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Abstract—User interactions with visualization systems have been shown to encode a great deal of information about the users’ thinking
process, and analyzing their interaction trails can teach us more about the users, their approach, and how they arrived at insights. This deeper
understanding is critical to improving their experience and outcomes, and there are tools available to visualize logs of interactions. It can be
difficult to determine the structurally interesting parts of interaction data, though, like what set of button clicks constitutes an action that matters.
In the case of visual analytics systems that use machine learning models, there is a convenient marker of when the user has significantly
altered the state of the system via interaction: when the model is updated based on new information. We present a method for numerical
analytic provenance using a series of numerical representations of the changing state of a system. Leveraging this numerical representation,
we apply high-dimensional visualization to show and compare user trails through the space of possible states (i.e. models). We evaluate this
approach with a prototype tool, ModelSpace, applied to two case studies on experimental data from model-steering visual analytics tools.
ModelSpace reveals the users’ individual progress, the relationships between their paths, and the characteristics of certain regions of the
space of possible models.

Index Terms—Numerical analytic provenance; visual analytics; analytic provenance; interaction history; user interaction; visualization;
machine learning; evaluation

1 Introduction

Visual analytics facilitates discovery and analytical reasoning via the
combination of data analytic models and interactive visualizations [41].
Because such systems provide tight connections between the user, the
visual interface and the underlying analytics, the user’s interactions
within visual analytics systems have been found to contain a great deal
of information about the users’ thinking processes, their approaches,
and how they arrive at insights [16]. The design of automated and
semi-automated methods for recovering such information by analyzing
the user’s interaction history and analysis trails – commonly referred to
analytic provenance – has become an increasingly important research
topic in the visualization community due to its importance in training

and verification, and to its role in the development of mixed-initiative
systems [36, 37].

However, many existing tools in analytic provenance only go so far
as to show a record of the user’s interactions (e.g., [38, 25, 22, 28]).
They seldom contain methods of visualizing the intermediate software
states or data models typically generated behind-the-scenes by visual
analytics systems. For visual analytics, this often entails the sequence
of different parameters assigned to the analytic models to show specific
aspects of the data to foster exploration and analysis. In addition, they
rarely communicate the logical link between the interactions and the
resulting models. Many methods of understanding a user’s analytic
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provenance typically involve a tedious manual reading of the logs as in
Dou et al. [16], or building a system that codes its own interactions into
a taxonomy so manual review is more convenient [21, 25]. Generally,
the effort required to synthesize and analyze these logs is a bottleneck to
studying analytic provenance. More recently there are visual analytics
sytems that help to discover patterns within logs by enabling grouping
or searching of user actions [23, 1, 12].

In this paper we propose an alternate, visual approach to analytic
provenance that is designed for the growing number of systems using
machine learning (though may be flexible enough to be used on many
other types), but automatic enough not to require manually reading
full logs. We create a mathematical representation of users’ progress
in using software, introducing numerical analytic provenance. By
creating a vector space to represent software states (possibly extracted
from logs), we can visualize users’ process of using an analytic tool.
Each software state corresponds to some view of the data delivered to
the user in response to some input or controls. Conveniently, systems
that leverage machine learning build models as users interact and those
can easily be converted to vectors. Therefore, visualizing sequences of
these models means seeing the progress of users through their analytic
process. By gathering these and creating a vector representation, we
can visualize the user’s progress through the space of possible states,
i.e. the provenance of their analysis.

We have implemented the numerical analytic provenance approach
in a prototype tool called ModelSpace. This tool visualizes the analytic
trail of a user by creating a spatial layout of the visual system states,
using their vector form. A given user’s trail is connected with a line
and color-coded, providing a connected scatterplot [24], where the
points represent states and the lines connecting the points represent
the transitions between the states. The layout is also similar to Time
Curves [2] because we have a sequence of vectors connected to show
progress through time.

With such a compact representation, ModelSpace can visualize mul-
tiple users’ analysis trails, or multiple analysis trails of the same user
in the same canvas. In this way, we visualize how users incrementally
interact with and change the analytic models in visual analytics systems.
Further, the model spatialization provides a baseline structure that we
annotate with data about interactions between state changes. In this
view, analysis trails can be quickly compared and analyzed. For exam-
ple, when two trails include adjacent states, it may signify that these
two investigations came to similar inquiries, reflected by the similar
models the users were considering. ModelSpace provides features to
deepen the exploration, like the ability to highlight visual elements with
a keyword search over the interaction details.

We tested our prototype on data collected from experiments with two
visual analytics systems: (1) Dis-Function [8], an interactive tool for
learning models about high-dimensional numerical data by simply per-
forming iterative tweaks to a data visualization, and (2) Doc-Function
[7], a tool that allows sense-making of text corpora through manipula-
tion of keyword spatializations based on their perception of keyword
relationships. The authors of those works provided the interaction logs
and other data collected during the evaluation experiments of those
software prototypes. Our ModelSpace implementation parses the logs
(with a custom function per application), extracts the states, and pro-
vides an interactive visualization that makes it possible to explore a
wide collection of facets of the participants’ analytic provenance and
develop insights into how different users explored the data.

