Ablate, Variate, and Contemplate:
Visual Analytics for Discovering Neural Architectures
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Fig. 1: A screenshot of the REMAP system. In the Model Overview, section A, a visual overview of the set of sampled models is
shown. Darkness of circles encodes performance of the models, and radius encodes the number of parameters. In the Model Drawer,
section B, users can save models during their exploration for comparison or to return to later. In section C, four tabs help the user
explore the model space and generate new models. The Generate Models tab, currently selected, allows for users to create new

models via ablations, variations, or handcrafted templates.

Abstract— The performance of deep learning models is dependent on the precise configuration of many layers and parameters.
However, there are currently few systematic guidelines for how to configure a successful model. This means model builders often have
to experiment with different configurations by manually programming different architectures (which is tedious and time consuming) or
rely on purely automated approaches to generate and train the architectures (which is expensive). In this paper, we present Rapid
Exploration of Model Architectures and Parameters, or REMAP, a visual analytics tool that allows a model builder to discover a deep
learning model quickly via exploration and rapid experimentation of neural network architectures. In REMAP, the user explores the large
and complex parameter space for neural network architectures using a combination of global inspection and local experimentation.
Through a visual overview of a set of models, the user identifies interesting clusters of architectures. Based on their findings, the user
can run ablation and variation experiments to identify the effects of adding, removing, or replacing layers in a given architecture and
generate new models accordingly. They can also handcraft new models using a simple graphical interface. As a result, a model builder
can build deep learning models quickly, efficiently, and without manual programming. We inform the design of REMAP through a design
study with four deep learning model builders. Through a use case, we demonstrate that REMAP allows users to discover performant
neural network architectures efficiently using visual exploration and user-defined semi-automated searches through the model space.

Index Terms—visual analytics, neural networks, parameter space exploration
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Deep neural networks have been applied very successfully in recent
advances in computer vision, natural language processing, machine
translation and many other domains. However, in order to obtain
good performance, model developers must configure many layers and
parameters carefully. Issues with such manual configuration have been
raised as early as 1989, where Miller et al. [40] suggested automated
neural architecture search should be useful in enabling a wider audience
to use neural networks:

“Designing neural networks is hard for humans. Even




small networks can behave in ways that defy comprehen-
sion; large, multi-layer, nonlinear networks can be down-
right mystifying.” [40]

Thirty years later, the authors’ note is still a common refrain. While
research has continued in automated neural architecture search, much of
the progress in algorithms has focused on developing more performant
models using prohibitively expensive resources. For example, state of
the art algorithms in reinforcement learning taking 1800 GPU days [73]
and evolutionary algorithms taking 3150 GPU days [48] to discover
their reported architectures. Those users that have access to the type
of hardware necessary to use these algorithms likely would either have
the expertise needed to manually construct their own network or would
have access to a machine learning expert that would be able to do it for
them.

Likewise, a number of visual analytics tools have been released
that make neural networks more interpretable and customizable [18].
However, these tools presuppose that a sufficiently performant model
architecture has been chosen a priori without the aid of a visual ana-
Iytics tool. The initial choice of neural network architecture is still a
significant barrier to access that limits the usability of neural networks.
Tools are needed to provide a human-driven search for neural network
architectures to provide a data scientist with an initial performant model.
Once this model has been found, existing visual analytics tools could
be used to fine tune it, if needed.

In this work, we present REMAP, a tool for human-in-the-loop
neural architecture search. Compared to the manual discovery of neural
architectures (which is tedious and time consuming), REMAP allows a
model builder to discover a deep learning model quickly via exploration
and rapid experimentation. In contrast to fully automated algorithms
for architecture search (which are expensive and difficult to control),
REMAP uses a semi-automated approach where users have fine-grained
control over the types of models that are generated. This allows users to
trade off between the size of the model, the performance on individual
classes, and the overall performance of the resulting model.

Through a set of interviews with model builders, we establish a set
of tasks used in the manual discovery of neural network architectures.
After developing an initial version of REMAP, we held a validation
study with the same experts and incorporated their feedback into the
tool. In REMAP, users first explore an overview of a set of pre-trained
small models to find interesting clusters of models. Then, users guide
the discovery of new models via two operations on existing models:
ablations, in which a new model is generated by removing a single
layer of an existing model, and variations, in which several new models
are generated by random atomic changes of an existing model, such
as a reparameterization or the replacement of an existing layer. Users
can also manually construct or modify any architecture via a simple
drag-and-drop interface. By enabling global and local inspection of
networks and allowing for user-directed exploration of the model space,
REMAP supports model selection of neural network architectures for
data scientists.

The model space for neural networks poses unique challenges for
our tool. Whereas many of the parameter spaces explored in other types
of models have a set number of choices of parameters, the parame-
ter space for neural networks is potentially infinite - one can always
choose to add more layers to a network. In order to aid in the inter-
pretation of the model space, we propose 2-D projections based on
two different distance metrics for embedding neural networks based on
Lipton’s two forms of model interpretability, transparency and post-hoc
interpretability [34].

The second significant hurdle for a visual model selection over
neural networks is to find a visual encoding for neural networks that
enabled comparison of many networks while still conveying shape
and computation of those networks. In this work, we contribute a
novel visual encoding, called Sequential Neural Architecture Chips
(SNACs), which are a space-efficient, adaptable encoding for feed-
forward neural networks. SNACs can be incorporated into both visual
analytics systems and static documents such as academic papers and
industry white papers.

The workflow of our system largely follows the conceptual frame-
work for visual parameter space analysis from Sedlmair et. al. [S1]. A
starting set of models is initially sampled from the space in a prepro-
cessing stage, and projections of the models are calculated. Models
are then explored in three derived spaces: two MDS projections corre-
sponding to the two distance metrics as well as a third projection with
interpretable axes. The system then uses the global-to-local strategy of
navigating the parameter space, moving from an overview of models
to an inspection of individual models in neighborhoods in the derived
spaces. During exploration, users can instruct the system to spawn
additional models in the neighborhood of already-sampled models,
rendering more definition in their mental model of the parameter space
on the regions they are most interested in.

