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Correlation Judgment and Visualization
Features: A Comparative Study

Fumeng Yang, Lane T. Harrison, Ronald A. Rensink, Steven L. Franconeri, and Remco Chang

Abstract—Recent visualization research efforts have incorporated experimental techniques and perceptual models from the vision
science community. Perceptual laws such as Weber’s law, for example, have been used to model the perception of correlation in
scatterplots. While this thread of research has progressively refined the modeling of the perception of correlation in scatterplots, it
remains unclear as to why such perception can be modeled using relatively simple functions, e.g., linear and log-linear. In this paper,
we investigate a longstanding hypothesis that people use visual features in a chart as a proxy for statistical measures like correlation.
For a given scatterplot, we extract 49 candidate visual features and evaluate which best align with existing models and participant
judgments. The results support the hypothesis that people attend to a small number of visual features when discriminating correlation
in scatterplots. We discuss how this result may account for prior conflicting findings, and how visual features provide a baseline for
future model-based approaches in visualization evaluation and design.

Index Terms—Information visualization, Perception and psychophysics, Evaluation/methodology, Weber’s law, Power law.
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1 INTRODUCTION

IN a recent study, Rensink and Baldridge demonstrated
that the perception of correlation in scatterplots can be

mathematically modeled using Weber’s law [1]. In fol-
lowup experiments, Rensink showed that this law is robust
to changes in data characteristics and scatterplot design
choices [2]. Based on these findings, Harrison et al. repli-
cated the original study by Rensink and Baldridge, moving
beyond scatterplots to measure and compare the effective-
ness of a range of visualizations [3]. Their results indicate
that the perception of correlation in all of these bivariate
visualizations can be modeled using Weber’s law. Together,
these studies sparked a renewed interest in the informa-
tion visualization community towards better understanding
the underlying mechanics of visualization and modeling
approaches, such as Kay and Heer’s followup analysis of
Harrison et al.’s released experimental data [4].

Beyond the information visualization community, re-
searchers in perceptual psychology have also studied scat-
terplots at length, in particular attempting to develop
models that capture how people estimate correlation from
them. For example, Boynton studied the perceptual di-
mensions of covariation estimate, producing a model that
used elongation ratio and standard error as factors [5].
Meyer et al. fit the perception of correlation in scatterplots
to a power function [6]. Others studies include Pollack [7],
Jennings et al. [8], and Cleveland et al. [9], all of whom
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attempted to formally model the relationship between per-
ceived and objective correlation in scatterplots.

A recurring hypothesis in these studies is that peoples’
perception of correlation in scatterplots is related to visual
features in the visualization. The intuition is that participants
are not directly perceiving correlation per se, but rather,
visual features produced by the visualization technique (i.e.,
scatterplot) that are related to correlation. Meyer and Shinar,
for example, suggested that estimates of correlations from
scatterplots are partly based on perceptual processes influ-
enced by “visual properties” of the charts and are unrelated
to participants’ formal statistical training [10]. Lauer and
Post included some of these factors in their models, such
as regression slope and point dispersion, along with factors
such as screen size [11]. More recent work from Rensink
showed that correlation judgments can be made within
just a few hundred milliseconds, suggesting a “heuristic”
approach to discriminating correlation [2]. These studies
all suggest that visual features of some sort may underlie
human’s perception of correlation.

The goal of this paper is to bridge these two sides
of research, bringing findings from perceptual psychology
to large-scale approaches for modeling perception in the
information visualization community. Such an approach
could help explain the extent to which visualizations such
as scatterplots are effective for judging correlations, as well
as provide explanations for when they might become inef-
fective.

The core concept in this paper is the use of visual features
in modeling of the perceptual process. As used here, the
term feature refers to a visual feature refers to the perceivable
and distinguishable properties (e.g., shape, dispersion, and
orientation) in a 2D image or a part of an image. Outfitted
with this concept, our paper takes a computational approach
towards evaluating how visual features manifest in models
of the perception of correlation in scatterplots, including
the approaches proposed by Rensink and Baldridge, Har-
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Fig. 1. An overview of this paper: we propose to investigate the visual
features in the scatterplots to study the perception of correlation (the
blue path, C1⇒C2⇒C3), as opposed to a direct study approach using
correlation to model the perception by Rensink and Baldrige, Harri-
son et al., and Kay and Heer (the yellow path, C1⇒C4).

rison et al., and Kay and Heer.
Figure 1 illustrates an overview of our proposed re-

search. Here, the yellow path shows the general re-
search methodology proposed by Rensink and Baldrige
and adopted by Harrison et al. and Kay and Heer. In this
approach, a dataset with a known correlation value (r)
is mapped to a scatterplot (C1); participants are asked to
compare the correlation values between two scatterplots in
a judgment (C4). From participants’ judgments, the percep-
tual model of correlation is built. In contrast, our approach
moves further to examining whether visual features in scat-
terplots tackle the participants’ judgments (C1⇒C2⇒C3, the
blue path in Figure 1).

Toward this goal, we begin by replicating the method-
ology and experiments from Rensink and Baldridge [1], [2]
and Harrison et al. [3] (Section 2) to collect a set of judgment
data. To create a set of visual features, we broadly examine
the perceptual psychology, visualization, and computational
geometry literature to collect a set of candidate features that
can be computed from scatterplots. In total, we identify and
extract 49 candidates from scatterplots (Section 3).

Out of the 49 initial candidates, our analysis shows that
the participants’ judgments highly correlate with four, such
as the dispersion of the point cloud around the regres-
sion line (Section 4). We evaluate their performance against
several model metrics. We find that models using these
top-performing features are at least as precise as existing
models (Section 5). Building on top of these analyses, we
examine power transformation, a fundamental part of mod-
eling in perceptual psychology, to create a new model of the
perception of correlation in scatterplots. The resulting model
outperforms the original models in precision, and is also
more easily understandable, as it directly relates to visual
features commonly inferred from scatterplots (Section 6).

As such, this paper contributes a new perspective on
modeling the perception of correlation in scatterplots. Our
findings indicate that the use of visual features can lead to
more precise mathematical models of behavior, while sug-
gesting plausible theories about how people perceive scat-
terplots and extract information from visualization. More
specifically, our work contributes to the field of visualization
in three ways:
• We evaluate the longstanding hypothesis that participants

use visual features instead of correlation itself when judg-
ing correlation in scatterplots;

• We establish that visual features can be integrated into the

r = 0.8 r = 0.7 (0.8 -     r,    r = 0.1)

Fig. 2. An example of approaching a target correlation level from below
in the experiments. Two side-by-side scatterplots (without any indication
of actual correlation value or the regression line) are shown to the
participant in the experiment. The participant chooses which of the two
appears to be more correlated.

approaches recently proposed by Rensink and Baldridge,
Harrison et al., and Kay and Heer without loss of preci-
sion;

• We develop a new, more precise model based on these
existing models by using power transformation, which
has an additional benefit of linking models to existing
work in perceptual psychology.

2 REPLICATION: DISCRIMINATION THRESHOLDS
AND JUDGMENTS FOR SCATTERPLOTS

In this section, we introduce our experiment with three
goals in mind: 1) collect data for our modeling approach,
2) faithfully replicate the prior results1, and 3) familiarize
the readers with the terminology used in this paper.

The experiments by Rensink and Baldridge, and Harri-
son et al. are based on the discrimination of correlation, and
have three components: 1) side-by-side comparison of two
scatterplots with data of different correlation values, 2) the
use of above and below approaches to estimate discrimina-
tion thresholds from both sides of a target correlation value,
and 3) a staircase method [12] to systematically modulate
the amount of difference in correlation values between the
two scatterplots.