While, we performed our experiments on two visual analytics sys-
tems with machine learning back-ends that lent their internal state well
to numerical analytic provenance, we posit that the use of ModelSpace
can be extended to other, non-visual-analytics platforms. Recommender
systems, for example, are not analytics systems, but export models at
each step of user interaction that could be visualized and compared
with numerical analytic provenance. In the Discussion, we explore an
application to a system that uses a visual interface but has no back-
end machine learning model. We also discuss the limitations of our
approach and current prototype, and describe areas for future improve-
ment. Overall, our contributions in this work are that we:

• Present the concept of numerical analytic provenance, a novel ap-

proach to studying analytic provenance in visual analytic systems
by visualizing the changes to their state as users interact via the
proxy of changes to their underlying machine learning models.

• Provide a prototype tool to illustrate this concept that extracts
models from user study software logs and creates an interactive
spatialization with features to explore the analytic trails of users
in detail.

• Evaluate our tool and this concept with two case studies on visual
analytics systems.

2 RelatedWork

Analytic provenance in the visual analytics community broadly includes
consideration for the history of how an analyst progressed through the
various stages of his or her analytic process [35, 37, 20, 15, 36, 45]. Be-
cause visual analytics leverages human reasoning with a computational
system, understanding how users build knowledge and insight can have
implications for evaluating tools, as well as identifying ways to en-
hance collaboration between the user and the computer [36]. There are
multiple stages to effectively analyzing user interaction histories to gain
such an understanding about the user, including the most applicable
to this work: encoding the interaction data and recovering semantic
meaning behind the user’s actions [35, 18].

The field of analytic provenance offers many examples of how to
capture and encode this type of data [3, 13, 16, 21, 25, 31, 38]. One
problem is that the desired level of granularity for understanding users’
provenance is vastly different from the level at which standard computer
software directly represents and logs interaction [21]. On one end, we
seek to find patterns in semantic intentions of users, e.g. instances
where two people may have a differently expressed high-level intention
or strategy. On the other end, we have a wealth of recorded low-level
system events like mouse movements and clicks.

One method to get semantic details from low level information is
to carefully code the interaction data by hand [38]. In fact, it has been
shown that process and strategy can be recovered this way [16], but the
process is tedious and slow. Another solution is to build software with
an organization scheme for interactions in mind. Systems taking this
approach can provide powerful tools for users to examine their own
analytic provenance trail in real time, and even organize it into useful,
human-readable categories. Examples include VisTrails, HARVEST,
CzSaw, and Graphical Histories [3, 11, 21, 30, 25], which capture
sequences of states and visualize them for the user to use for navigation
through the analytic process. For example, showing users a series of
thumbnails of previous visualization states helps them recall aspects
of their process and return to a previous state quickly if they decide to
go back [25]. An additional layer of complexity can be added to show
branching [39, 17]. However, the concepts in these works are built to
work with specific software and while the concepts may generalize,
the automation does not. There are a number of survey papers that
provide a deeper set of examples from the broad spectrum of work in
analytic provenance research (see [20, 14, 37]), but the central problem
of gaining deep insight from low-level interactions remains a theme.

Recently, there are visual analytics tools to help with generic log
data. Han et al. [23] process logs and present the user with an inter-
face for organizing low-level tasks and building up higer-level ones.
Zgraggen et al. [1] present a visual query language that can work over
event sequences captured from logs to give a user the search capability
empowered by regular expressions in text data. Chen et al. [12] provide
a visual analytics system for sequence data that includes the use of the
minimum description length (MDL) principle to help group interaction
patterns automatically.

In this paper, we take a different approach to managing this chal-
lenge. We focus on the case where there is a software state that encodes
the semantics of the user’s sensemaking, and the state can be converted
into a high-dimensional vector without direct human involvement per
state. We call this approach Numerical Analytic Provenance and detail
it in Section 3. Specifically, it is intended for the case when the system
being studied uses machine learning as part of an interactive system,
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and the changing, underlying machine learning models can be repre-
sented as a vector. The idea behind a numerical representation of the
state of a visualization system was previously suggested by van Wijk
[44] and adopted as the basis of the P-Set model by Jankun-Kelly et
al. [27]. Our use of numeric analytic provenance extends these works
and demonstrates how such an encoding can be applied to the visual-
ization and analysis of users’ interaction trails with visual analytics
systems. The main savings is that the vectors can be created as the
software runs or by processing log files with scripts as opposed to by
hand.

To gain insight from this mathematical representation, we use visual-
ization for the high-dimensional space, projecting the state vectors into
a 2D space as dots (e.g. using Multidimensional Scaling (MDS) [32]).
These dots are connected by lines to show sequences, as in connected
scatterplots [24]. By using this compact representation, we have room
to connect additional interaction information, e.g. annotating with what
a user did that caused her to land at a given state. Our visualization is
also similar to Time Curves [2] and the Dynamic Network approach
[42]. By using computational models as software states and encod-
ing them as vectors, we position them in space and show progression
through that space over time with lines.

3 Numerical Analytic Provenance

There have been multiple approaches to analytic provenance, but one
critical problem is that in seeking to understand how people use soft-
ware, it becomes necessary to follow their trail through a wide array of
possible interactions. With increasingly complex software, the task of
capturing and analyzing exactly what a user has done in a way that can
be efficiently understood is still a challenge. Previous work in analytic
provenance has involved numerous methods for capturing the broad
spectrum of interactions and a variety of encodings [31, 3, 16, 21, 38] to
make it possible to analyze these interaction streams. While some work
has sought to automatically encode and analyze interaction streams,
most of the efforts have involved coding by hand for different types
of interaction [16, 21]. A methods of automatically encoding and ana-
lyzing user interactions was proposed in Brown et al.’s work to learn
models about users based on their interaction data [9], but the technique
compares models of users, not their analytic provenance.