Overall, the contributions of this paper include:

* REMAP, a visual analytics system for semi-automated neural archi-
tecture search that is more efficient than existing manual or fully-
automated approaches

* A set of visual encodings and embedding techniques for visualiz-
ing and comparing a large number of sequential neural network
architectures

* A set of design goals derived from a design study with four model
builders

* A use case applying REMAP to discover convolutional neural net-
works for classification of sketches

2 MOTIVATION

A machine learning model is an algorithm that predicts a target label
from a set of predictor variables. These models learn how to make
their prediction by learning the relationships between the predictor
variables and target label on a training dataset. Machine learning
models typically train by iterating over the training set multiple times;
each iteration is called an epoch. In each epoch, the model makes
predictions and accrues loss when it makes poor predictions. It then
updates its learned parameters based on that loss. At each epoch, the
accuracy of the model on a held out portion of the dataset, called the
validation dataset, is calculated.

Neural networks are a class of machine learning models that are
inspired by the message passing mechanisms found between neurons in
brains. A neural network consists of an architecture and corresponding
parameters' chosen by the model builder for each component of that
architecture. The architecture defines the computational graph mapping
from input to output, e.g. how the input space, such as an image, is
transformed into the output space, such as a classification (the image
is a cat or a dog). In sequential neural networks, which have simple
computation graphs representable by linked lists, the nodes of the
computations graphs are called layers.

Choosing an architecture that performs well can be difficult [40].
Small changes in parameters chosen by model builders can result in
large changes in performance, and many configurations will result in
models that quickly plateau without gaining much predictive capacity
through training. In addition, training neural networks is very slow
relative to other machine learning methods. As a result, the process of
manually discovering a performant model can be frustrating and costly
in time and resources.

Automated algorithms for neural architecture search generate thou-
sands of architectures in order to find performant architectures [72]
and can require tens of thousands of GPU hours of training [48, 73].
The best discovered models might be too large for a model builder if
they aim to deploy their model on an edge device such as a tablet or
an internet of things device. Ideally, a model builder would be able to
handcraft each generated model and monitor its training to not waste
time and resources discovering models that were not useful. However,
handcrafting each model can be time consuming and repetitive.

!Parameters chosen by the model builder are sometimes called hyperparam-
eters to differentiate from the parameters of a model that are learned during
training. In this work, we call both of these terms parameters, but refer to the
latter as learned parameters for the sake of delineation.



In our tool, we seek a middle ground. We initially sample a small
set of architectures, and then use visualizations to facilitate exploration
of the model space. Model builders can find regions of the space that
produce models they are interested in, and then they can execute a
local, constrained, automated search near those models. As they get
closer to finding an acceptable model, they can explicitly handcraft
models through a graphical interface. Rather than training thousands
of architectures, the model builder trains orders of magnitude less, and
stops the architecture search when they have found an acceptable model.
Our semi-automated approach lets the user search for neural architec-
tures without the tedium of manually constructing each model and
without the resources and time required by fully-automated algorithms
for neural architecture search.

3 RELATED WORK
3.1 Neural Architecture Search

Algorithms for the automated discovery of neural network architectures
were proposed as early as the late 1980s using genetic algorithms [40].
Algorithm designers were concerned that neural networks were ex-
cessively hard to implement due to their large parameter space and
odd reaction to poor parameterizations. In recent years, interest in
neural networks has exploded as they have proven to be state of the
art algorithms for image classification [29], text classification [31],
video classification [25], image captioning [67], visual question an-
swering [39], and a host of other classic artificial intelligence problems.
An increased interest in automated neural architecture searches has
followed, resulting in a variety of algorithms using Bayesian optimiza-
tion [56], network morphisms [20], or reinforcement learning [4,72].
These algorithms typically define the architecture space so that it is
easily searchable by classical parameter space exploration techniques,
such as gradient-based optimization [24,35]. Elsken et al. provide
a summary of new research in algorithmic methods in a recent sur-
vey [12].

Such methods are driven by an attempt to compete with state of
the art performant architectures such as ResNet [17] or VGGNet [54]
that were carefully handcrafted based on years of incremental research
in the community. Because performance has been the primary moti-
vator, automated neural architecture search algorithm designers have
depended on expensive hardware setups using multiple expensive GPUs
and very long search and training times [35]. As a result, the use of
these algorithms is out of reach for many potential users without ex-
pensive hardware purchases or large outlays to cloud machine learning
services. In contrast, our tool is more accessible to data scientists be-
cause it drastically shrinks the search space by conducting user-defined
local, constrained searches in neighborhoods around models the user is
interested in.

3.2 Visualization for Neural Networks

Visualization has been used in both the machine learning literature
and the visual analytics literature for understanding and diagnosing
neural networks. In particular, attempts have been made to explain
the decision making process of trained networks. Saliency maps [53]
and gradient-based methods [52] were an early attempt to understand
which pixels were most salient to a network’s predictions in image
classification networks. However, recent work has shown that saliency
maps may be dependent only on inherent aspects of the image and
not the network’s decision making, calling into doubt some of the
truthfulness of such methods [2]. Methods also exist which inspect
the effect of individual layers on the decisions of the network [68, 69].
Lucid is a library built on the Tensorflow machine learning library for
generating various visualizations of networks [45].

Visual analytics tools extend these techniques by offering interactive
environments for users to explore their networks. Some tools allow
users to inspect how various components of a trained network con-
tribute to its predictions [21, 37, 58, 65, 66], while others allow the
user to build and train toy models to understand the influence of vari-
ous hyperparameter choices [23,55] Other tools focus on debugging
a network to determine which changes must be made to improve its
performance by viewing the activations, gradients, and failure cases

of the network [7,36,47,57]. Hohman et al. provide a comprehensive
overview of visual analytics for deep learning [18] .