More specifically, this kind of experiment presents scat-
terplots with underlying data having regression lines along
the 45◦ axis y = x (see Figure 2). In a judgment, a participant
must indicate which of the two side-by-side scatterplots
appears to have the higher correlated dataset: one with
a fixed correlation value (r), the other generated from a
dataset with a different correlation value (r ± ∆r). The
fixed correlation can be one of [0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
and remains so until a stable discrimination threshold is
reached. The sign of ∆r is positive or negative depending
on the approach: in the above approach, the sign is always
positive (i.e., plus); in the below approach, the sign is always
negative (i.e., minus). The value of ∆r typically changes as
a trial progresses, as determined by the staircase method.
The value of ∆r decreases by 0.01 if the participant makes
a correct judgment, and increases by 0.03 if the participant
makes an incorrect judgment (see Figure 4a), so that steady-
state behavior corresponds to 75% correct. We make one
minor modification to the experimental design used by
both Rensink and Baldridge and Harrison et al. In the prior

1. Although Harrison et al. had published their experimental data,
and the same data was used by Kay and Heer, a new experiment is
necessary due to a change to allow our inclusion of visual features.
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Fig. 3. The two sets of JND from Harrison et al.’s [3] and our replication
experiment. The distributions of two datasets are similar, indicating that
they are similar and comparable.

experiments, a trial terminates when ∆r converges over the
course of last 24 judgments via a successful F test (α=0.1),
or 50 judgments have been made (see Figure 4a). To avoid
premature convergence and allow the computation for a
set of visual features, in our experiment, a trial is always
comprised of 50 judgments. The inclusion of 50 judgments
makes it possible to compare visual features with correlation
and also makes it necessary to first compare the result of our
replication experiment to the original experiment.

For this modified experiment, we recruited 95 partici-
pants (33 female) via Amazon’s Mechanical Turk (AMT),
with participants receiving $2.20 for their time (commen-
surate with the U.S. minimum wage). The experiment col-
lected the two datasets used in each scatterplot judgment,
participants’ answers, the correct answers, and the experi-
ment conditions (e.g., approach). In total, 19,000 judgments
were collected.

To validate the results from this experiment, we com-
pute Just-noticeable Difference (JND) of correlation from the
data and compared it with the dataset published by Har-
rison et al. [3]. JND (see Section 5) is the measurement
of discrimination used in Rensink’s, Harrison et al.’s, and
Kay and Heer’s work, and these two sets of JNDs are
plotted in Figure 3, following the style of comparisons
made in Kay and Heer’s work [4], when compared us-
ing the Kolmogorov-Smirnov test [13], the difference is a
marginally significant (D=0.094, p=.059). Along with the
visual similarity between our data and the data by Harri-
son et al., this validates our modified experimental design
and the resulting data.

3 COMPUTING VISUAL FEATURES IN SCATTER-
PLOTS

To examine whether visual features are used by participants
in judging correlation, we first conduct a survey of possible
visual features across different fields, including visualiza-
tion, perceptual psychology, statistics, and computational
geometry.

The candidate features collected in this survey aim to
cover all the major proposals in the literature regarding
what might be used to represent correlation in scatterplots.
Work in perceptual psychology suggests twelve visual fea-
tures, including the dispersion of points [6], [10] and the
prediction ellipse of Cleveland et al. [9], [19]. The visualiza-
tion literature suggests ten more, including several features
related to correlation from Wilkinson’s Scagnostics [16].

Statistics and data science literature suggests twenty-five
visual others, such as density [17]. And computational
geometry suggests the convex hull, used to describe the
general shape and size of the point clouds.

These visual features can be grouped into eight classes,
based on the concept used, and characterized as one of
four different groups. The first are features that pertain to
length, such as the length or width of the bounding box that
surrounds the points. The second group is based on area,
such as the area of a convex hull. The third group is based
on shape, which is made of dimensionless quantities, such
as the ratio of two length features; The final group includes
those features that similar to density, such as the average
distance of all points to the regression line.

Table 1 shows the set of all 49 features. It includes
the publications that each visual feature is taken from, an
example image of what it could look like, and the category
that it belongs to. More precise definitions of the visual
features can be found in Appendix A.

This list is intended to be broad, but not necessarily ex-
haustive, as further work may yield new candidate features.
Anticipating this trend, we begin by identifying the features
that align with participants judgments in the following
section. We then describe a repeatable methodology for
integrating such features into various models of how people
perceive correlation.

4 IDENTIFYING VISUAL FEATURES

In this section, we investigate the relationship between
visual features and participants’ judgments of correlation
using regression analysis. The earlier studies by Rensink
and Baldridge, Harrison et al., and Kay and Heer found that
the discrimination threshold (i.e., JND) varies with as the
base correlation level. In particular, higher correlations were
found to have smaller JNDs than low correlations (i.e., were
more easily discriminated). The critical difference in our
approach is to modulate not only correlation values, but also
candidate features and use these results to determine which
models and features best align with participants’ judgments.

Figure 4 illustrates our study approach. The intuition
is that visual features can better explain participants’ judg-
ments than correlation values. Figure 4a shows two example
trials from the replication experiment. The experiment mod-
ulates the difference in correlation between the scatterplots
(∆r, the y-axis) based on the correctness of participants’
judgments (the x-axis). Intuitively, participants should be
better at justifying a difference when ∆r is larger. However,
∆r may not fully predict whether a participant will judge
correctly. When ∆r is the same in two different judgments,
the participant may make a correct judgment for one, and
an incorrect judgment for another. Part of this may be due to
random chances, for example, a participant may sometimes
choose one or the other by mistake. Another possible cause
is the existence of misleading visual features produced in
the scatterplots, which make a particular scatterplot pair to
be difficult to discriminate.

At a conceptual level, visual features may align more
closely with participants’ judgments than the actual corre-
lation values presented in the scatterplots. Consider a hy-
pothetical feature that perfectly predicts participants’ judg-
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TABLE 1
The concepts of candidate visual features

Concept Visual Feature Category
Prediction Ellipse

the minor axis
the major axis

Cleveland et al. suggested “an elliptical contour” [9] and Jennings et al.
proposed an isoprobability ellipse [8], similar to the proposal of using the
width of the 2D probability density function by Rensink [14]. The core
idea here is a prediction ellipse, which is a statistical measure that predicts
the location of a new observation, under the assumption of a bivariate
normal distribution [15].

The major axis of the prediction ellipse
The minor axis of the prediction ellipse
The area of the prediction ellipse [8], [9]
The ratio of the major axis to the minor axis
The ratio of the minor axis to the major axis [9]

length
length
area
shape
shape

Bounding Box

the perpendicular side
the parallel side

The bounding box of a scatterplot is a rectangle parallel to the regression
line (y=x), and includes all points in the plot. A confidence box excludes
extreme outliers in the data. The bounding box of all the points within
the confidence box is referred to as the confidence bounding box.

The side parallel to the regression line
The side perpendicular to the regression line
The area of the box
The ratio of the perpendicular side to the parallel side
The ratio of the parallel side to the perpendicular side

length
length
area
shape
shape

MST Wilkinson et al. used the Minimum Spanning Tree (MST) to identify
interesting patterns in scatterplots [16]. We use features based on MST,
as well as other graph-based measures of linear correlation from Wilkin-
son et al.’s work. The figure on the left side shows an MST of a scatterplot.

The average length of the edges on MST
The standard deviation of the edges on MST
The skewness of the edges on MST [16].

length
density
density

Distance to line The perpendicular distance to the regression line was used as a measurement
of dispersion in Meyer et al. [6]. This feature is similar to Cleveland
et al.’s, Jennings et al.’s, and Rensink’s proposal of the width of the point
cloud. We use “absolute perpendicular distance from the regression line”
[6] as a visual feature. The figure on the left side shows all perpendicular

distances to the regression line.

The average of the distances [6]
The average of the inverted distances
The standard deviation of the distances
The standard deviation of the inverted distances
The skewness of the distances
The skewness of the inverted distances

length
density
density
density
shape
shape

Pairwise distance Pairwise distance is usually used to estimate density and clustering [17].
We use all pairwise distances as the measure of global density. The
figure on the left side shows all pairwise distances in a scatterplot and
a maximum distance.

The maximum and percentiles of pairwise distance
The average of the inverse of pairwise distance
The standard deviation of pairwise distance
The skewness of pairwise distance

length
density
density
shape

kNN Inspired by Wilkinson et al.’s work [16], we take local density into
consideration. A general measurement of this is based on k-Nearest
Neighbors (kNN, k = 3, 5, 7, 9). The average distance to kNN is used as
the measure of local density. The figure on the left side shows all points
that are connected to their 3-Nearest Neighbors.

The average of all local density
The standard deviation of all local density
The skewness of all local density

length
density
shape

Projections

projected 
distances

The projections on y = x and y = −x directions are taken as candidate
features. The lines in the figure on the left side show how to project in
both directions, the dots show the projected points, and the projection is
the distance to the first projected point.