3.1 Vector Space of Models

Instead of manually coding user interactions into a human-readable
format before beginning to build an understanding, we propose auto-
matically encoding a numerical representation of changes to the internal
state that the analytic software undergoes during the analysis process.
We refer to this concept as numerical analytic provenance, and the
encoded states as the state models. Deciding how to encode the state in
a general way is an open problem as a solution would require solving
the same problems that are left unsolved by other provenance systems,
namely automatically extracting meaningful tasks and actions from
low-level event data. We focus on systems that use machine learning
back-ends to aid the analytic process and when possible, simply use the
vector representation of the machine learning model as a state. We as-
sume the interaction that causes the model to be updated is a significant
action and the model update a significant change to the display, making
these events good pivots for a visualization of the user’s process. These
states are also straightforward to extract from a log if they have been
included, in contrast to actual user intent or high-level action. The
technique presented in this paper visualizes the model sequences in the
space of possible models by creating a visual layout such that more
similar models are drawn nearer to each other. Because our representa-
tion consists of vectors, we can use high-dimensional data visualization
techniques to calculate a projection, and the resulting visualization
shows the interactions performed by different users in context of each
other and in context of the broad spectrum of possible software states.

Figure 2 illustrates the concept of projecting three users’ analytic
trails from their high-dimensional vector representation down to a 2D
visualization. Using this projection approach, it becomes immediately
apparent when users’ paths become close to each other, and when
similar models pack together indicating an interesting region of the

Θ�1
0

Θ�3
0

Θ�2
0

Θ�3
3

Θ�3
2

Θ�3
1

Θ�3
4

Θ�2
1

Θ�2
2

Θ�2
3

Θ�2
4

Θ�1
1
Θ�1
2

Θ�1
3

Θ�1
4

Fig. 2: This figure illustrates how the series of models created by a
user’s interaction trail can be represented by vectors and thus visualized
for examination. Each dot represents a state model vector Θt

u that
specifies the internal state of a system for one user, u, at one timestep, t.

overall state space. Further, this technique becomes more illuminating
when we use the layout of the state models as a canvas to decorate with
a wide array of other information. We provide context to the provenance
by connecting the dots with lines that represent all the interactions that
led to a state change, i.e. creating a connected scatterplot. Annotating
the lines with these data integrates the interactions and their effects in
one view.

Applying this technique for visualizing multiple users’ numerical
analytic provenance has a wide range of uses. By visualizing all the
users’ interaction histories together, we can compare their analytic
processes to build an understanding of how and when they differ. For
researchers or developers conducting experiments to evaluate analytic
systems, this makes it possible to explore the trails of individual users
and the relationships between their analytic processes. The analysis
can reveal if there are areas of the model space that users always
retreat from, or if different types of users pursue broadly different
trajectories. For managers of multiple analysts, this not only allows
oversight of progress, but has the potential to mitigate bias by alerting
the manager when analysts are converging on one area of the model
space. Additionally, if deployed as a provenance tool as part of a single
user’s interface (e.g. as in [11, 21, 25]), this technique could help the
user understand not just what states she or he has seen, but also how
they relate to each other.

3.2 Example Model States of Visual Analytic Systems

While any visualization can be represented by its internal state [44]
to apply our proposed numeric analytic provenance approach, the use
of a high-dimensional numeric vector to represent the state can have
special implications for visual analytics systems. These systems often
incorporate machine learning techniques or other data models to assist
the user in exploring and analyzing data. Since machine learning and
data models are mathematical in nature, they can often trivially be
compactly represented as a high dimensional vector that can be used to
represent the state of a user’s analysis or exploration.

One type of visual analytics system that tightly couples a user’s
interactions with an underlying data model is model-steering visual
analytics. These analytic systems capture user interactions with a data
visualization and build a data model that encapsulates the changing
data understanding of the user [18] . For example, ForceSPIRE [19]
is an interactive visual tool for text analytics. The user is provided a
visual layout of a set of documents and interacts with them via search,
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moving documents relative to each other, and highlighting text. Based
on these interactions, the system learns a model that characterizes the
relative importance of the different words that appear in the documents.
Each model update triggers a layout update and users iteratively refine
the model through several interactive steps, leaving behind a trail of
models about the words in the text corpus.

Conveniently, these models can also be considered state models,
as they include the software state important to generating the visual-
ization. By applying the numerical analytic provenance concept, we
can visualize the relationships between the different data models the
user constructed, each one showing the actual data features that were
important to the user at the given time. We can annotate lines connect-
ing these models with all the interactions between updates, indicating
perhaps what documents were read and what words were highlighted.
The process of exploring the analytic provenance is simplified, and the
possibilities for discovery are broadened.

4 ModelSpace

In order to evaluate the numerical analytic provenance concept expli-
cated by the previous section, we built a prototype interactive visual
system, ModelSpace (see Figure 3), that enables analysis of user trails
through the space of possible state models. In the following subsections,
we describe the implementation and features of this prototype, begin-
ning with the data required as input. We then describe the mechanism
for computing a layout and the interactive tools that make analysis
possible.