All of these visual analytics tools presuppose that the user has se-
lected an architecture and wants to inspect, explain, or diagnose it. In
contrast, REMAP allows the user to discover a new architecture. A
user of REMAP might take the discovered architecture and then feed it
into a tool such as DeepEyes to more acutely fine tune it for maximal
performance [47].

3.3 Visual Analytics for Model Selection

Model selection is highly dependent on the needs of the user and the
deployment scenario of a model. Interactivity can be helpful in com-
paring multiple models and their predictions on a holdout set of data.
Zhang et. al. recently developed Manifold, a framework for interpret-
ing machine learning models that allowed for pairwise comparisons
of various models on the same validation data [70]. Miihlbacher and
Piringer support analyzing and comparing regression models based on
visualization of feature dependencies and model residuals [42]. Schnei-
der et al. demonstrate how the visual integration of the data and the
model space can help users select relevant classifiers to form an ensem-
ble [50]. Snowcat is a visual analytics tool that enables model selection
from a set of black box models returned from a automated machine
learning backend by visually comparing their predictions in the context
of the data source [6]. These methods all assume that the model is
being selected from a set of pretrained models, in contrast to our system
which can generate additional models based on user input.

3.4 Visual Analytics for autoML

Automated Machine Learning, or autoML, comprises a set of tech-
niques designed to automate the end-to-end process of ML. To ac-
complish this, autoML techniques automate a range of ML operations,
including but not limited to, data cleaning, data pre-processing, fea-
ture engineering, feature selection, algorithm selection and hyperpa-
rameter optimization [16]. Different autoML libraries such as Au-
toWeka [27,61], Hyperopt [5,26], and Google Cloud AutoML [33] are
in use either commercially or as open source tools.

Visual Analytics systems have been used to both provide an interface
to the autoML process as well as insert a human in the loop of various
parts of the process. TreePOD [41] helps users balance potentially
conflicting objectives such as accuracy and interpretability of automat-
ically generated decision tree models by facilitating comparison of
candidate tree models. Users can then spawn similar decision trees
by providing variation parameters, such as tree depth and rule inclu-
sion. BEAMES [11] allows users to search for regression models by
offering feedback on an initial set of models and their predictions on
a held out validation dataset. The system spawns new models based
on that feedback, and users iterate until they find a satisfactory model.
Various tools facilitate user control over the generation of models for
regression [42], clustering [8,30,43,49], classification [9, 64], dimen-
sion reduction [3, 10, 19, 38, 44]. REMAP differs from those tools
in that it explicitly uses properties of neural networks, such as the se-
quence of layers, in its visual encodings. Also, because neural networks
take much longer to train than decision trees, regression models, and
most models considered by previous visual analytics tools, REMAP
places more of an emphasis on only generating models that the user is
interested in.

4 DESIGN STUDY

In order to develop a set of task requirements, we interviewed a set of
model architects about their practices in manually searching for neural
network architectures. We also asked the experts what visualizations
might be helpful for non-experts in a human-in-the-loop system for
neural network architecture search.

Participants: To gather participants, we recruited individuals with
experience in designing deep neural network architectures. Four ex-
perienced model builders agreed to participate in the interview study.
Three of the participants are PhD students in machine learning, and the
fourth participant has a Masters degree in Computational Data Science
and works in industry. They had previously used neural networks for



medical image classification, image segmentation, natural language
processing, and graph inference. One participant contributed to an open
source automated neural architecture search library. All four partici-
pants were from different universities or companies and had no role in
this project. Participants were compensated with a twenty dollar gift
card.

Method: Interviews were held with each participant to establish a
set of tasks used to manually discover and tune neural networks. The
interviews were held one-on-one using an online conferencing software
with an author of this work and took one hour each. Audio was recorded
and transcribed with the participants’ consents so that quotes could be
taken.

Interviews were semi-structured, with each participant being asked
the same set of open-ended questions®. They were first asked to de-
scribe their work with neural networks, including what types of data
they had worked with. They were then asked about their typical work-
flow in choosing and fine tuning a model. Then, the benefits of human-
in-the-loop systems for neural network model selection were discussed.
Lastly, participants were prompted for what types of features might be
useful in a visual analytics system for selecting a neural network.

Findings: The findings from the interview study resulted in the
following set of design goals.

* Goal G1: Find Baseline Model: Three out of the four participants
noted that when they are building an architecture for a new dataset,
they start with a network that they know is performant. This network
might be from a previous work in the literature or it might be a
network they’ve used for a different dataset. This network typically
provides a baseline, upon which they then do fine tuning experiments:
“The first step is just use a structure proposed in the paper. Second
step I always do is to change hyperparameters. For example, I add
another layer or use different dropouts.” One participant noted that
they prioritize using a small model as a baseline because they are
more confident in the stability of small models, and it is easier to run
fine tuning experiments on small models because they train faster.

Goal G2: Generate Ablations and Variations: Three participants
noted that in order to drive their fine tuning, they typically do two
types of experiments on a performant network. First, they do ablation
studies, a technical term referring to a set of controlled experiments
in which one independent variable is turned off for each run of the
experiment. Based on the results of the ablation studies, they then
generate variations of the architecture by switching out or reparam-
eterizing layers that were shown to be less useful by the ablations.
Two participants noted that these studies can be onerous to run, since
they need to write code for each version of the architecture they try.

Goal G3: Explain/Understand Architectures: When asked about
the types of information to visualize for data scientists, two partici-
pants noted that users might be able to glean a better understanding
of how neural networks are constructed by viewing the generated
architectures. While it may be obvious to the study participants
that convolutional layers early in the network are good at extracting
features but less helpful in later layers, that understanding comes
from experience. By visually comparing models, non-experts might
come to similar conclusions. One participant pointed out that the
human-in-the-loop could interpret the resulting model more, helping
“two people, the person developing the results, and the person buying
the algorithm.”