The standard deviation of projections on y = x
The standard deviation of projections on y = −x

shape
shape

Convex Hull The convex hull is an important geometric property in the Euclidean
plane [18]. Wilkinson et al. identified convex hull as a measure of
interestingness in scatterplots.

The area of convex hull area

ments (Figure 4b). For such a feature, when its difference
is above a certain threshold, the participant should always
make a correct judgment and vice versa (excluding the
small chance for random mistakes). Thus, visual features
that highly correlate with the participants’ judgments are
likely candidates employed by the participants to compare
correlation in scatterplots.

4.1 Pair Judgment Data
The judgment data used contains the following attributes:
difference in correlation between the two scatterplots (∆r,
magnitude), differences in visual features between the two
scatterplots (∆v, magnitude), along with the base correla-
tion r ([0.3, 0.4, 0.5, 0.6, 0.7, 0.8]), approach ([above, below]),
and judgment correctness ([correct, incorrect]).

These data are visually inspected using scatterplot ma-
trix and correlation matrix, with two goals in mind: first,
remove extreme values that could indicate possibly spurious
judgments; second, resolve collinearity between different
visual features that can significantly affect the outcome of
a regression analysis [20].

In all, we remove 4 out of 19,000 judgments that stem
from participants’ erroneous input during the experiments

(see Figure 5a). Collinearity is investigated by computing
pairwise linear dependence between all visual features and
correlation. Most features used in our data exhibit some
amount of collinearity with the correlation value (r) and
other visual features (see Figure 5b and c). We remove 5
linearly dependent features that can be trivially derived
from one another, resulting in a final set of 44 features.

4.2 Modeling Judgments using Standardized Weighted
Logistic Regression
To determine the relation between participants’ judgments
and the visual features, we apply a technique known as
standardized weighted logistic regression for four reasons:
1) Logistic regression can model dependent variables that
are dichotomous (binary), and 2) it does not assume particu-
lar distributions about the independent variables [21], [22].
In our data, judgments are the binary dependent variable,
being either correct or incorrect. 3) Weighted models com-
pensate for the imbalance between judgment counts (i.e.,
75% of the judgments are correct and 25% incorrect) to avoid
skewed results. 4) Standardized models transform models
with different value ranges to the same so that all model
coefficients are comparable.
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Fig. 4. Example trials from our experiment with 50 judgments for each. In these figures, x-axis shows the judgment number, while y-axis is the
dependent variable in the experiment, such as the difference in correlation between the two scatterplots.

a) Two trials from our replication experiment. Note that ∆r increases for an incorrect judgment and vice versa. The left and right show examples
of converged and not converged trials, respectively. The difference is whether there is a window of 24 judgments that have similar differences in
correlation. In the original experiment by Rensink and Baldridge and Harrison et al., the 24 judgments inside the gray rectangles were used to
compute JND, and the trial terminates if it is converged. In our new experiment, the trials continue anyway until 50 judgments have been made.

b) An example scenario assuming an ideal visual feature that perfectly predicts the participant’s judgments. The grey dashed line represents the
JND of that visual feature. Note that all correct judgments are above the grey line and all incorrect judgments are below.

c) The changing of the difference in the visual feature the standard deviation of all perpendicular distances to the regression line over the course of
a trial. Note that, while not perfectly following the ideal visual feature in b), this visual feature highly correlates with the participant’s judgments.

Fig. 5. Judgments data: extreme values and the collinearity between visual features. We present a few examples. The full scatterplot matrix and
correlation matrix can be found in Appendix B, and notions can be found in Appendix A. We use the term Pearson correlation coefficient (pcc)
instead of “correlation” to avoid confusion.

Specifically, our logistic regression has the form:
g = β0 + β1ai + β2ri + β3∆xi (1)

where g represents the logit function, r is the fixed corre-
lation level in the experimental procedure, a is the approach
(above or below, see Section 2), ∆x represents the difference
in the stimuli (i.e., ∆r or ∆v, the y-axis in Figure 4), β is
the model coefficients, and i represents each of the 18,996
judgments. Note that the inclusion of r and a follows the
work of Rensink and Baldridge [1] where the authors show
that the perception of correlation is affected by the amount
of correlation as well as the approach used in the study.

Using standardized weighted logistic regression, we first
build the null model using a constant as the independent
variable. A second step is to construct the model based on
correlation (r). This sets a baseline for eliminating visual
features that are less predictive of participants’ judgments.
The third step is to build a model for each visual feature and
compare it against the model of correlation. The separate
modeling avoids issues raised by collinearity and allows a
comparison of models using multiple statistics metrics.

4.3 Model Metrics
We apply three types of metrics commonly used in eval-
uating logistic regression models [23]. First, using odds
ratios [24], we analyze the effectiveness of each indepen-
dent variable (e.g., the difference in a visual feature ∆v)
when explaining participants’ judgments. Second, we ex-
amine the quality of the regression model using the Akaike
Information Criterion (AIC). Lastly, we compare the regres-
sion model of a visual feature to the regression model of
correlation using a Cox test [25]. The Cox test evaluates two
non-nested models by fitting the regressors of one model
into the fitted values of the other, and it is measured by
explanatory values: 1) we use the Bonferroni correction [26]
and set p=.0011 as the critical value; 2) we use a relaxed view
where larger z-scores are expected, since the sample size of

18,996 may result in many p-values becoming significant.
Taken together, these metrics provide a means to evalu-

ate the candidate visual features, and identify the ones that
best account for the participants’ judgments.

4.4 Results
Table 2 shows the results of modeling each of the 44 visual
features, using the three metrics described above. The nu-
meric results and the results of additional statistical metrics
can be found in Appendix C.

4.4.1 The Null Model
The first line of Table 2 presents the null model. The model
has an odds ratio of 1, indicating that the independent
variable is not associated with any change in the dependent
variable (i.e., judgment correctness).

4.4.2 The Baseline Model
The next three lines of Table 2 show the results of the base-
line model, using only correlation (r) and its difference (∆r).
It does not contain any visual feature.

These results confirm that the difference in correlation
is closely associated with the participants’ judgments. The
variable r has an odds ratio of 1.35 (95% CI : [1.23, 1.48]),
indicating that one unit increase in r is 1.35 times (i.e., more)
likely to obtain a correct judgment. Approach, denoted as a,
has an odds ratio of 0.90 (95% CI : [0.82, 0.99]), indicating
that the approach variable can be 0.90 times (i.e., less)
likely to obtain a correct judgment. This confirms that the
magnitude of correlation (r) itself impacts the judgments
correctness, and the approach factor has a smaller impact
as originally reported by Rensink and Baldridge [1]. More
importantly, in the fourth line, the variable ∆r has an odds
ratio of 1.30 (95% CI : [1.18, 1.44]), providing the baseline for
evaluating all our candidate visual features.
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TABLE 2
The results of modeling judgments with correlation and visual features.

constant
r
approach
Δr
Δellipse_major
Δellipse_minor
Δellipse_area
Δellipse_ratio
Δellipse_ratio_inverse
Δbounding_box_perp
Δbounding_box_para
Δbounding_box_area
Δbounding_box_ratio
Δbounding_box_ratio_inverse
Δconf_bounding_box_perp
Δconf_bounding_box_para
Δconf_bounding_box_area
Δconf_bounding_box_ratio
Δconf_bounding_box_ratio_inverse
Δconvexhull
Δdist_line_avg
Δdist_line_sd
Δdist_line_skewness
Δpairwise_dist_max
Δpairwise_dist_avg
Δpairwise_dist_sd
Δpairwise_dist_skewness
Δpairwise_dist_50
Δpairwise_dist_75
Δpairwise_dist_95
Δknn3_avg
Δknn3_sd
Δknn3_skewness
Δknn5_avg
Δknn5_sd
Δknn5_skewness
Δknn7_avg
Δknn7_sd
Δknn7_skewness
Δknn9_avg
Δknn9_sd
Δknn9_skewness
Δmst_avg
Δmst_sd
Δmst_skewness
Δdist_line_avg_inverse
Δdist_line_sd_inverse
Δdist_line_skewness_inverse

Odds Ratios
0.8 1.0 1.2 1.4 1.6 6,560 6,600

AIC
10 20 30

Cox Test

not for comparison

better than baseline
worse than baseline

baseline anchor

Cox Test v to r r to v
critical value 0

4.4.3 Visual Feature Models
We then compare the effectiveness of models built from
the visual features against this baseline model. If a visual
feature model is “better” than this baseline model, the
implication is that the visual feature is very likely to be used
by participants when judging correlation in scatterplots.