The ModelSpace prototype interface has been implemented for the
web, using JavaScript with D3 [4], HTML, and CSS. The back-end
software is responsible for processing log files, computing the pro-
jection, and serving the front-end with code and display data. It is
implemented in Python 2.7 and uses the popular Numerical Python
[43] and Scikit-Learn [10] packages for computation, and the Bottle
[26] microframework for serving files.

4.1 Data for ModelSpace

Though the concept of numerical analytic provenance could be applied
to a streaming context, with models updating the interface as they
became available, our prototype is built to extract user interactions
and model states from logs. For any given application, a function is
needed that processes the logs to gather models and any accompanying
information about user interactions between them. This can involve
merging multiple records, e.g. log files from the software itself and
digitized notes from an experimenter (as in the Doc-Function case
study presented in a later section). The only absolute requirement is
that the extracted models can each be represented as as vector, whether
explicitly exported or constructed from the logs.

Both of our case studies produce internal models based on certain
interactions, so our log processing simply extracts the times at which a
model update was performed and captures the user input that caused
the update and resulting model. The models created by these steps
are represented by dots in the visualization in ModelSpace. The logs
can include other actions performed between model updates, such as
searching for words in documents in a text-analysis system. These
non-model-generating interactions are all captured as they will be used
in ModelSpace to annotate the lines that connect the dots, representing
the actions taken between model updates.

When model changes can be reverted, i.e. with an undo feature, we
keep track not only of the model update but the fact that it represents a
reversion. The ability to backup in analysis is an effective tool for the
user to expresses intention, informing us that the last model we saw
could be a false step. ModelSpace represents this important contextual
information with a curved line pointing back to the preceding dot.

Finally, it should be noted that while parsing a log file is sufficient for
some applications, others will have more sophisticated data available
and a more complex function for integrating it. In the Doc-Function
case study below, for example, there were not only logs from the
software itself, but notes from the experiment administrator about when
each participant described certain insights. Information like this can be
digitized with timestamps and merged at the time the logs are processed

so that the visualization can reflect observations of participants along
with the state models.

Overall, the prototype is designed to demonstrate the numerical
analytic provenance concept specifically with two examples. While
we made choices specific to those examples, we also sought to keep
the visual representations and tools generic enough that they could be
adapted to a wide range of data.

4.2 Calculating the Layout

When state models come to ModelSpace, they are vectors, generally
in a high dimensional space that reflects the complexity of the analytic
software. In order to visualize these high-dimensional states, we create
a spatialization of these vectors that can be viewed in two dimensions.
Since the desired view groups the states together based on their simi-
larity, we use a Multidimensional Scaling (MDS), which is a type of
projection of points into low-dimensional space (two-dimensions for
our visual purpose) that optimizes for preserving the pairwise distances
between points across the high- and low-dimensional spaces. This
implies two useful features of the spatialization: first, similar models
will be shown as dots that are close to each other, resulting in groups
of similar models, and second, regions of the space of models will be
reflected as regions in the projection. Other projections can achieve
this result as well, but we chose MDS using Euclidean distance calcu-
lations because in comparison to other projections such as principal
component analysis (PCA) [29] and t-distributed Stochastic Neighbor
Embedding (t-SNE) [34] or alternative parameters to MDS, we found
the results easiest to read. Note that any dimension reduction technique
produces projection errors because generally high dimensional spaces
inherently include information that cannot be represented with fewer
dimensions. There are techniques to interpret errors (e.g., [6, 40]).
Incorporating these techniques is out of the scope of this paper but will
be an important future work for this project.

Calculating a spatialization of the states means that we can draw a
scatterplot with a dot for each state, in which the more similar states are
shown closer together. To show connections between states, i.e. those
that occured in sequence in sequence for a single user, we connect the
dots with lines. This results in a connected scatterplot. ModelSpace
is flexible enough to incorporate other techniques of generating a con-
nected scatterplot as long as the points in the plot represent the states
of the system and states are connected based on the order in which the
states were created. As described below, additional information can be
added to this baseline visualization by mapping interaction data to lines
and dots.

4.3 ModelSpace Prototype Features

Figure 3 shows ModelSpace, the interactive visualization we created
for visualizing the type of numerical provenance data described in the
section describing our approach, Numerical Analytic Provenance. We
have designed the ModelSpace prototype to make possible an extensive
analysis of interaction history data with a straightforward but powerful
selection of tools. In the figure, the dots represent state models achieved
by some participant at some point in the analysis task. The lines connect
the models and represent order of the of the model updates. The arrows
on the lines indicate the direction of progress from one state to the
next. All the participants start with the same unweighted model in
the example shown, so all the user lines begin at the same point. The
layout of the models makes a clear comparison between the trails of
different users and different user groups possible, but to find patterns in
the models and interactions, some additional features are provided.

