higher”). By using a staircase protocol that incrementally increases
or reduces the differences between the two charts, researchers can find
the JND where users are accurate less than 75% of the time [55, 31].
Figure 11 shows screenshots of the experiment.

Fig. 12: Timeline of the at a glance task. We first show the initial
chart for glance time, then hide the chart and don’t show anything for
a pause time, and then show the participant options to choose from.

Each judgment follows the process illustrated in Figure 12. Par-
ticipants first view an initial chart that flashes for a glance time of
200ms, the duration of one saccade, or slightly longer than the basic
stage of correlation perception of 150ms proposed by Rensink et al.,
and the amount of time required for eye movements to be optimially
guided [53, 50]. The initial chart is replaced with a mask that is shown
for 200ms of pause time. Masking is used to interrupt the perceptual
processing so that user responses are due to cognitive, rather than low-
level perceptual pattern matching [51, 60, 27, 13, 47, 48]. The mask,
shown in Figure 12, is designed to be similar in visual structure as a
line chart, but does not convey any information related to the user task.
After the pause time, the participant is shown the initial chart and the
initial chart with ∆y more or less PAE, and asked to choose the initial
chart. The order of the two charts is randomized to reduce learning
effects.

Our protocol differs from classic JND protocols in that it focuses
on the ability to identify a change in chart complexity after the initial
glance time. Further, since our goal was not to find this just notica-
ble threshold (although that is a direction for followup work), we did
not directly follow the staircase protocol. We instead sweep through
different chart PAE values to confirm that task accuracy is affected by
chart PAE.

Based on pilots, the initial chart has low (0.045), medium (0.09),
and high (0.18) PAE. The comparison chart differed in PAE by ∆y of

±0.015, ±0.03, ±0.06, ±0.09, and ±0.12. We evaluate these con-
ditions for all four chart types (line, cosine, gaussian, and third order
polynomial), and both increasing and decreasing PAE, resulting in a
3×5×2×4 = 120 factorial design.
Results and Statistical Analysis: There were 52 participants, who
took on average 7 minutes and 5 seconds to complete the tasks in the
experiment, or approximately 3.5 seconds to complete each compari-
son task. The participants had the following demographics: 63% male;
65% between 25 and 39 years old; 58% held Bachelor’s or Master’s
degrees; and per-week computer usage was fairly even from 21 to > 60
hrs. Additionally, 67% ranked themselves as low-intermediate, inter-
mediate, or high intermediate level visualization users.

In data collection we recorded the correctness of a participant’s re-
sponse for each judgment, and used this as the binary response variable
in our analysis. To test our four hypotheses we performed a binomial
logistic regression where we used the base function, initial chart PAE,
magnitude of PAE difference, and the sign of the difference, to pre-
dict task accuracy. We also used a a follow-up Wald test for base-
line function, because it is categorical. We found that all independent
variables are predictive of task accuracy. Their correlation and sig-
nificant scores are summarized as: (H3.1) Entropy of the initial chart
(Z = 2.42, p < 0.05); (H3.2) Magnitude of PAE difference between
the two charts (Z = −5.08, p < 0.001); (H3.3) Sign of the PAE dif-
ference between the two charts (Z = −8.06, p < 0.001); and (H3.4)
Baseline function (χ2(3) = 9.32, p < 0.05).

These results imply that the initial chart’s PAE, magnitude and sign
of ∆y, and chart type have an effect on participant’s accuracy in identi-
fying the initial chart in the gallery. Figure 13 illustrates a clear effect
of initial PAE on accuracy. Higher initial PAE (blue) systematically re-
duces accuracy as compared to low initial PAE (red), especially for the
linear chart when ∆y (x-axis) is small. Accuracy also increases as the
magnitude |∆y| increases, meaning it is easier to identify large changes
in visual complexity. Across all conditions, we find that judgment ac-
curacy converges to 0.5 (random chance) as ∆y decreases towards 0.

Fig. 13: Average accuracy as ∆y of PAE varies. Each facet shows a
different chart type, and each line is a different initial PAE.