Goal G4: Human-supplied Constrained Search: Participants
were asked what role a human-in-the-loop would have in select-
ing a neural network architecture, compared to a fully-automated
model search. All four participants noted that if the data is clean
and correctly labeled, and there are sufficient resources and time,
that a human-in-the-loop would not improve upon an automated
neural architecture search. But three participants noted that when
resources are limited, the human user can compensate by offering
constraints to an automated search, pointing an automated search to
particular parts of the model space that are more interesting to the

ZInterview questions are available as a supplemental document.

user. One participant noted that for fully-automated model search,
”some use reinforcement learning, [some] use Bayesian optimization.
The human can also be the controller”

From these findings, we distill the following tasks that our system
must support to enable data scientists to discover performant neural
network architectures.

e Task T1: Quickly search for baseline architectures through an
overview of models. Users must be able to start from an effective
baseline architecture [G1]. Experts typically refer to the literature
to find a starting architecture that has already been shown to work
on a similar problem, such as VGGNet [54] or ResNet [17]. These
models, however, have hundreds of millions of parameters and cannot
be easily and quickly experimented upon, so some other manner for
finding compact, easily trainable baseline models is needed. Users
should be able to find small, performant baseline models easily via
visual exploration.

* Task T2: Generate local, constrained searches in the neighbor-
hood of baseline models. Our tool needs to provide the ability to
explore and experiment on baseline models using ablations and vari-
ations [G2]. These experiments should help the user in identifying
superfluous layers in an architecture. The human user should be
able to provide simple constraints to the search for new architectures
[G4].

e Task T3: Visually compare subsets of models to understand
small, local differences in architecture. The tool should sup-
port visual comparisons of models to help the user understand what
components make a successful neural network architecture. This
helps the user interpret the discovered neural network models [G3]
while also informing the user’s strategies for generating variations
and exploring the model space [G4].

Beyond these three tasks, we also note that compared to many fully
automated neural architecture searches, we must be cognizant of lim-
itations on resources. Much of the neural network literature assumes
access to prohibitively expensive hardware and expects the user to wait
hours or days for a model to train. In our tool, we focus instead on
small models that are trainable on more typical hardware. While these
models may not be state of the art, they are accessible to a much wider
audience.

5 REMAP: RAPID EXPLORATION OF MODEL ARCHITEC-
TURES AND PARAMETERS

REMAP is a client-server application that enables users to interactively
explore and discover neural network architectures.> A screenshot of the
tool can be seen in Figure 1. The interface features three components:
a Model Overview represented by a scatter plot (Fig. 1A), a Model
Drawer for retaining a subset of interesting models during analysis
(Fig. 1B), and a data/model inspection panel (Fig. 1C).

All screenshots in this section use the CIFAR-10 dataset, a collection
of 50,000 training images and 10,000 testing images each labeled as
one of ten mutually exclusive classes [28]. Model training including
both preprocessing and in-situ model generation was done using a Dell
XPS 15 laptop with a 2.2ghz 17-8750 processor, 32 GB of RAM, and a
NVIDIA GeForce GTX 1050 Ti GPU with 4GB of VRAM.

5.1 General Workflow

The user workflow for REMAP is inspired by the common workflow
identified in the interview study and encompasses tasks T1, T2, and T3
as defined in section 4. First, they find a baseline model by visually
exploring a set of pre-trained models in the Model Overview [T1], seen
in Figure 1A. They select models of interest by clicking on their respec-
tive circles, placing them into the Model Drawer, seen in Figure 1B. By
mousing over models in the overview and scanning the Model Drawer,
users can visually compare models of interest [T2]. Then, they use the
ablation and variation tools [T3] to fine tune each model of interest,

3The source code for the tool along with installation instructions are publicly
available at https://github.com/dylancashman/remap_nas.
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Fig. 2: (a) The model inspection tab lets users see more granular information about a highlighted model. This includes a confusion matrix
showing which classes the model performs best on or misclassifies most frequently. Users can also view training curves to determine if an
architecture might be able to continue to improve if trained further. (b) By selecting individual classes from the validation data, users can update
the darkness of circles in the the Model Overview to see how all models perform on a given class.

as seen in Figure 1C. These tools spawn new models with slightly
modified architectures that train in the background, which in turn get
embedded in the Model Overview. Instructions for new models are sent
back to the server. The server maintains a queue of models to train and
communicates its status after each epoch of training.

Users iterate between exploring the model space to find interesting
baseline models and generating new architectures from those baseline
models. For the types of small models explored in this tool, training
can take 1-3 minutes for a single model. Users can view the current
training progress of child models in the Generate Models tab, or can
view the history of all training across all models in the Queue tab. In
the Queue tab, they can also reorder or cancel models if they don’t want
to wait for all spawned models to train.

If users are particularly interested in performance on certain classes
in the data, they can select a data class using the Data Selector seen
in Figure 2b to modify the Model Overview. Users can also see a
confusion matrix corresponding to each model in the Model Inspector
tab, seen in Figure 2a. By interacting with both the model space and the
data space, they are able to find models that match their understanding
of the data and the importance of particular classes.

5.2 Preprocessing

In order to provide a set of model baselines, REMAP must generate a set
of initial models. This set should be diverse in the model space, using
many different combinations of layers in order to hopefully cover the
space. That way, whether the user hopes to find a model that performs
well on a particular class or that has a particularly small number of
parameters, there will exist a reasonable starting point to their model
search.