The remainder of Table 2 reports the performance of
each of the visual feature models. A visual feature model is
colored in blue if the model outperforms the baseline model
in that metric (e.g., odds ratios, AIC, and the Cox Test).

The results in Table 2 show that the four top-performing
visual features are:
• the standard deviation of all perpendicular distances to the

regression line (dist line sd),
• the area of the prediction ellipse (ellipse area),
• the length of the minor axis of the prediction ellipse (el-

lipse minor), and
• the length of the perpendicular side of the confidence bounding

box (conf bounding box perp).
These outperform the baseline model (i.e., the model of
correlation) across all the metrics. In particular, the feature
the standard deviation of all perpendicular distances to the re-
gression line and the area of the prediction ellipse have similar
effectiveness while outperforming the other two regarding
odds ratios, AIC, and the Cox Test.

4.5 Summary and Discussion
These four visual features, based on modeling metrics, are
more predictive of participants’ judgments than correlation
itself. Coincidentally, these four visual features come from
different feature categories defined in Section 3: length, area,
and density. It may suggest that participants may use several
visual features when judging correlation. This finding in
turn suggests a step towards exploring multi-factor models
in future work.

The top-performing visual features support existing hy-
potheses in prior research in perceptual psychology and in-
formation visualization. For example, Meyer et al. identified
the mean of the geometric distance between points and the
regression line as impacting participants’ ability to perceive
correlation in scatterplots [6], which is synonymous with
the feature the standard deviation of all perpendicular distances
to the regression line.

These four features together all suggest that participants
seek dispersion measures along the regression line. For
example, the feature the standard deviation of all perpendicular
distances to the regression line uses standard deviation to
measure the density around the regression line; the feature
the length of the minor axis of the prediction ellipse only relies
on the minor axis, a confidence measure of the length of
the point cloud along the regression line. These observa-
tions support the findings from perceptual psychology, as
Eades [27] (cited in Lane et al. [28]), Cleveland et al. [9],
and Meyer and Shinar [10] that the density and dispersion
of data points in scatterplots affect participants’ judgments.

To summarize, our use of the standardized weighted
logistic regression model found four likely visual features,
and better predict the participants’ judgments of correlation
in scatterplots than correlation value (r) itself.

5 MODELING PERCEPTION OF CORRELATION US-
ING VISUAL FEATURES

In this section, we examine the use of the visual features
in modeling the perception of correlation in scatterplots.
We investigate whether substituting visual features into
the existing models of perception of correlation results in
performance similarly to that of the original models. In Sec-
tion 5.1, we describe the three models used in our study: a
linear model using mean observations (used by Rensink and
Baldridge [1] and Harrison et al. [3]), a linear model using
individual observations (used by Kay and Heer [4]), and
a log-linear model using individual observations (used by
Kay and Heer [4]). In Section 5.2, we describe a substitution
method used to verify the effectiveness of the visual features
in three existing models.

5.1 Background and Overview
Rensink and Baldridge [1], Harrison et al. [3], and Kay
and Heer [4] introduced perceptual models that capture
peoples’ ability to judge correlation in scatterplots. These
models are based on the concept of Just-Noticeable Differ-
ence (JND), a measure of discrimination threshold. The JND
describes the minimum amount of change in a stimulus
needed for a person to reliably perceive a difference between
two stimuli. The relation between JND and the stimulus can
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be described using Weber’s law [29], [30]:

dP = k
dI

I
(2)

where dP is the differential change in perception, dI is the
differential increase in the stimulus, and I is the intensity
of the baseline stimulus. The parameter k is known as the
Weber fraction and is estimated via perceptual experiments.
Given a specific I and Weber fraction k, the JND corre-
sponds to the smallest increase of dI that will produce a
noticeable difference in perception.

Based on the concept of JND, Rensink and Baldridge [1]
as well as Harrison et al. [3] proposed a model for the
perception of correlation. They measured JNDs from in-
lab and crowdsourced experiments, and aggregated partici-
pants’ JNDs into a Weber (linear) model. Kay and Heer, re-
analyzing the experimental data from Harrison et al. based
on individual observations, propose a non-linear model
using multi-level Bayesian statistics and logarithmic trans-
formation, which improved the fit and generalizability.

Weber’s law generally applies to low-level perceptual
properties [29], such as discriminating line lengths. Line
lengths are closely related to two length visual features we
identified, as they explain judgments better than correlation
values. This observation implies that the modeling of the
perception of correlation in scatterplots, as Rensink and
Baldridge and Harrison et al. proposed, may be partially
explained by people using visual features as proxies of
correlation in the judgment process.

We use two techniques to determine the potential inter-
changeability between visual feature and correlation:
1) Extend the existing models to the use of visual features:

we fit the data from visual features into the three models
proposed by Rensink and Baldridge, Harrison et al., and
Kay and Heer. A successful fit would indicate a similarity
between existing models of correlation and models that
use visual features.

2) Algebraic substitution: we use algebraic techniques to
determine whether visual feature can reproduce the orig-
inal models of correlation. This analysis has two pur-
poses: (i) it may provide evidence that the visual features
are used as proxies of correlation judgment, and as such,
(ii) it may explain that why low-level perceptual laws
apply to the perception of correlation.
Without loss of generality, the analysis below uses the

visual feature: the standard deviation of all perpendicular dis-
tances to the regression line (denoted as dist line sd), one of
the best-performing features from our previous experiment.
Analysis of the other three visual features yields similar
results, which are included in Appendix G.

5.2 The Analytics Pipeline
This section presents our modeling procedure and the sub-
stitution technique (see Figure 6). The modeling procedure
allows us to replicate extant models and extend them to
include the use of visual features. The substitution technique
is used to validate that these features can be used in lieu of
correlation in the perceptual models.

We first generalize the relationship between perception
and level of correlation into the following form:

JNDr = f(r) (3)

 = ( )  =  
1’( ) = ( )

 =  ()3

2 1’1

 =  ( ) 4

5 () =  (( ))
Replication Extension Substitution Compare to 

Fig. 6. Our analytic pipeline: replication (Box 1), extension (Box 2), and
substitution (Box 5). Box 1 represents the JND model of correlation
based on the experimental data; this can be extended to the visual
feature (Box 2). Boxes 3 and 4 present the relation of correlation and the
visual feature and the relation of their JNDs, respectively. Substituting
Boxes 3 and 4 into Box 2 yields Box 5, simplified into Box 1’, and com-
pared to Box 1. This comparison validates whether the visual feature
can reproduce the model of correlation.

The r subscript represents correlation r (i.e., I in Weber’s
law). The equation states that the JND of correlation (JNDr)
is a function (f ) of correlation (r). The function f can
have various forms. For the linear model by Rensink and
Baldridge and Harrison et al., f is a linear function (Weber’s
law). In the case of Kay and Heer’s log-linear model, f is a
log-linear function. We replicate both of these forms as the
first step of our analysis.

Using a similar notation, we can likewise describe the
perception of a visual feature as:

JNDv = f(v) (4)
The v subscript represents visual feature (v). It states that
the JND of a visual feature (JNDv) is a function (f ) of the
magnitude of that visual feature (v).

Although these two functions appear disparate, our
reasoning is that if in fact visual features are proxies used
by participants to judge correlation (r) in scatterplots, then
these two functions would be interchangeable. Our substi-
tution technique builds on these equations and is simply
a series of operations that transform Equation 4 (Box 2 in
Figure 6) into Equation 3 (Box 1 in Figure 6), and evaluates
the equality between them.

These procedures can be integrated into a single analyt-
ics pipeline with the following steps (see Figure 6):
1) Box 1 (f1) : replicate the original model of correlation,

including the models by Rensink and Baldridge, Harri-
son et al., and Kay and Heer2.

2) Box 2 (f2) : extend the original model to include the use
of the visual feature. Again, the example visual feature
used is the standard deviation of all perpendicular distances
to the regression line (dist line sd).

3) Box 3 (f3) : model the relation between the JND of corre-
lation (JNDr) and the JND of the visual feature (JNDv).

4) Box 4 (f4) : model the relation between correlation (r) and
the visual feature (v).