First, we make the rich interaction data available as annotations to
the dots and lines, visible when the mouse cursor is over the element.
In Figure 7, the orange rectangle is the mouse-over text for one dot,
displaying the top ten most significant keywords that correspond to that
model. In addition, the layout view supports panning and zooming.
With a state model that includes human-readable features, as in the case
of a model-steering system where the model features are dimensions of
the original data, this provides insight into what was emphasized to the
user at the point in their analysis corresponding to the model. When
applicable, other information can be included here. For example, in one
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Fig. 3: ModelSpace, our prototype system for analyzing interaction trails. In this image we see a layout of all the models that have been created
during the experiment described in the Dis-Function case study. Each model is represented by a dot, and we connect the dots for each user,
representing the time between changes to the model. In this image, the width of the lines are varied by the number of points moved during the
corresponding interaction and the dots are shaded by the accuracy values of the models. The legend in the bottom right of the visualization
shows the move count and accuracy scores to which the line width and dot shadings respectively are mapped. In addition, three selected dots are
highlighted in blue by a feature showing on the left panel which data features they have in common. The top five features of these models are also
displayed in the two Info Boxes on the right.

of our case studies, the experiment used data with known ground-truth,
so the accuracy of the user model relative to the ground truth can be
shown here to show how similar this user’s provenance had progressed
toward some possible notion of optimum.

To make comparison between different users and user groups pos-
sible, there is a User Selection Panel [A] at the bottom of the screen.
The check boxes enable the users lines and dots in the view, and the
group selection boxes at the top of the panel toggle the entire group as
a whole. These groups could be used to group the users by any helpful
categories. The view can be further customized with the Display Op-
tions Panel [B]. First, the same user groups can be used to color the
lines and dots with the Color by Group option, making comparison of
group behavior much simpler. To simplify the view, dots or lines can
be removed altogether if only one is needed. For example, in studying
regions of the space by what the models have in common, the lines may
be a distraction. This menu also controls mappings of data features to
the display. Depending on the data available for the specific application,
ModelSpace can map size and gray-scale shade of the dots and lines
to data. For example, in Figure 3, the dots are shaded to the accuracy
of the corresponding model. A legend is automatically added to the
bottom to show the upper and lower bounds of the data mapping for
whichever options are active.

When exploring the data, users will look at the information available
as mouseover text for numerous models and lines. The mouseover
modality alone makes it difficult to compare information. There are
two Info Boxes [C] along the right side that persist the information
associated with last two visual elements (dots or lines) to be clicked.
The Clear Info Boxes button empties both boxes. When trying to com-
pare the contents of multiple elements, seeing two alongside each other
could be insufficient. The Shared Keywords [D] feature automatically
detects what features different models have in common. The user can
click on multiple dots, which are then colored blue to show they are
being included in this comparison. The shared keywords box shows the
keywords that the annotations for the selected dots have in common.

For a model-steering system, i.e. in our case studies, the annotations
of a dot include the names of the most important dimensions of the
original data at that time. Therefore the shared keyword list shows the
salient features of the data that are emphasized across the selected set
of models. This feature can be used, for example, to discover what
makes models that are shown close together actually similar to each
other. Another usage would be to see what shared features were being
shown to users at diverging points in their analysis.

Finally, there is a search feature, exercised by the Color by Search
[E] box on the left side. The search accepts a string and highlights
dots and lines that fulfill the query until Dismiss is clicked. This can
be used to help find regions of interest or to look for elements that
correspond to known entities in the analysis, as in Figure 8(c). For dots,
this means highlighting models where the keyword was an important
feature. Lines will be highlighted when the corresponding interaction
sequences involved the search terms. For example, the user might
have been reading lots of documents related to a certain word before
updating the system about its importance. Searching for that word
would show other times when users read such documents and when it
was important to other models.

5 Case Studies

In this section, we demonstrate the capability of ModelSpace by using
it to examine users’ analytic trails from two different case studies.
In both cases, the participants used a model-steering visual analytics
system whose states can be easily converted to the high-dimensional
vector representation used by the proposed ModelSpace approach. In
these applications, as a user interacts with the system, the interactions
are used by a machine-learning back-end to learn a new data model,
which then updates the view so the user can iteratively improve it.
These human-in-the-loop analytics systems are the most straightforward
application of ModelSpace, because the user’s interaction to create
a new model represents a important point in the analytics, and that
model’s vector representation already exists.
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(a) (b) (c)

Fig. 4: Views demonstrating features of the ModelSpace for Dis-Function. In (a), the dots are shaded by the accuracies of the models to which
they correspond (higher accuracies are darker). The area marked by the ellipse contains the higher-accuracy models. In (b), the lines are colored
according to group membership, and their widths encode the number of points involved in the corresponding model update. In (c), the dots
representing models that emphasize noise features are colored black. The rest of the dots are colored based on the users to whom they correspond.

Fig. 5: The Dis-Function prototype. The user interacts directly with
the visualization in (A) by moving the datapoints based on domain-
knowledge. The options in (B) allow the user to undo a move and
recalculate the layout after interaction. Based on how the points are
moved, the underlying metric is updated, and through (C) and (D) the
user is able to visualize the impact of the metric to the data. (E) displays
the original data with the selected datapoint highlighted.

We cover each case study separately, first briefly describing the
application and the experiment from which the data are collected, then
explaining the mapping to ModelSpace and the application-specific
features added. Finally, we discuss the insights gained by applying this
technique.

5.1 Dis-Function

Dis-Function (Figure 5) is a prototype system that allows users to lever-
age their knowledge about data to build a machine learning model
without having to understand the underlying algorithm. In this system,
a user interacts directly with a visual representation of the data, specif-
ically a two-dimensional layout of high-dimensional data.The layout
is directly dependent on the model, so by providing feedback on the
layout, the user (a data domain expert) causes the machine learning
algorithm to update the model so that it is more consistent with the
user’s expectation. The newly regenerated model is used to create a new
layout and the process can continue, iteratively improving the model,
until the user is satisfied [8]. The model being learned at each step is a
vector of weights, one for each data feature, and thus can be directly

used in ModelSpace.