REMAP generates this initial model space by using a random scheme
based on automated neural architecture searches in the literature [12].
A Markov Chain is defined which dictates the potential transition prob-
abilities from layer to layer in a newly sampled model. Starting from
an initial state, the first layer is sampled, then its hyperparameters are
sampled from a grid. Then, its succeeding layer is sampled based
on what valid transitions are available. Transition probabilities and
layer hyperparameters were chosen based on similar schemes in the
autoML literature [4], as well as conventional rules of thumb. For
example, convolutional layers should not follow dense layers because
the dense layers remove the locality that convolutional layers depend
on. In essence, REMAP uses a small portion of a random automated
neural architecture search to initialize the human-in-the-loop search.
For models in this section and in screenshots, 100 initial models were
generated and trained for 10 epochs each, taking approximately 4 hours.
While that is a nontrivial amount of required preprocessing time, it
compares favorably to the tens of thousands of GPU hours required

by a fully automated search [48, 73], which might sample over 10,000
models [72].

5.3 Model Overview

The top left of the interface features the Model Overview (Fig. 1A), a
scatter plot which visualizes three different 2D projections of the set of
models. The user is able to toggle between the different 2D projections.
The visual overview of the model space serves two purposes. First, it
can serve as the starting point for model search, where users can find
small, performant baseline models to further analyze and improve. The
default view plots models on interpretable axes of validation accuracy
vs. a log scale of the number of parameters, visible in Figure 1. Each
circle represents a trained neural network architecture. The darkness of
the circle encodes the accuracy of the architecture on a held out dataset,
with darker circles corresponding to better accuracy. The radius of
the circle encodes the log of the number of parameters. This means
that in the default projection, the validation accuracy and the number
of parameters are double encoded - this is based on the finding from
the interview study that finding a small, performant baseline model is
the first step in model selection. The lower right edge of the scatter
plot forms a Pareto front, where model builders can trade off between
performance of a model and its size, similar to the complexity vs.
accuracy plots found in Muhlbacher et al.’s TreePOD tool for decision
trees [41].

Once baseline models have been selected, the Model Overview can
also be used to facilitate comparisons with neighbors of the baseline.
Users are able to view details of neighboring architectures by hovering
over their corresponding points in the overview. By mousing around
a neighborhood of an interesting baseline model, they might be able
to see how small changes in architecture affect model performance.
However, it is well known that neural networks are notoriously fickle
to small changes in parameterization [40]. Two points close together in
that view could have wildly different architectures.

To address this, REMAP offers two additional projections based on
two distance metrics between neural networks. The two metrics are
based on the two types of model interpretability identified in Lipton’s
recent work [34]: structural and post-hoc. Their respective projections
are seen in Figure 4b, with the same model highlighted in orange in both
projections. 2-D Projections are generated from distance metrics using
scikit-learn’s implementation of Multidimensional Scaling [46].

Structural interpretability refers to the interpretability of how the
components of a model function. A distance metric based on struc-
tural interpretability would place models with similar computational
components, or layers, close to each other in the projection. We used
OTMANN distance, an Optimal Transport-based distance metric that
measures how difficult it is to transform one network into another, sim-



ilar to the Wasserstein distance between probability distributions [24].
The resulting projection is seen in section B of Figure 4b. Projecting
by this metric allows users to see how similar architectures can result
in large variances in validation accuracy and number of parameters.

Post-hoc interpretability refers to understanding a model based on
its predictions. A distance metric based on post-hoc interpretability
would place models close together in the projection if they have similar
predictions on a held-out test set. Ideally, this notion of similarity
should be more sophisticated than simply comparing their accuracy
on the entire test set — it should capture if they usually predict the
same even on examples that they classify incorrectly. We use the edit
distance between the two architectures’ predictions on the test set. The
resulting projection is seen in section C of Figure 4b. It can be used to
find alternative baseline architectures that have similar performance to
models of interest.

New models generated via ablations and variations are embedded in
the Model Overviews via an out-of-sample MDS algorithm [62]. Users
can view how spawned models differ from their parent models in the
different spaces and get a quick illustration of which qualities were
inherited by the parent model.

5.4 Ablations and Variations

DATA SELECTOR

MODEL INSPECTOR ~ GEMERATE MODELS QUEUE

~
v

DATA SELECTOR MODEL INSPECTOR ~ GENERATE MODELS QUEUE

GENERATE VARIATIONS

(b)

Fig. 3: Controls for creating (a) Ablations and (b) Variations. Users
toggle between the two types of model generation with a radio button.
Ablations create a set of models, one for each layer with that layer
removed, to communicate the importance of each layer. The Variations
feature runs constrained searches in the neighborhood of a selected
model. Users toggle which types of variations are allowed for each
layer, as well as the number of variations allowed per model

According to our expert interviews, an integral task in finding a
performant neural network architecture is to run various experiments
on slightly modified versions of a baseline architecture. One type of
modification that is done is an ablation study, in which the network is
retrained with each feature of interested turned off, one at a time. The
goal of ablations is to determine the effect of each feature of a network.
This might then drive certain features to be pruned, or for those features
to be duplicated.

In our system, users can automatically run ablation studies that
retrain a selected model without each of its layers. The system will
then train those models for the same number of epochs as the parent
model, and display to the user the change in validation accuracy. If
the user wants to make a more fine-grained comparison between the

models, the user can move the model resulting from an ablation into
the Model Drawer, and then use the Model Inspector to compare their
confusion matrices.

Using the Variations feature in REMAP, seen in Figure 3b, users
can sample new models that are similar to the baseline model. By
default, the variation command will randomly remove, add, replace,
or reparameterize layers. Users can constrain the random generation
of variations by specifying a subset of types of variations for a given
layer. For example, a user might not want to remove or replace a layer
that was very important according to the ablation studies, but could still
allow it to be reparameterized. Valid variation types are prepend with a
new layer, remove a layer, replace a layer, or reparameterize a layer.

When generating ablations and variations, the user is shown each
child model generated from the baseline model that is selected (Fig. 1C).
Changes that were made to generate that model are shown as well.
By viewing all children on the same table, the user may be able to
see the effect of certain types of changes; e.g. adding a dense layer
typically dramatically increases the number of parameters, while adding
a convolutional layer early sometimes increases the validation accuracy.
Spark lines communicate the loss curve of each child model as it trains.
Each child model is embedded into the Model Overview, and can be
moved to the Model Drawer to become a model baseline.