Interestingly, the sign of ∆y affects task accuracy. To investigate
this, we grouped participant judgments by whether ∆y is positive (the
alternative chart has higher PAE) or negative (vice versa). Figure 14
plots the 95% bootstrapped confidence intervals, faceted by the mag-
nitude of the PAE difference |∆y|. When |∆y| is low (≤ 0.01), par-
ticipants are more accurate when the change is positive than negative.



This happens because participants preferentially choose the lower PAE
chart, which is correct when ∆y is positive, and incorrect when nega-
tive. As the magnitude of the PAE difference increases, the accuracy
for both signs increas, however the bias also persists.

Fig. 14: Mean and 95% bootstrapped confidence interval of judgement
accuracy for increasing (positive) or reducing (negative) the PAE of the
alternative chart options. Each facet is a different ∆y magnitude.

Discussion of Results: Based on the results, we accept all four hy-
potheses: H3.1, H3.2, H3.3, and H3.4. We find a clear trend towards
50% accuracy (random guess) as the difference in PAE between the
two charts decreases, irrespective of other conditions. Additionally,
as the initial PAE increases (the chart is more complex), so too does
the necessary change in PAE in order to accurately differentiate the
charts. This supports our finding in Experiment H2, that participants
are worse at distinguishing between changes for high PAE charts than
they are for low PAE charts or when the difference in PAE is large.

Further, given two charts, participants have a systematic bias to-
wards choosing the chart with lower PAE. We do not have an explana-
tion of why this might be, but hypothesize that it might be because the
lower PAE charts appear closer to the “shape envelope” of the initial
chart, especially when viewed at a glance. However, further studies
are needed to evaluate this conjecture.

4.5 Experiment 4: Shape Identification Task
This experiment uses the same procedure as experiment 3, but for a
different visual judgment task: identifying the overall shape of a chart.
Many applications of visualizations involve users attempting to iden-
tify patterns in potentially noisy data, and we designed this experiment
to simulate this use case. To this end, we provided the participants
with examples of 4 underlying base functions (shapes) to study. Then,
after adding enough noise to a base function to reach a desired PAE
level, users are asked to identify which of the 4 underlying functions
the noisy chart represents. The hypothesis is that the PAE of the chart
affects the ability to accurately identify the underlying function of the
chart (H4). Note that in the extreme, there can be so much noise that
the charts are quantitatively identical irrespective of the initial base
function, and the accuracy should converge to random guessing.
Participant Tasks: Participants first view an initial chart that flashes
for a glance time of 500 ms (≈ 2−4 fixations). We allowed a slightly
longer glance time since identifying the underlying shape of a chart
is more difficult than the previous task of matching charts. The par-
ticipant is then asked which of the following four shapes is most rep-
resentative of the chart: increasing trend, decreasing trend, peak, and
trough (Figure 15). They are also asked to self-report their answer
certainty, from 0 for ‘guess’ to 4 for ‘certain’. Chart order was ran-
domized to reduce learning effects. Participants were asked to make
quick judgments, and we limited their time to complete the experi-
ment 30 minutes maximum. For each base function, we showed users
5 versions at each of four PAE levels (0.2, 0.4, 0.8, 1.2), resulting in a
4×4×5 = 80 factorial design.
Results and Analysis: There were 47 total participants, who took
on average 8 minutes to complete the tasks in the experiment, and
approximately 3.6 seconds to complete each comparison task. The
participants had the following demographics: 62% fell between the
ages of 25 and 39, computer usage was spread evenly, although 88%
used computers for at least 20 hours per week, 57% held Bachelor’s or
more advanced degrees, 76% were male, and 79% ranked themselves
as some level of intermediate user with statistical visualizations.

We performed a binomial logistic regression using PAE as the inde-
pendent variable to predict task correctness as the dependent variable.

(a) The four basic chart shapes users needed to identify.

(b) Peak shaped chart with 0.2 PAE. (c) Increasing trend chart with 1.2 PAE.

Fig. 15: Screenshots depicting Experiment 4.