5) Box 5→1’ (f1′ ): derive a new model of the perception of
correlation based on the visual feature.

6) Box 1’ vs. 1: compare the derived model of correlation
with the original model estimated from the experimental
data. This step will validate whether the visual feature
can replace correlation in the model.
The forms of f1, f2, and f3 are consistent with each

2. In both Rensink and Baldridge’s and Harrison et al.’s work, JND
is calculated using the average difference in correlation in last 24
judgments over a trial (see Section 2 and Figure 4a). Our modified
experiment uses 50 judgments with no convergence criteria. We instead
use weighted logistic regression to estimate JND based on all 50 judg-
ments in a trial. This approach is implicitly validated by the similarity
between the previous results and ours.
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other and will vary, depending on different modeling tech-
niques (e.g., linear, log-linear). We use a linear form for f4
uniformly to simplify computation and avoid discrepancies
between different forms. The complete derivation of the
substitution and a discussion of this linear assumption can
be found in Appendix D.

5.3 Model Metrics
We employ two sets of evaluation metrics for our regression
analysis. First, we use metrics similar to those used to eval-
uate the judgments models in Section 4, including p-value,
R2, and Akaike information criterion (AIC)3. Second, we
perform regression diagnostics, including testing normality
of residuals using the Shapiro test [33], skewness [34],
kurtosis [34], and homoscedasticity of residuals using the
more robust Levene’s test [35]. Skewness and kurtosis
measure different aspects of the distribution, with a sign
for direction (i.e., left-skewed or right-skewed). We also
illustrate residuals using detrended Q-Q plots [36], a means
to present residual distribution, and in the case of normality,
the difference between normalized residual and unit normal
quantile fall into with the confidence band. Last, we visually
inspect our results and compare them to the results from the
extant works.

5.4 Linear Model using Mean Observations (Rensink
and Baldridge; Harrison et al.)
Proposed by Rensink and Baldridge and replicated by Har-
rison et al., the first modeling technique in our analysis is
based on the mean discrimination thresholds to approxi-
mate a linear function for correlation perception (i.e., We-
ber’s law).

5.4.1 Modeling
To replicate Harrison et al.’s results, we follow their ap-
proach to mitigate large variations in individual perfor-
mance. We exclude participant averages outside 3 Median
Absolute Deviations [37] for a fixed correlation level (e.g.,
r=0.5). Within the given correlation level and approach (e.g.,
approaching from below), participants’ data are averaged
to obtain an estimation of mean JND and further combined
using an adjustment [1]. The model has the form:

yi = β0 + β1xi + εi (5)
where JND is represented as y, written as a linear function
of the adjusted baseline intensity of the stimuli x (i.e., r
or v), with an overall slope β1, an intercept β0, and an
error term ε. In this equation, i represents the mean ob-
servations with 12 data points (i = [1..12], r × approach =
[0.3, 0.4, 0.5, 0.6, 0.7, 0.8]× [above, below]).

5.4.2 Results
Figure 7 and Table 3 report the results of the replication, ex-
tension, and substitution pipeline. Due to the small sample
size (n=12), we omit the results of regression diagnostics as
they are less meaningful [38]. As a result, we have

3. We use R package gamlss [31], [32] to fit all models. The gamlss
procedure fit models by fitting residuals using different residual dis-
tributions. This makes it valid to compare AIC for models based on
transformed data.
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Fig. 7. The linear models using mean observations for a) correlation
and b) the visual feature (dist line sd). Error bars are the standard
deviation in aggregation.

TABLE 3
The results of the linear models using mean observations

0 p 1 p
 :  ~  -.9778 0.1860 <.001 -0.1791 <.001 .9561 -79.7720
 :  ~  .9011 0.7975 .0101 0.0708 <.001 .8119 -3.0762
 :  ~  .9950 1.4717 <.001 10.8154 <.001 .9900 -40.7950
 :   ~  -.9962 38.0295 <.001 -27.4850 <.001 .9924 18.6965
 ':   - 0.1864 - -0.1798 - - -

CoefficientsModel Correlation 
Coefficient R2 AIC

*The inferred model (the last line) is similar to the original model (the first line).
Since these numbers are small, we round to 4 decimal places in the tables to
enable readers to reproduce our substitution results.

1) Box 1 (f1) : the linear regression fit of the correlation
data is satisfactory (R2=.96) when replicating the ex-
isting models (see Figure 7a). In addition, the coeffi-
cients of the regression slope (β1=-0.18) and intercept
(β0=0.19) are close to those of Harrison et al. (β1=-0.17,
β0=0.17) [3], and not far from the results from Rensink
and Baldridge (β1=-0.20, β0=0.22) [1]. These compar-
isons establish that our replication experiment data are
consistent with previous findings, inviting a further com-
parison to the models using visual features.

2) Box 2 (f2) : we observe a decent fit (R2=.81) when ex-
tending the model to the visual feature (dist line sd, see
Figure 7b).

3) Box 3 (f3) : JNDr and JNDv can be fit by a linear
function (R2=.99).

4) Box 4 (f4) : correlation (r) and the magnitude of the vi-
sual feature (v) are linearly correlated (R2=.99).

5) Box 5→1’ (f1′ ): we derive a new model of correlation
perception using the visual feature. This model has the
coefficients β1=-0.18 and β0=0.19.

6) Box 1’ vs. 1: we compare the new derived model with
the original one. We see that the two models are nearly
identical (see Figure 7a and Table 3).

In sum, we replicate the linear model using mean observa-
tions of the data from our replicate experiment, and confirm
that it can be further extended to the visual feature. The
result also confirms that the visual feature can replace cor-
relation in this model without loss of precision. The slightly
higher intercept and slope compared to Harrison et al.’s
may due to fatigue effect [39], since our experimental
duration was longer.

5.5 Linear Model using Individual Observations (Kay
and Heer)
Next, we validate the use of visual features in the techniques
proposed by Kay and Heer [4]. Note that Kay and Heer
used a series of models and techniques: 1) a linear model
using individual observations, 2) a log-linear model using
individual observations, 3) censoring method for observa-
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a) The fitted linear model () c) The fitted linear model () 
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d) The detrended Q-Q plot ()

Fig. 8. The linear models using individual observations and their regression diagnostics: a) and b) correlation, c) and d) the visual feature
(dist line sd). Error bars are root mean square errors. The detrended Q-Q plots illustrate the deviation from normality and the skewness in
residuals, aligning with the analysis by Kay and Heer.

TABLE 4
The coefficients, substitution, R2, and regression diagnostics of the linear models using individual observations

0 p 1 p 2 p 3 p
 :  ~  0.1927 <.001 -0.1792 <.001 0.0202 .0167 -0.0195 .1809 .3076 -1213.7160 p < .001 2.1075 7.4827 p < .001
 :  ~  0.8672 .0046 0.0761 <.001 -0.2949 .3314 0.0155 .2345 .0876 1228.8330 p < .001 2.3604 8.1541 p = .4596
 :  ~  1.5412 <.001 11.3588 <.001 - - - - .9648 -937.7772 p < .001 -0.9502 0.5097 p < .001
 :   ~  38.0921 <.001 -27.6028 <.001 - - - - .9915 455.0915 p < .001 -0.3038 -1.2431 p = .0011
 ':  0.1959 - -0.1849 - - - - - - - - - - -

SkewnessNormality 
of residuals

Homosce-
dasticityKurtosisCoefficientsMethod AICR2

*The inferred linear model using visual features (the last line) is similar to the model using correlation, which was estimated directly from the experimental data (the
first line). Regression diagnostics show that the residuals are skewed and not normally distributed.

tions without a known value, 4) Bayesian statistics, and 5) a
log-linear model with a random intercept.

A key observation from Kay and Heer is that the ag-
gregated linear model used in Rensink and Baldridge and
Harrison et al. does not take into account the non-constant
variance between the individuals [4]. Instead, they started
with a linear model based on individuals observations,
which allows the models to include all individual variance.
It offers a principled way for including outliers, as each ob-
servation is assigned a likelihood, and outliers are assigned
a relatively low weight. Another technique employed by
Kay and Heer is the inclusion of random effect to improve
the generalizability of the model coefficients. This resolves
the correlation between observations from the same partici-
pant.