5.5 Sequential Neural Architecture Chips

We developed a visual encoding, SNAC (Sequential Neural Architec-
ture Chip), for displaying sequential neural network architectures. Seen
in Figure 4a, SNAC is designed to facilitate easy visual comparisons
across several architectures via juxtaposition in a tabular format. Popu-
lar visual encodings used in the machine learning [17,29, 32, 60, 69]
and visual analytics literature [22, 63, 66] take up too much space to
fit multiple networks on the same page. In addition, the layout of dif-
ferent computational components and the edges between them makes
comparison via juxtaposition difficult [15].

The primary visual encoding in a SNAC is the sequence of types
of layers. This is based on the assumption that the order of layers
is displayed in most other visualizations of networks. Layer type is
redundantly encoded with both color and symbol. Beyond the symbol,
some layers have extra decoration. Activation layers have glyphs for
three possible activation functions: hyperbolic tangent (tanh), rectified
linear unit (ReLU), and sigmoid. Dropout layers feature a dotted border
to signify that some activations are being dropped. The height of each
block corresponds to the data size on a bounded log scale, to indicate to
the user whether the layer is increasing or decreasing the dimensionality
of the activations flowing through it. SNACs are available as an open
source component for use in publications and visual analytics tools.*.

6 EXPERT VALIDATION STUDY

The initial version of REMAP was developed based on a design study
described in section 4. Two months later, a validation study was held
with the same four model builders that participated in the design study.
The goal of the validation study was to assess whether the features of
REMAP were appropriate and sufficient to enable a semi-automated
model search, and to determine if the system aligned with the mental
model of deep learning model builders. Users were asked to complete
two tasks using REMAP, and then provide feedback on how individual
features supported them in their tasks.

Participants: The same four individuals with experience in designing
deep neural network architectures that participated in the first study
agreed to participate in the validation study. Participants were compen-
sated with a forty dollar gift card.

Method: Interviews were again held one-on-one using an online con-
ferencing software and took approximately two hours each. Audio of
the conversation as well as screen sharing were recorded.

At the start of the study, participants were first given a short demo of
the system, with the interviewer sharing their screen and demonstrating
all of the features of REMAP. Then, participants were given access

4The open source implementation of SNACs can be viewed at http://www.
eecs.tufts.edu/~dcashm®1/snacs/
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Fig. 4: (a) The SNAC visual encoding of a neural network architectures, seen at four different resolutions. This architecture has a three
convolutions, each followed by an activation, and concludes with a fully connected layer. (b) Three alternative visual overviews of the model
space. Section A shows the set of models on a set of interpretable axes, validation accuracy vs. log of the number of parameters. Sections B and
C use multidimensional scaling to lay out the same set of models based on structural similarity (B) and prediction similarity (C). The darkness of
the circle encodes the model accuracy, and the radius of the circle encodes the log of the number of parameters.

to the application through their browser and were given two tasks
to complete using the tool. The participant’s screen was recorded
during their completion of the two tasks. Participants were asked to
evaluate the features of the tool through their usage in completing their
tasks. One of the four participants was unable to access the application
remotely, and as a result, directed the interviewer on what interactions
to make in REMAP and followed along as the interviewer shared their
screen.

Both tasks consisted of discovering a performant neural network
architecture for image classification on the CIFAR-10 dataset, a collec-
tion of 50,000 training images and 10,000 testing images each labeled
as one of ten mutually exclusive classes [28]. This dataset was chosen
because all four experts had experience building neural network archi-
tectures for this dataset. This allowed the participants to quickly assess
whether the system enabled them to do the types of operations they
might have done manually searching for an architecture on CIFAR-10.
In this evaluation, we report participants’ feedback on whether the tool
enabled them to navigate the model space in a similar manner to their
manual model discovery process.

Tasks: The first task given to the participants was to simply find the
neural network architecture that would attain the highest accuracy on
the 10,000 testing images of CIFAR-10. For the second task, partici-
pants were given a scenario that dictated constraints on the architecture
they had to find. Participants were asked to find a neural network archi-
tecture for use in a mobile application used by bird watchers in a certain
park that had many birds and many cats. Birds and Cats are two of the
ten possible labels in the CIFAR-10 dataset. The resulting architecture
needed to prioritize high accuracy on those two labels, and also needed
to have under 100,000 parameters so that it would be easily deployable
on a mobile phone. The two tasks were chosen to emulate two types of
usage for REMAP: unconstrained model search and constrained model
search.

Participants were given up to an hour to complete the two tasks and
were encouraged to ask questions and describe their thought process.
Then, they were asked about the efficacy of each feature in the tool.

Findings: Participants were able to select models for both tasks. How-
ever, each participant expressed frustration at the lack of fine-grained
control over the model building process. In general, participants found
that the tool could be useful as an educational tool for non-experts
because of the visual comparison of architectures. They also acknowl-
edged that using the tool would save them time writing code to run fine
tuning experiments. We describe participant feedback on individual
features of the system and then outline two additional features added to
address these concerns.

6.1 Participant Feedback

Model Overview: All participants made extensive use of the Model
Overview with interpretable axes, seen in Figure 4b(A), to find baseline

models. Two participants started by selecting the model with the highest
accuracy irrespective of parameter size, while one participant selected
smaller models first, noting that they start with smaller models when
they manually select architectures: "My intuition is to start with simple
models, not try a bunch of random models, using your Model Overview.”
Another participant noted that rather than start with the model with the
highest accuracy, they “thought it would make more sense to find a
small model that is doing almost as well and then try to change it.”