5.1.1 The Experiment

For this case study we used the experimental data from the authors
of Dis-Function. Their participants include ten university engineering
students (6 male, 4 female) at varying degree levels of study – five
undergrads, one masters, and four Ph.D.s1 The participants applied Dis-
Function’s model-steering technology to the Wine dataset from the UCI
Machine Learning Repository [33]. These data have 178 instances, each
representing one individual wine, and there are thirteen features, each
representing a chemical component. The authors augmented the dataset
with ten synthetic noise features (generated uniformly at random).
Since the participants were not experts in the chemical composition of
wine, Brown et al. provided them with labels that classified each data
point as a certain type of wine by coloring the points in the display.
The task, then, was to use Dis-Function by providing feedback to make
the visualization more closely group the points with the same label,
removing the influence of the noise.

5.1.2 The ModelSpace

As the experiment participants interacted with the system, Dis-Function
logged all the interactions that produced model updates, and the updated
models. These data were straightforward to extract and comprise a
convenient set of state models for our application of ModelSpace. As
seen in the bottom of Figure 3, each user’s trail is represented by
a different color. All the users start with the same initial model in
the experiment, and thus all the user lines begin at the same place in
ModelSpace.

Because the experiment with Dis-Function uses labeled data, we can
actually calculate for each model produced by each user at each step,
the accuracy of the model at predicting the given classes of the data. We
apply the k-nearest-neighbor algorithm with k = 3 to make predictions
with the Dis-Function models and use ten-fold cross validation to
calculate accuracy scores. These accuracy scores are visible when
the mouse cursor is over a dot, along with the names of the variables
that had the highest contribution to the model at that point. When the
mouse cursor is on top of a line, an annotation reveals which data points
the user manipulated to cause the model update that happened during
the period that the line represents. The same information used in the
mouseover annotations can also be mapped to the color and size of the
dots and lines, i.e. dots can be shaded or sized to reflect the accuracy of
the corresponding model, and lines can be shaded or sized to reflect the
number of manipulated data points.

1The user IDs shown in ModelSpace end at 11 but skip 3 due to one planned
participant who was unable to participate.
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5.1.3 Results

By exploring the ModelSpace generated for Dis-Function and interact-
ing with its various features, we were able to capture some interesting
trends. There is a clear indication that the higher accuracies are focused
in one area of the visualization as seen in Figure 4(a), where the dots
have been colored based on the model accuracy. The black ellipse
shows the region with the strongest models. All the participants moved
in directions of higher accuracy, but for some (labeled Users 5, 10, 11),
the final model is not the most accurate one in the interaction trail. This
can be seen in Figure 3 in which the dots are shaded with the accuracy
values of the corresponding models. Following these users’ lines from
start to finish shows this non-monotonic progression. This outcome is
not unexpected as the experiment participants were unable to see the
accuracy values as they interacted with Dis-Function.

Another pattern is clear in Figure 4(b), in which each line’s width
is mapped to the number of points manipulated during that interaction
period. Participants who travelled a shorter path overall, i.e., those who
use fewer iterations to reach the final model, move more points during
each iteration. Figure 4(b) also reveals another pattern with the point
manipulations. Almost all the users are manipulating an increasing
number of points as they are getting closer to the final model.

Applying the search feature, we can highlight all models that have
the word “noise” in the name of one of their most salient variables.
For these data, that variable name indicates one of the noise features
added for the experiment. Figure 4(c) shows that in fact these noise
features were diminished in importance after the first few interactions
with the Dis-Function system. This helps showcase the effectiveness of
Dis-Function at removing that artificial noise for its users.

Finally, we can investigate performance differences between groups
of users. The participant group can be used to color the dots and lines.
In Figure 4(b), we use this feature to see that the undergraduate and
Ph.D. students’ trails are moving mostly toward two separate directions.
This suggests that these two groups are taking different approaches to
interacting with Dis-Function.

Through these results we are able to gain a better understanding of
the participants in the Dis-Function experiment, and the behaviours
associated with different groups. ModelSpace also clearly underscores
that through interactions with Dis-Function, all the users were able
to improve their models to attain higher accuracies and reduce the
significance of the noise features. While this was known from the
publication about Dis-Function, the authors of that paper were not able
to do such in-depth analysis about the patterns of interactions that lead
to these results.

5.2 Doc-Function
Doc-Function [7] (Figure 6) is a visual analytic tool designed to en-
able sensemaking of text corpora through manipulation of a keyword
spatialization. The spatial layout of the keywords encodes the simi-
larity between keywords with respect to the documents in which they
co-occur. Doc-Function allows users to manipulate the spatialization of
keywords extracted from documents to perform model-steering without
having to understand how the new model is generated. Based on the
user’s evolving understanding and knowledge of the documents in the
corpus, the user can move the words relative to each other to reflect the
correct relationships and groupings. Making changes causes an update
to a model that reflects the relative importance of the documents in the
corpus, triggering creation of a new corresponding spatial layout. In
this way, Doc-Function is similar to Dis-Function, except it is designed
for text. There are a number of differences in the technology, but with
respect to ModelSpace, the main difference is that Doc-Function, taking
advantage of the properties of text data, supports a wider variety of
interactions and thus exports richer logs.