In this section, we replicate the linear model of correla-
tion based on individual observations (the first model from
Kay and Heer) and extend it to visual features. This linear
model sets a baseline for comparison based on individual
observations and bridges between the model by Rensink
and Baldridge and Harrison et al. and the further models
by Kay and Heer. In the next section, we further replicate
the log-linear model of correlation with a random intercept
and evaluate the use of the visual features in that model.
Following Kay and Heer, we include all observations in all
the models using individual observations (95 participants ×
4 observations per participant = 380 observations in total).

5.5.1 Modeling
Following Kay and Heer, we first construct a regression
model that incorporates individual observations:

yi = β0 + β1xi + β2ai + β3aixi + εi (6)
where y represents JND similar to that of the linear model
using mean observations (Equation 5), a represents ap-
proach, x represents the stimulus with an error term of ε,
and ax is the interaction between the two. According to Kay
and Heer, ai is defined as

ai =

{
−1, if approach is from above

1, if approach is from below

In these equations, i is from 1..n, where n is the number
of individual observations (n=380), differentiated from the
mean observations used by Rensink and Baldridge and Harri-
son et al. where n=12.

5.5.2 Results
The results of modeling with individual observations using
a linear model are presented in Figure 8 and Table 4.
Specifically, we have:
1) Box 1 (f1) : we first present the linear model of correla-

tion based on individual observations, which has similar
coefficients with the previous aggregated model using
mean observations (see Figure 8a, β1=-0.18, β0=0.19 vs.
β1=-0.18, β0=0.19).

2) Box 2 (f2) : we extend the model to the visual feature
and find a drawback in goodness-of-fitness (R2=.09 vs.
R2=.31).

3) Box 3 (f3) : we find a strong linearity between the two
sets of JNDs from correlation and the visual feature
(dist line sd, R2=.96).

4) Box 4 (f4) : we find a strong linearity between the visual
feature and correlation based on individual observations
(R2=.99).

5) Box 5→1’ (f1′ ): combining the three equations above, we
derive a new model for correlation.

6) Box 1’ vs. 1: the resulting model from substitution
(β1=-0.18, β0=0.20) is very similar to the original model
of correlation (β1=-0.18, β0=0.19) in both shape and form
(see Figure 8a).
These results are consistent with Kay and Heer’s find-

ings in the following ways. First, in the regression diag-
nostics for the models of both correlation and the visual
feature, the residuals are not normally distributed (p<.001),
with non-zero skewness and kurtosis (see Figure 8b and d).
Second, the models also do not hold the assumption of
homoscedasticity for residuals (p<.001). These are two im-
portant findings from Kay and Heer, which leads to a step
of further refining the model.
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a) The fitted log-linear model () b) The detrended Q-Q plot () c) The fitted log-linear model () d) The detrended Q-Q plot () 
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Fig. 9. Log-linear models using individual observations and their regression diagnostics: a) and b) correlation, c) and d) the visual feature
(dist line sd). Error bars are root mean square errors.

TABLE 5
The coefficients, substitution, R2, and regression diagnostics of the log-linear models of individual observations

0 p 1 p 2 p 3 p
 : () ~  -1.4137 <.001 -2.0152 <.001 0.1365 .0021 -0.0815 .2837 .7941 -1724.3940 p = .0586 0.1170 0.5619 p = .9961
 : () ~  0.1903 <.001 0.0297 <.001 -0.1074 .0516 0.0059 .0130 .7104 748.3163 p < .001 0.4009 0.8595 p = .2798
 : () ~ () 1.8886 <.001 0.4038 <.001 - - - - .9917 -1460.4100 p < .001 -0.8475 -0.2552 p <  .001
 :   ~  38.0921 <.001 -27.6028 <.001 - - - - .9915 455.0915 p < .001 -0.3038 -1.2431 p = .0011
 ':  -1.4064 - -2.0285 - - - - - - - - - - -

Kurtosis Homosce-
dasticityMethod R2 SkewnessNormality 

of residuals
Coefficients AIC

*The residual analysis shows that the residuals of the log-linear model deviate from a normal distribution. The substitution results in a model (the last line) that is
similar to the original model estimated directly from the experimental data (the first line).

5.6 Log-Linear Model with a Random Intercept, using
Individual Observations (Kay and Heer)
Kay and Heer pointed out that, because the linear model
violates the key assumptions of normality and homoscedas-
ticity in regression analysis, it may result in a biased model
and an overestimated goodness-of-fit. They, therefore, pro-
posed a log-linear model to transform the data into one
that meets the assumptions for regression analysis. They
also incorporated random effect to account for observations
from the same participant. The focus of this section is to
replicate the log-linear model with a random intercept, to
extend it to the use of the visual feature (dist line sd), and
validate whether the visual feature can reproduce the log-
linear model of correlation proposed by Kay and Heer.

5.6.1 Modeling
Following Kay and Heer, the log-linear model has the form:

log(yi) = β0 + β1xi + β2ai + β3aixi + εi + Uk (7)
The log-transformed JND (log(y)) is modeled as a linear
function of the baseline intensity x (i.e., r or v), approach
a, an interaction between them (ax), and an offset (Uk)
for each participant k. The difference is the use of a log
transformation on the individual observations to correct for
skewed residuals and an Uk comprising a treatment factor
effect [40] (see Kay and Heer’s [4]).

5.6.2 Results
Similar to the previous section, we first replicate the model,
extend it to the visual feature, and derive the substitution
from the visual feature.
1) Box 1 (f1) : Table 5 shows the fit of the log-linear model

to our data (R2=.79) and the model coefficients (β1=-2.02,
β0=-1.41), which are similar to those of Kay and Heer’s
final result (β1=-2.39, β0=-1.27, from the results they
released online).

2) Box 2 (f2) : we confirm that extending to the visual fea-
ture yields a decent fit (dist line sd, R2=.71).

3) Box 3 (f3) : we find a favorable fit between the two sets
of log-transformed JNDs for correlation and the visual
feature (R2=.99).

4) Box 4 (f4) : the relation between the visual feature and
correlation remains the same (R2=.99).

5) Box 5→1’ (f1′ ): combining the results above turns into a
new model of correlation (see the last line in Table 5).

6) Box 1’ vs. 1: the derived correlation model is very similar
to the original model (see Figure 9, β1=-2.02, β0=-1.41 vs.
β1=-2.03, β0=-1.41).
Similar to Kay and Heer’s results, we find that AIC

of the log-linear model is an improvement over the linear
model (e.g., -1724.39 vs. -1213.72). However, we still observe
that the log transformation leaves some skewness in the
residuals, and the residuals are non-normally distributed
(e.g., p<.001), especially for the visual feature.

5.7 Summary and Discussion
Thus far, we have examined three existing modeling tech-
niques of correlation perception in scatterplots: a linear
model using mean observations, a linear model using in-
dividual observations, and a log-linear model with random
intercepts to account for individual observations. For each
of these, we have replicated the original model using our
experimental data, extended the model to include the visual
feature, then substituted the visual feature for correlation.
Our analysis indicates that the use of the visual feature
generally performs similarly to the use of correlation. As
a result, we find that models using visual features can
successfully reproduce the original model of correlation.

Specifically, the visual feature that best explains par-
ticipants’ judgments yields at least the same effectiveness
in modeling the perception of correlation in scatterplots.
This supports our two speculations: 1) the perceptual laws
for low-level perception may apply to the perception of
correlation because 2) visual features are possible visual
proxies of correlation.

Our demonstration of an interchangeable relationship
between the visual features and correlation is not a “proof”
of that participants in fact use visual features as a proxy to
judge correlations in scatterplots. Instead, this demonstra-
tion provides evidence that the visual features are possible
proxies for correlation. Future perceptual and cognitive
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experiments will be necessary to verify this claim. For
example, we observe that adding a random intercept (in the
case of the log-linear model by Kay and Heer) to allow the
inclusion of individual difference enhances the goodness-
of-fit, especially when using the visual feature in the model.
This finding may imply that different participants utilize
different visual features, although the same people may use
the same features across judgments.

6 IMPROVING PERCEPTUAL MODELS USING
POWER TRANSFORMATION

The models explored thus far, including those by Rensink
and Baldridge, Harrison et al., and Kay and Heer, still have
room for improvement. Several issues remain, such as non-
normality in the residuals in the log-linear model and a
general need to improve the overall fit. Inspired by the
power function widely used in perceptual psychology, we
propose a straightforward power transformation (instead of
a linear or a log-linear model) to better model the perception
of correlation and the visual feature in scatterplots.