Two participants appreciated using the Model Overview based on

prediction similarity. One noted “To me, exploring the models in that
space seems like a very appealing thing to do. ... To be able to grab
a subselection of them and be able to at a glance see how they are
different, how do the architectures differ?””. Another participant used
the model view in trying to find a small architecture for the second
task that performed well on cats and birds: “instead of looking at
every model, I start with a model good at birds, then look at prediction
similarity. Since it does good on birds, I'm assuming similar models do
well on birds as well”. That participant explored in the neighborhood
of their baseline model for a model that also performed well on cats.
Model drawer and inspection: Each participant moved multiple
interesting models into the Model Drawer, and then inspected each
model in the Model Inspector. They all used the confusion matrix to
detect any poor qualities about models. Several participants ignored or
discarded models that had all zeros in a single row which indicated that
the model never predicted an instance to be that class across the entire
testing dataset.
Generation of new models: While some participants found the abla-
tion studies interesting, one participant noted that some ablations were
a waste of resources: "I basically don’t want my system to waste time
training models that I know will be worse... For example, removing the
convolutional layer.”. Some participants used their own background
and experience to inform which variations they did, while others used
the Model Overview and Model Drawer to discover interesting direc-
tions to do variations in. When viewing two architectures with similar
accuracy but very different sizes, a participant commented "/ can vi-
sually tell, the only difference I see is a pink color. It’s a nice way to
learn that dense layers add a lot of parameters.”

All participants expressed a desire to have more control over the
construction of new models. This would allow them to do more acute
experimentation once they had explored in the neighborhood of an
interesting baseline model. One participant described it as the need
for more control over the model generation process: I think we need
more customization on the architecture. Currently, everything is rough
control ... Of course for exploring the search space, rough control
would be more helpful. But for us to understand the relation [between
architecture and performance], sometimes we need precise control.”
All participants noted that relying on rough control resulted in many
models being spawned that were not of interest to them, especially once
they had spent some time exploring the model space and knew what
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Fig. 5: The ability to handcraft models was added based on feedback
from a validation study with model builders. Starting from a model
baseline, users can remove, add, or modify any layer in the model
by clicking on a layer or connections between layers. This provides
fine-grained control over the models that are generated.

kind of model they wanted to generate.

6.2 System Updates

The feedback from the expert validation study led to two changes to the
system. Both changes allow for more fine-grained control over which
models were generated, both to allow for more precise experimentation
and to reduce the number of models that need to be trained.

¢ Change C1: Creating Handcrafted Models: While variations
proved useful for seeing more models in a small neighborhood in the
model space, participants expressed frustration at not being able to
explicitly create particular architectures. To address this, we added
the handcrafted model control, seen in Figure 5. Users see the same
SNAC used in the Ablations and Variations controls, but with addi-
tional handles preceding each layer. By clicking on the layer itself,
users can select to either remove a layer or reparameterize it. By
clicking on the handles preceding each layer, the user can choose to
add a layer of any type.

* Change C2: Subselections of ablations: Two participants found
that the ablations tool wasted time by generating models that weren’t
particularly of interest to the user. We added a brushing selector,
seen in Figure 3a to allow the user to select which layers were to be
used in ablations, so that the user could quickly run ablations on only
a subset of the model.

7 UsEeE CASE: CLASSIFYING SKETCHES

To validate the new features suggested by the study, we present a use
case for generating a performant, small model for an image classifica-
tion dataset. In this use case, we refer to tasks T1, T2, and T3 supported
by our system as outlined in section 4.

Leon is a data scientist working for a non-governmental organization
that researches civil unrest around the world. He is tasked with building
a mobile app for collecting and categorizing graffiti, and would like
to use a neural network for classifying sketched shapes. Because his
organization would like to gather data from all over the world, the
application must be performant on a wide swath of mobile devices.
As a result, he needs to consider the tradeoff between model size and
model accuracy.

Data: He downloads a portion of the Quick Draw dataset to use as
training data for his image classifier. Quick Draw is a collection of
millions of sketches of 50 different object classes gathered by Google
[1]. Rather than download the entire dataset, Leon downloads 16,000
training images and 4,000 training images from each of 10 classes that
are commonly found in graffiti to serve as training data®. Overnight,

SFor this use case, we used the 10 most convergent classes in Quick Draw as
identified by Strobelt et al. [59]
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Fig. 6: In our use case, the model builder first samples models 1, 2,
and 3 on the pareto front of accuracy vs. model size. He then selects
models 4 and 5 from the two alternative Model Overviews provided.

he uses REMAP to auto-generate an initial set of 100 models, and the
next day, he loads up REMAP to begin his model search.

Search for baselines in the Model Overview: To find a set of base-
line models [T1], he starts with the default Model Overview, seen
in Figure 6A. He sees that there are many models that achieve at or
above 90% accuracy, but they appear to have many parameters. He
samples three models from the pareto front, two which have the high
accuracy he desires and one which has an order of magnitude less
parameters. He switches the model view to lay out models based on
performance prediction similarity (Figure 6B) and hovers the mouse
around the neighborhood of his selected models to see what alternative
architectures could result in similarly good performance, and adds an
additional model which has multiple convolutional and dense layers, as
well as some dropout layers. Lastly, he switches the model view to lay
out models based on structural similarity (Figure 6C) to see how small
differences in architecture correspond to changes in either accuracy
or parameters [T3]. He selects a fifth model which differs from his
previously selected models in that it spreads its convolutional filters
over multiple layers instead of concentrating them in a single initial
layer.

Ablations: He decides to start with the smallest model, model 3, since
it has reasonably high accuracy of 81% and a very small amount of
parameters, approximately 1600. Having chosen a baseline, he moves
on to generate local, constrained searches in the neighborhood of the
baseline [T2]. After checking in the Model Inspector that the model
performs reasonably well on all classes, he runs ablations on this model
and sees that removing the first and last max pool layers increased both
accuracy and the number of parameters. He notes that, with an accuracy
of 90% and 11.9k parameters, the model resulting from removing the
first max pool layer is now on the pareto front between validation
accuracy and number of parameters, so he adds it to his Model Drawer
for further consideration.