Fig. 16: Chart shape identification accuracy and certainty as entropy
changes. Each facet shows a different chart type.

We found a significant correlation (Z = 25.75, p < 0.001), which sup-
ports H4. Figure 16 shows that users were able to correctly identify
the underlying shape of a chart with close to 100% accuracy when the
PAE (x-axis) of the chart, with the added noise, is low. However, user
accuracy drops to ≈ 70% for a PAE of 0.8, and to ≈ 50% for a PAE
of 1.2. Further, we find that answer certainty consistently decreases as
the PAE increases.

Discussion: For the shape identification task, we found that there is
a clear trend towards lower accuracy in distinguishing chart shapes as
the entropy increases, indicating that users find it more difficult to per-
ceive meaningful differences in charts with high entropy. We expect
that there is a maximum PAE where charts are quantitatively the same
irrespective of the base function, and users resort to random guessing.
We do not believe our experiment approached this limit, because the
lowest accuracy was still higher than random chance (25%), and the
lowest average certainty was ≈ 1.5 rather than 0. Looking further,
this study primarily added high frequency random noise to base func-
tions that are low frequency. We speculate that adding lower frequency
noise, such as alternative base functions, may reduce identification ac-
curacy at PAE levels.

4.6 Experiment 5: Glance and Pause Time

We now turn to the interaction between glance (and pause) time with
PAE on the user’s ability to perform visual judgments. We hypothesize
that the ability to perceive differences in charts is affected by (H5) the
length of glance time. We use the same task as Experiment 3, but vary
the initial chart’s glance time. We ran a separate user study that varied
the pause time between the inital chart and the two chart options; we
found that there was no discernable difference, nor any statistically
significant effect, due to the pause time. We thus omit the details due
to space constraints.

Participant Tasks: We fixed the baseline function type to linear; var-
ied initial PAE levels ∈ {0.045, 0.09, 0.18}; varied ∆y ∈ {0.015, 0.06,



0.24}; and showed the two chart options immediately after the mask
is hidden (pause time is 0). We varied glance time ∈ {50ms, 100ms,
200ms, 2s} to allow for different numbers of saccades: no more than
one fixation to enough time to study the visualization. The study was
a 3×3×2×4 = 72 factorial design.
Results, Analysis, and Discussion: There were 48 participants, who
took on average 8 minutes and 21 seconds to complete the tasks
in the experiment, or approximately 3.5 seconds to complete each
comparison task. There were 81% between the ages of 25 and 39,
and 56% classifying themselves as intermediate visualization users.
We performed a binomial logistic regression, with glance time as
the independent variable to predict response accuracy. Glance time
(Z = −4.01, p < 0.001) was significantly correlated with accuracy
and supports H5. Figure 17 shows that as the initial PAE level in-
creases (left to right facets), glance time (line) affects judgement accu-
racy more. As before, increasing |∆y|makes the judgement easier, and
increases accuracy. We find that glance time has a significant effect
on the accuracy of identifying differences in the initial chart. At short
glance times (20ms), users are nearly unable to discern small changes
in PAE or when the initial PAE is high. Although longer glance times
show higher accuracy, the task is still challenging when the initial PAE
is high. We speculate that further increasing the glance time (e.g., to
seconds or minutes) may improve accuracy further, but there may be a
limit to the accuracy when the initial entropy is high.

Fig. 17: Acc vs ∆y for glance time (lines) and initial PAE (facets).