Power functions are commonly used in perceptual psy-
chology for modeling our perception of physical stimuli.
The most well-known use of power functions in this area is
Stevens’ power law, which was introduced as a means to ex-
tend Weber’s law to describe a wider range of stimuli [41].
Specifically, Stevens’ power law states that the subjective
magnitude of sensation is proportional to the intensity of
the stimulus raised to a certain power a. For example, as
reported by Stevens, a is 0.7 for the perception of area
of projected square, where as a is 1.2 for the sensation of
lightness using the reflectance of gray papers [41].

Power functions have also been used in modeling the
perception of correlation in scatterplots in several existing
studies. For example, Pollack used a square function [7]
to model a relationship between perceived correlation (sen-
sation) and objective correlation (stimulus); Jennings et al.
proposed a square root function [8]; Cleveland et al. used a
square root function and double-power functions with two
free parameters [9]; Boynton proposed a power function
with one or two free parameters [5].

What is common in all these works is the use of the
power function. However, the data collected in these ex-
periments overwhelmingly come from experiments where
participants were instructed to directly estimate the correla-
tion of a given chart. A key difference in the approach that
we adopt from Rensink and Baldridge, as pointed out in
their work, was the use of psychophysical techniques which
mitigate estimation bias and variance by only requiring
participants to indicate which plot appears more correlated.
Such techniques align more with the original experiments
described by Stevens [41].

6.1 Power Transformation and Evaluation Metrics
The power transformation model is generally considered to
be more flexible than a linear or a log-linear model because
of the use of the exponent. We use the power transformation
to transform both JNDs of correlation and the visual feature.
Specifically, we utilize the Box-Cox t distribution, which is
a generalization of the Box-Cox normal distribution [42]

that can model both skewness and kurtosis, and has been
confirmed to surpasses Box-Cox normal distribution [43].
We also choose a power function for the link function of
location (median) [44]. The exponent (denoted as ω) in the
link function is chosen based on considerations from both
statistical metrics and perceptual psychology:
1) Given that the exponent in Stevens’ power law related to

human vision is commonly around 0.3-1.5, we sample all
possible values from [-5, 5] at a step of 0.01.

2) The classic Box-Cox transformation results in exponents
of -0.06 (95% CI :[-0.17, 0.05]) and -0.41 (95% CI :[-0.57,
-0.24]), validating that sampling from [-5, 5] is reasonable.

3) Steps 1) and 2) yield multiple exponential terms that lead
to a model outperforming the log-linear model, and we
present the results of the one that has the best tradeoff
between the statistical metrics, including R2, AIC [45],
skewness, kurtosis, and homoscedasticity of residuals.

6.2 Power Transformation Model, using Individual Ob-
servations
The power transformation model has the general form:

yωi = β0 + β1xi + β2ai + β3aixi + εi + Uk (8)
This equation is similar to the linear model and the log-
linear model by Kay and Heer (see Section 5), except the
use of yωi instead of log(yi), where y represents JND. The
exponent ω indicates the power term from link function
for location, while a and x represent the approach and
the stimulus (i.e., r or v) respectively, β represents model
coefficients, Uk accounts for random intercept, and ε is the
error term.

6.3 Results
The results of power transformation for both correlation and
the visual feature (dist line sd) are presented in Table 6.

Compared to the log-linear model, the two models ap-
pear similar to each other (see Table 6 and Figure 10).
We find that the transformed JNDs of correlation and the
visual feature can be represented as linear models (R2=.99).
When substituting the visual feature into the power trans-
formation model, the visual feature exactly reproduces the
original model of correlation (β1=-0.26, β0=0.66 vs. β1=-0.25,
β0=0.67).

The power model, however, outperforms the log-linear
model in a variety of ways:
1) The power model shows a better goodness-of-fit

(e.g., R2=.81 vs. R2=.79) and an improved AIC (e.g.,
703.73 vs. 748.32) over the log-linear model. These in-
dicate that the overall quality of the model is improved.

2) The power model also shows an improvement in re-
gression diagnostics. It has a residual distribution that
is normally distributed compared to the log-linear model
(p=.07 vs. p<.001, p=.29 vs. p=.06). The model appears
to contain a slight drawback in homoscedrasticity over
the log-linear model, but the value is still acceptable
and surpasses the linear model (p=.06 vs. p<.001). This
model generally exhibits less skewness and kurtosis in
the residuals than the log-linear model (skewness: -0.03
vs. 0.12, kurtosis: -0.29 vs. 0.86).
The power model improves upon the log-linear model
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Fig. 10. The power transformation models and residual analyses: a) and b) correlation, c) and d) the visual feature (dist line sd). In contrast to the
previous models, the power transformation models have the desirable property of normal-like and constant-like residuals.

TABLE 6
Coefficients, substitution, R2, AIC, and regression diagnostics of the power transformation models

BCT
0 p 1 p 2 p 3 p

 :  ~  0.26 0.6629 <.001 -0.2646 <.001 0.0186 <.001 -0.0155 .0615 .8099 -1742.0840 p = .2866 -0.0298 -0.2223 p = .3326
 :  ~  -0.17 0.9465 <.001 -0.0037 <.001 0.0187 <.001 -0.0010 <.001 .7387 703.7296 p = .0702 0.1061 -0.2850 p = .0607
 :  ~   - 1.0722 <.001 -0.3985 <.001 - - - - .9907 -4124.9540 p < .001 0.7579 -0.9203 p < .001
 :   ~   - 38.0921 <.001 -27.6028 <.001 - - - - .9915 455.0915 p < .001 -0.3038 -1.2431 p = .0011
 ':   - 0.6672 - -0.2549 - - - - - - - - - - -

Skewness Kurtosis Homosce-
dasticityMethod Coefficients R2 Normality 

of residualsAIC








*Suggested by R2 and AIC, the power transformation model is an improvement over the log-linear model. In the substitution, the inferred model (the last line) closely
resembles the model estimated empirically from the experimental data (the first line).

in that it has a higher R2 and improved AIC, skewness, and
kurtosis. In conclusion, in the areas where the log-linear
model had room for improvement, the power model fills
these gaps, resulting in a model that by many measures
can be considered a more faithful representation of the
participants’ perception of correlation in scatterplots.

7 DISCUSSION

In this paper, we examine the longstanding hypothesis
that people perceive visual features related to correlation
when judging correlation in scatterplots.Toward this end,
we collect 49 visual features, spanning literature in per-
ceptual psychology to visualization, statistics, and com-
putational geometry. We analyze them at several levels
including both aggregate and individual judgments and
across several recently proposed mathematical models of
behavior (i.e., [1], [3], [4]). The results at the individual
level indicate that visual features are more predictive of
participants’ judgments than correlation. At the model level,
the results of analyses indicate that the extant models can be
successfully extended to visual features. Finally, drawing in-
spiration from decades of perceptual psychology, we move
beyond current models (linear, log-linear) to show that a
power transformation of the JND produces a more precise
model than existing models, resulting in better performance
when using either correlation or the untransformed visual
features.

7.1 Power and Log Transformations
The “power transformation vs. log transformation” de-
bate [46] has spanned a variety of research fields, includ-
ing image enhancement [47] (e.g., Gamma correction) and
biology [48], many of which have suggested that power
transformations are more robust than log transformations
for fitting data [46].

In our case, modeling performance of a perceptual task,
the power transformation should be evaluated as a candi-
date explanation for the underlying behavior when viewed

through the lens of perceptual psychology, as it better de-
scribes the observed data than the log transformation. The
log transformation by Kay and Heer was mostly chosen
on the basis that it addresses modeling concerns such as
skewness [4].

More specifically, beyond the intuition that power trans-
formation is connected to the studies of modeling perceived
stimuli, the mathematical inference is via an integration.
Using our modeling of perception of correlation in scat-
terplots as an example, the linear, log transformation, and
power transformation can be written as ∆I = k(I + b),
log(∆I) = k(I + b), and (∆I)ω = k(I + b), respectively.
In these equations, I is the magnitude of the stimulus, and
∆I is the smallest change resulting in a unit step in the per-
ception (i.e., JND). On Fechner’s assumption [1], [2], [49],
we can infer the perceived stimulus (P ) from these three
equations by integrating on both sides (see Appendix F):
P = 1

ck log(I + b) + C , P = − 1
cke

−k(I+b) + C , and
P = k−a

c(1−a) (I + b)
1−a

+ C .
The linear model results in a logarithmic function (Fech-

ner’s law [50]), and this log function has best described
mean observations of perceived correlation [14]. Our re-
sults show that the basic linear models based on mean
observations can capture observed behavior, and thus can
be descriptive and predictive when understanding the phe-
nomena at population level.