Variations: While the ablations indicated that he may want to remove
some of the pooling layers, he wants to see the effects of various other
modifications to his baseline model. He decides to generate variations
of all kinds (prepend, remove, replace, reparameterize) along the pool-
ing layers, and also allow for reparameterization of the convolutional
layer. He generates 10 new variations from those instructions, and by
looking at their results, sees that increasing the number of convolutional
filters results in too many parameters, but this can be compensated for
by also increasing the pool size.

Handcrafting Models: After developing an understanding of the
model space, he generates some handcrafted models. He removes
the first max pooling layer because that helped in the ablation studies.
He then creates three new models from this template. First, he splits
the starting convolutional layer into three convolutional layers with
fewer filters, to be more like model 5. He then tries adding dropout, to
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Fig. 7: After generating ablations, variations, and several handcrafted
models, the model builder compares all discovered models and chooses
the model in the fourth row, because of its high accuracy and low
number of parameters.

be more like model 4. Lastly, he creates a model with activations like
model 2, and different options chosen for pooling layers and kernels
inspired by the variations. The trained results can be seen in Figure 7.

Result: Leon eventually decides on using an architecture with 91%
accuracy and only 8.3k parameters, seen in the fourth row of Figure 6.
This model has comparable accuracy to models 1 and 2 that were
initially chosen from the pareto front, seen in Figure 6, but drastically
fewer parameters than model 1 (412.8k) and model 2 (16.7k). As
a result, the architecture found by Leon can be deployed on older
technology and classify images faster than any of the initially sampled
models.

8 DISCUSSION
8.1 Human-in-the-Loop Neural Architecture Search

Our experience and study suggested that the presence of a human-in-
the-loop benefited the discovery of neural architectures. However, a
common pattern in deep learning research is for applications to start
with the neural network as an independent component in a set of seman-
tic modules, only for subsequent research to point out that subsuming
all components into the neural network and training it end-to-end re-
sults in superior performance. As an example, the R-CNN method
for object recognition dramatically outperformed baselines for object
detection using a CNN in concert with a softmax classifier and multiple
bounding box regressors [14]; however, its performance was eclipsed
only one year later by Fast R-CNN, which absorbed the classifiers and
regressors into the neural network [13,71]. This suggests that the user
processes in REMAP , such as selecting models on the pareto front
and running certain ablations and variations, could be automated, and
the whole process run end to end as a single optimization without a
human-in-the-loop. Ultimately, this perspective ignores the tradeoffs
that users are able to make; users can very quickly and efficiently nar-
row the search space to only a small subset of interesting baselines
based on a number of criteria that are not available to the automated
methods. These include fuzzy constraints on the number of parameters,
a fuzzy cost function that differs per class and instance, and domain
knowledge of the deployment scenario of the model. For this reason,
we advocate that the human has a valuable role when searching for a
neural architecture using REMAP .

8.2 Generalizability

The workflow of REMAP is generalizable to other types of automated
machine learning and model searches beyond neural networks. The
two primary components of REMAP are a set of projections of models
and a local sampling method to generate models in a neighborhood of
a baseline model. As long as these two components can be defined
for a model space, the workflow of REMAP is applicable. Of the
three projections used, both the semantically meaningful projection
of accuracy vs. number of parameters and the prediction similarity
distance metrics are generalizable to any machine learning model,
while structural similarity distances can be easily chosen, such as

the Euclidean distance between weights for a support vector machine.
Similarly, random sampling in the neighborhood of a model can be done
in any number of ways; if the model space is differentiable, gradient-
based techniques can be used to sample in the direction of accurate or
small models.

8.3 Scalability

In order to facilitate human-in-the-loop-neural architecture search,
REMAP must make several constraints on its model space. It lim-
its the size of the architectures it discovers so that they can be trained in
a reasonable amount of time while the user is engaged with the applica-
tion. In certain domains, however, the tradeoff between accuracy and
size of the model is very different; stakeholders don’t want to sacrifice
any accuracy. In that case, the cap on model size in REMAP could be
removed, and REMAP could be used to find large networks that take
many hours to train. It isn’t feasible to expect a user to stay in situ
the entire time while REMAP trained the several dozen models needed
to enable architecture discovery. Instead, a dashboard-like experience,
easily viewable in a casual setting on a small screen such as a phone
might be preferable. In general, the types of user experiences used
in visual analytics tools for machine learning models may have to be
adapted to the scale of time necessary for constructing and searching
through industry-level neural networks.

The visual encoding used for neural network architectures, SNACs,
can only display network architectures that are linked lists, which
leaves out some newer types of architectures that have skip connections,
which are additional linkages between layers. This problem could be
solved by improving the encoding to communicate skip connections.
Ultimately, supporting every possible network architecture amounts to
supporting arbitrary graphs, and there is no space-efficient way to do
so without losing information. For that reason, we limit the scope in
this project to network architectures that are linked lists, because they
are simpler to understand and are a common architecture that are more
performant than non-neural network models for image classification
problems.

9 CONCLUSION

Neural networks can be difficult to use because choosing an archi-
tecture requires tedious and time consuming manual experimentation.
Alternatively, automated algorithms for neural architecture search can
be used, but they require large computational resources and cannot ac-
commodate soft constraints such as trading off accuracy for model size
or trading off on performance between classes. We present REMAP,
a visual analytics tool that allows a model builder to discover a deep
learning model quickly via exploration and rapid experimentation of
neural network architectures and their parameters. REMAP enables
users to quickly search for baseline models through a visual overview,
visually compare subsets of those models to understand small, local dif-
ferences in architectures, and then generate local, constrained searches
to fine tune architectures. Through a design study with four model
builders, we derive a set of design goals. We provide a use case in build-
ing a small image classifier for identifying sketches in graffiti that is
small enough to used on even very old mobile devices. We demonstrate
that the semi-automated approach of REMAP allows users to discover
architectures quicker and easier than through manual experimentation
or fully automated search.
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