5 DISCUSSION

Our findings on PAE and the perception of line chart complexity have
implications for visualization design. They help bridge the gap be-
tween research on low-level perception and high-level visualization,
and provide a user (as opposed to data) centered measure of visual-
ization complexity. We describe several possible applications for a
quantifiable visual complexity measure:
Highlighting Changes: PAE helps quantify changes in visualization
complexity, and may be used when it is important to ensure that the
user understands changes and comparisons. If the visualization is too
complex to perceive certain changes, they may need to be emphasized
to the user. Similarly, the systemic bias users experience in differenti-
ating charts of increasing or decreasing complexity implies that visu-
alizations may want to more emphasize changes that increase, rather
than decrease, complexity. Further, if PAE is high, users may have
difficulty identifying the underlying function in the visualization—if
such a detail is important, designers should specifically draw atten-
tion to such differences. Finally, the glance time findings can inform
the design of displays that rapidly show or change charts. Users need
more time to understand more complex charts, and PAE can inform
designers to be aware of the user’s exposure time depending on chart
complexity, and perhaps highlight the key changes.
Large Dataset Visualization: The results can also apply to interactive
and approximate visualizations of very large data sets. Quantifying
the level of complexity at which a user can identify changes can help
designers of approximate visualizations [23, 34, 49, 1] determine when
further sampling or other computation will no longer yield perceptible
differences. Similarly, designers of interactive visualizations might
develop optimizations based on this same phenomena.
Visualization Parameter Selection: PAE might help guide visual-
ization parameter selection (e.g., aspect ratios, layering). For exam-

ple, the choice of horizon graph [33] height and layering may be in-
formed by measuring the resulting chart complexity using PAE. Like-
wise, PAE could inform aspect ratio selection methods to select a ratio
that takes visual complexity into account.
Guided Smoothing: Guided Smoothing: Finally, PAE can be used
to indicate when, and to what extent, smoothing or other simplifying
methods may be applicable to given chart. For example, PAE could be
used with a smoothing method like ASAP to determine when ASAP
should be applied to make a chart easier to read, or alternately, PAE
could be incorporated into an iterative smoothing method to detect
when the chart has simplified enough to be easily readable [57].

6 CONCLUSIONS AND FUTURE WORK

This paper studied the perception of complexity in line chart visual-
izations. We derive a new measure for visual complexity based on
approximate entropy, Pixel Approximate Entropy. We conduct ana-
lytical and user experiments to validate its suitability as a complexity
measure. In particular, we look at using PAE as a measure of visual
complexity; users’ ability to perceive minute differences in complex-
ity; and the effect of time on a users’ ability to perceive differences
in complexity. We performed four sets of experiments and found that
PAE correlates closely with noise, that as PAE of a chart increases so
too does perceived complexity of the chart; users are better able to
perform visual comparison tasks when a chart’s PAE is low than when
it is high; and users have more difficulty with visual comparison on
charts with high PAE when they have less time to view a chart.

There are a number of ways we intend to extend our findings. The
first is to design and perform a formal stair case study to better under-
stand whether the JND limits for PAE follow Weber’s law. Staircase
studies have been used to identify other perceptual features that follow
Weber’s law, for example, Harrison et al. used a large scale staircase
study to measure the JND limits for perception of correlation across 9
visualization types [31]. We intend to perform a similar study to inves-
tigate perception of complexity and its relationship with PAE across
different one dimensional visualzations. PAE could also be applied
to predicting user’s perception of correlation in line charts. Rensink et
al’s studies on scatter plots suggests that users in fact rely on perceived
entropy to estimate correlation, whether PAE has similar relationship
in 1D visualizations is worth investigating [54].

The second possible extension for our work is to modify PAE to
work with other marks and visual encodings. We chose to study line
charts in this work because the pixel values rendered in a line chart
naturally mapped to a vector of pixel values that could be used to mea-
sure PAE. However, line charts are simply one of many possible ways
to visually encode data and directly quantifying the visual complexity
of other types of visualizations, such as bar charts, scatter plots, and
pie charts, remains an open problem.

We also intend to investigate the potential applications of PAE to
designing more effective visualizations. As noted in the discussion,
PAE has potential applications in designing charts that communicate
changes more effectively, efficiently visualizing large data sets, and
guiding visual parameter selection and smoothing or other simplify-
ing operations. Testing these applications will require developing vi-
sualization systems that integrate PAE and conducting extensive user
studies. Ultimately, by developing a quantifiable measure of visual
complexity, we hope to contribute to systems that can guide visual-
ization designers in making more readily understandable charts and
automatically generate readable charts on their own.
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