When viewing at the individual level, a linear model
might not be able to explain and describe the variance
and different across individuals. A transformation might
help. However, the log transformation results in an expo-
nential function for the perceived stimulus. Such a form is
rarely seen in perceptual psychology and perceptual studies
for visualizations (e.g., [51], [52] – all of whose results
appear to be non-exponential). The log-transformation is
more widely used in biomedicine, psychosocial research,
and physics [53], [54] as phenomena like life growth, in-
formation spread, and radioactive decay are all modeled at
an exponential speed.

Our proposed power transformation results in a func-



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MM YYYY 13

tion that models perceived correlation as a multiplicative
factor of objective correlation, and therefore can be an
instance of Guilford’s power law [55] and Stevens’ power
law [41], aligning with other literature using power func-
tions to model the perceived correlation perception in scat-
terplots [5], [6], [9], [56] and beyond [41]. Some literature
suggested that Weber’s law may have been superseded
by Stevens’ power law as the standard modeling for un-
derstanding the mapping between stimulus and percep-
tion [57], [58], though debates [59] and exceptions [60]
remain.

When viewed from a statistical standpoint, the use of a
power transformation allows more modeling generality and
precision by adjusting the exponential term. It addresses the
consideration as to whether the model can be generalized
to a wide range of stimuli when choosing a model for a
perceptual process. The log transformation, in contrast, can
be viewed as a special case of the power transformation.
Though the quantitative improvements of using the power
transformation model are relatively small compared to the
log transformation models, the power transformation better
explains the underlying perceptual process by providing
both the modeling advantages of the log transformation,
evidenced by our results, with the added benefit of a link
to existing research in perceptual psychology. In addition,
there might be cases that the two transformations perform
indistinguishably. Our discussion focuses on transforming
the dependent variables, while other research might find
transforming the independent variables yields new avenues
towards understanding the relationships between people
and visualizations.

Finally, while some of our analyses use individual ob-
servations and partially measure individual perception, it
may be worth considering a comparison of models (e.g.,
linear, log-linear, power, and even exponential) that uti-
lize observations and judgments from the same participant
across all correlation levels. These models will help un-
derstand individual perception and contribute to research
of personalized visualizations. To investigate these requires
additional experiments, and they are beyond the scope of
this paper.

7.2 Perceptual Science and Visualization
Perceptual science is a pillar of visualization research.
One goal of this paper is to ground recent information
visualization research efforts on perceptual modeling of
statistical visualizations in concepts and practices in the
perceptual science community. While the information vi-
sualization community can apply sophisticated statistical
methodologies towards fitting psychophysical experimental
data into models, we argue that we must also incorporate
methodologies and techniques from perceptual scientists to
help understand why the resulting models and the observed
phenomenon occur.

One notable example is that the perception of “Pear-
son correlation” is an abstract mathematical concept, has
shown to be modeled using Weber’s law, a simple linear
model used for hundreds of years in psychological re-
search [1], [3]. In particular, because Weber law’s is gener-
ally only applied to low-level physical stimuli (e.g., sound,

weight, length, etc.), it is surprising that the abstract notion
of “Pearson correlation” falls in the same family of models.
If Rensink and Baldridge and Harrison et al. had used gen-
eral model-fitting methods without making the connection
to Weber’s law, it is possible that an important link to prior
psychological research would have been missed.

Our investigation of visual features in this paper seeks
to fill this knowledge gap. Although the result is positive, it
is far from conclusive. For one, we are working under the
assumption that the participants use a single visual feature
(and the same feature) to estimate correlation. The results
suggest room for improvement here, as our models using
visual features performed well, but not as well as those
using the difference in correlation, which can be considered
an amalgam of visual features. Intuitively, given a difficult
correlation judgment participants may switch “strategies”
(i.e., the use of different visual features or combinations of
features) to make a final judgment.

This paper focuses on the perception of correlation in
scatterplots, we posit that our experimental and analytical
methods based on perceptual features may extend to the
study of other multivariate visualizations for other per-
ceptual tasks (e.g., detecting outlier, mean, trend). Quan-
tifying and modeling such features for commonly used
visualizations can be an important area for future work,
as it will enable more predictive models and shed light
on how people perceive information from visualizations.
Recent work by Rensink suggests that a model of correlation
perception based on entropy is possible (i.e., that people
can perceive how “random” a visualization appears) [14].
These and other interdisciplinary efforts that cut across
both visualization and perceptual psychology can begin to
develop theories of visualization [2] that can serve as the
foundation for the next generation of information visualiza-
tion research, design, and practices.

ACKNOWLEDGMENTS

The research is supported in part by NSF awards IIS-1452977
and IIS-1162067. We thank all the anonymous reviewers for
their thoughtful feedback. We thank Megan Van Welie and
Jordan Crouser for their help with the manuscript.

REFERENCES

[1] R. A. Rensink and G. Baldridge, “The perception of correlation in
scatterplots,” Computer Graphics Forum, vol. 29, no. 3, pp. 1203–
1210, 2010.

[2] R. A. Rensink, “On the prospects for a science of visualization,” in
Handbook of Human Centric Visualization, W. Huang, Ed. Springer,
2014, pp. 147–175.

[3] L. Harrison, F. Yang, S. Franconeri, and R. Chang, “Ranking
visualizations of correlation using Weber’s law,” IEEE Transactions
on Visualization and Computer Graphics, vol. 20, no. 12, pp. 1943–
1952, 2014.

[4] M. Kay and J. Heer, “Beyond Weber’s law: A second look at rank-
ing visualizations of correlation,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, no. 1, pp. 469–478, 2016.

[5] D. M. Boynton, “The psychophysics of informal covariation as-
sessment: Perceiving relatedness against a background of dis-
persion,” Journal of Experimental Psychology: Human Perception and
Performance, vol. 26, no. 3, pp. 867–876, 2000.

[6] J. Meyer, M. Taieb, and I. Flascher, “Correlation estimates as
perceptual judgments,” Journal of Experimental Psychology: Applied,
vol. 3, no. 1, pp. 3–20, 1997.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MM YYYY 14

[7] I. Pollack, “Identification of visual correlational scatterplots,” Jour-
nal of Experimental Psychology, vol. 59, no. 6, pp. 351–360, 1960.

[8] D. Jennings, T. M. Amabile, and L. Ross, “Informal covariation
assessment: Data-based vs. theory-based judgments,” in Judgment
Under Uncertainty: Heuristics and Biases, 1982, pp. 211–230.

[9] W. S. Cleveland, P. Diaconis, and R. McGill, “Variables on scatter-
plots look more highly correlated when the scales are increased,”
Science, vol. 216, no. 4550, pp. 1138–1141, 1982.

[10] J. Meyer and D. Shinar, “Estimating correlations from scatter-
plots,” Human Factors: The Journal of the Human Factors and Er-
gonomics Society, vol. 34, no. 3, pp. 335–349, 1992.

[11] T. W. Lauer and G. V. Post, “Density in scatterplots and the esti-
mation of correlation,” Behaviour & Information Technology, vol. 8,
no. 3, pp. 235–244, 1989.

[12] T. N. Cornsweet, “The staircase-method in psychophysics,” The
American Journal of Psychology, vol. 75, no. 3, pp. 485–491, 1962.

[13] W. W. Daniel, “Applied nonparametric statistics,” 1990.
[14] R. A. Rensink, “The nature of correlation perception in scatter-

plots,” Psychonomic Bulletin & Review, vol. 24, pp. 776–797, 2017.
[15] P. Schubert and M. Kirchner, “Ellipse area calculations and their

applicability in posturography,” Gait & Posture, vol. 39, no. 1, pp.
518–522, 2014.

[16] L. Wilkinson, A. Anand, and R. Grossman, “Graph-theoretic
scagnostics,” in Proceedings of the Proceedings of the 2005 IEEE
Symposium on Information Visualization. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 157–164.
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