5.2.1 The Experiment

In order to visualize the numerical analytic provenance of the users of
this tool, we obtained data from an experiment that was run to evaluate
Doc-Function. The Doc-Function authors conducted an experiment
with 13 participants at a national laboratory (name withheld for anony-
mous review) from four different job categories: professional analysts

Fig. 6: The Doc-Function prototype. The user interacts with a projec-
tion of keywords (A) by moving them around into a spatialization that
better represents his understanding of the similarity between the words.
These interactions cause changes to a machine learning back-end. The
pop-up window (B) allows the user to search for a list of documents
that contain one or more words and right column (C) displays the docu-
ments that contain a particular word upon mouse-over. The buttons on
the top (D) allow the user to perform actions like undoing a move and
highlighting all the keywords that belong to a document. These features
assist the user make more informed movements of the keywords.

Fig. 7: ModelSpace of the Doc-Function. In this view, the widths
of the lines encode the time spent by the user during that interaction.
Additionally, two points have been selected (marked in blue) and their
shared keywords are displayed in the Shared Keywords box on the left
panel.
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(2), scientists and engineers (5), interns (5), and administrative staff
(1). The experiment used a data set designed for intelligence training.
The 49 documents of the corpus contain a fictitious terrorist threat that
each experiment participant was tasked to discover. Participants were
encouraged to discuss their process in this think-aloud study, and given
as much time as desired (typically just under an hour). Full details of
the study are available elsewhere [7].

5.2.2 The ModelSpace

Just as with Dis-Function, we constructed a ModelSpace for the Doc-
Function experiment by extracting the various data models about docu-
ments generated by the users with their interactions. Figure 7 shows
the ModelSpace built for Doc-Function. The dots represent the models
and the lines are annotated with information about the interactions that
resulted in the models. All these elements are colored by default to
show which user they represent.

The Doc-Function system has a richer interaction set than Dis-
Function, and the logs reflect this diversity. The data include records of
viewing documents, using the text search feature, performing model
updates, and using the undo and reset functions. We loaded these in-
teractions into ModelSpace as annotations to the lines and thus, rather
than showing only model updates, we are able to show all types of inter-
actions by participants that led them to model updates. In addition, we
took advantage of the detailed notes from the experiment administrator
by digitizing them to sets of observations with timestamps, and incor-
porating them into the annotations as well. The annotations include
not only what interactions the user performed, but a distilled version of
their think-aloud commentary about their insights and process.

Beyond annotating the visual elements with the collected data, we
enable the other features to use this information as well. The search
feature can be applied to both the set of salient data features associated
with the dots, and the full set of information annotating the lines, as in
Figure 8(a). The shade and thickness of the lines can also be mapped to
the number of documents read, the number of word searches made, time
spent during the interactions, and the number of words moved. This rich
set of available information is simple to incorporate in ModelSpace, and
makes it possible to explore the analytic provenance of the participants
in much deeper detail.

5.2.3 Results

Just as with Dis-Function, the ModelSpace of Doc-Function reveals a
number of interesting insights. By using the ModelSpace search feature
to highlight dots and lines that contained keywords, we saw that the
words such as “Aryan” were nearly ubiquitous across the models and
interactions (see Figure 8(a)). We examined the differences between our
participant groups, as seen in Figure 8(b), by mapping color to group
identity (rather than individual user). It becomes visually apparent
that the interns (colored in red) moved in a direction with their model
building that diverged from other participant groups. This figure also
shows that the interns stand out as using lower overall numbers of
searches. In fact, we can see by switching options in the left panel, that
interns moved fewer keywords in their model-updates, and read fewer
documents2.

Looking in more detail at how many documents the participants
read, we find that there is a trend of having higher read counts in
the beginning and lower read counts as the users approach their final
models. This can be seen in in Figure 8(c), where the lines are shaded
based on the read count. The starting lines for each participant appear
darker than the lines before the final model.

Through ModelSpace, we were able to gain some interesting insights
about the users’ behavior and their approach to the analysis task. This
would have been difficult to accomplish with manual inspection of logs
and interaction trails.

2We cannot guarantee the documents were read in full, but this indicates the
user was able to see their content.

6 Discussion

In the process of making and using the ModelSpace tool, we have
investigated several possibilities and revealed areas for future work
that we will discuss in this section. First, we discuss other uses for
ModelSpace beyond analysis of experimental data. Next we describe
application areas beyond model-steering analytics, including some
preliminary results with interaction data from a visual search task. We
then discuss the complexities of the step of projecting the set of models
in more detail. Finally, we discuss future directions and implications of
this work.

6.1 Uses of Numerical Analytic Provenance

ModelSpace can be used in other applications besides model-steering
visual analytics systems, because the requirement for the input is simply
that there be some software state that can be extracted and converted to a
vector. For people tasked with understanding how people use software,
this broad applicability is an exciting prospect because existing methods
for analyzing the results of experiments evaluating software can be
cumbersome. Aside from analyzing the results of experiments, this
technique could be more broadly applied to help users understand their
own analytic provenance. Similarly to the usefulness of undo history
in a web browser or more sophisticated analogs in previous analytics
research [21, 3, 25], this technology could be used to show users not
only their interaction history, but a visualization of their trails with
context and ability to move back and forth between their most useful
state models. Visualizing for the user the space of states created during
their work could be a transformational way to make this helpful general
mechanism stronger.

Even as the visualization of this space could be useful to individ-
ual users, it could also help managers overseeing multiple analysts.
Someone responsible for the efforts of a team trying to find a threat
in a massive corpus of text data could use a ModelSpace-like tool
to view the ongoing progress of analysts and make sure they were
covering different areas of the possible model space, helping to miti-
gate bias, which is a subtle and difficult problem facing such efforts
today. Another relevant domain from interactive machine learning is
recommender systems. When evaluating the quality of a recommender
system, researchers use statistical measures. But with a tool like Mod-
elSpace, it would be possible to gain a deeper understanding of how
different users implicitly and iteratively create models of what they like
through their ratings, comments, purchases, and other interactions.

6.2 Application Areas

Though the case studies were both performed with model-steering
visual analytics systems, we believe this technology lends itself to a
wider array of applications. As one test of alternative applications, we
applied ModelSpace to a collection of data from an experiment with
an image search task. The “Finding Waldo” study by Brown et al. [9]
included collecting data about how a set of participants found a drawing
of a certain person in a large hand-drawn image using a search tool that
provided basic navigation controls. In that work, the authors created
multiple encodings of interaction sequences collected from a study of
users performing the search task. They showed that the users could be
distinguished into groups by performance and other factors by applying
machine learning. We apply ModelSpace to the state space encoding
of that work, which characterizes a participant’s interactions up to time
t by the sum of all states of the software they have encountered by
that time. States in this case are the states of the visual search window
and thus encode the zoom level and where the user’s view is centered.
ModelSpace can use these state vectors directly, and we visualize the
projection in Figure 9. Because there is no contextual interaction
information available from this application, we include these results
only in the Discussion as a way of demonstrating the wider applicability
of the technique. In the figure, the groups of participants with the fastest
and slowest completion times are highlighted by color, and we can see
how different their trails are through the space of models at a glance.
The faster users have covered a broader area of the model space than
the slower users. Further, this application showcases a much larger
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(a) (b) (c)

Fig. 8: Views demonstrating various features of the ModelSpace for Doc-Function. In (a), some lines and dots are colored black to indicate the
corresponding interactions and models reference the word “Aryan”. In (b), the lines are colored by the user groups and the widths of the lines are
mapped to the number of searches made. Note that the “Interns”, colored in red, show an analysis trajectory that is distinctively different from the
others. In (c), the lines are shaded to reflect how many documents were read and the dots are colored for the individual users.

Fig. 9: ModelSpace of the directional vectors of users after interacting
with a state space system to locate the drawing of a certain person.
The blue lines represent the fast group of users and the yellow lines
represent the slow group of users.

sample of states, showing how the compactness of representation is
useful as experiment sizes grow.

6.3 Future Work

In this section we provide a number of suggestions to future users of
this technology. First, we believe it is possible that a projection method
outside the scope of this work could be a better fit to this type of data.
To our knowledge, there is no criteria for selecting a projection that
can automatically detect which will be the most useful for this type of
analysis, so a feature to let the user decide may be the best approach.

The current version of ModelSpace makes it possible to review a sig-
nificant amount of information, but statistical and model-building tools
within ModelSpace could take the analysis to the next level of detail.

For example, after discovering a pattern in the main visualization, e.g.
a connection between the number of interactions performed before gen-
erating a model and the model’s likelihood of including some particular
variable, there could be a feature to test the hypothesis by calculating
a correlation between those occurrences in the data. Perhaps, after
discovering interesting comparisons between two groups of models,
the user could indicate the groups, and the system would respond with
an automatic categorization of what model features differentiate them.
Finally, with analytics software getting increasingly complex, there
may be a need to examine more sophisticated types of models. For
example, a recent model-steering innovation [5] allows multiple models
to be considered at once. The ModelSpace concept could be extended
to accommodate these increasing complexities.

We believe this numerical form of analytic provenance opens up new
avenues for using visualization to explore users’ interaction patterns.
Unlike traditional visualizations of interaction logs, the use of Mod-
elSpace allows immediate comparison of the analysis trails between
multiple participants. A thorough examination of the benefits and limits
of this approach will require others to apply it to their own problems
and evaluate it for their purposes, and we look forward to seeing the
results of such applications.

7 Conclusion

In this paper, we have discussed a novel approach to analyzing user
interaction trails with interactive machine learning systems. Numerical
analytic provenance makes it possible to study analytic provenance by
constructing state models from the logs of interactive systems, particu-
larly when certain crucial interactions produce a new model. Vectors
representing models are shown in a layout that reflects their similarity,
creating a backdrop for an interactive visualization annotated with the
full spectrum of available interaction information. To showcase this
concept, we have provided an implementation, ModelSpace, with an
array of features for exploring analytic provenance in a visualization
of the state models. We applied ModelSpace to two case studies of
model-steering visual analytics systems using logs generated from their
original evaluation experiments. Additionally, we provided an example
application of ModelSpace to a non-visual analytic system, showing
how to apply the vectorization principle for interactions with an image
search tool. The case studies demonstrated the effectiveness and wide
applicability of ModelSpace and of numerical analytic provenance
concept by making it possible to explore the interaction data from
those experiments and reveal patterns that would have been difficult to
discover without such a tool.
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