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Figure 1: QUESTO: A. Incorrect predictions. B. Confusion matrices. C. Model score. D. Sliders to weight objectives. E. Draggable con-
straints to specify priority. F. Selected model. G. Test data constraints. H. Model run and Export button. I. Rule panel. J. Important features.

Abstract
Building effective classifiers requires providing the modeling algorithms with information about the training data and modeling
goals in order to create a model that makes proper tradeoffs. Machine learning algorithms allow for flexible specification of such
meta-information through the design of the objective functions that they solve. However, such objective functions are hard for
users to specify as they are a specific mathematical formulation of their intents. In this paper, we present an approach that allows
users to generate objective functions for classification problems through an interactive visual interface. Our approach adopts a
semantic interaction design in that user interactions over data elements in the visualization are translated into objective function
terms. The generated objective functions are solved by a machine learning solver that provides candidate models, which can be
inspected by the user, and used to suggest refinements to the specifications. We demonstrate a visual analytics system QUESTO
for users to manipulate objective functions to define domain-specific constraints. Through a user study we show that QUESTO
helps users create various objective functions that satisfy their goals.

CCS Concepts
• Computing methodologies → Model construction and selection; • Mathematics of computing → Interactive objective
functions; • Human-centered computing → Visual analytics; •Machine learning task → Classification;
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Figure 2: QUESTO coupled with an Auto-ML optimizer - Hyper-
opt, translates user interactions into objective function terms.

1. Introduction

Objective functions serve a crucial role in traditional machine
learning (ML) tasks, such as classification. ML models are driven
by the design of these objective functions which are solved to
attain desired goals. They act as the mathematical expression
of preferences, goals, and constraints that ML pipelines should
take into consideration when learning from training data to create
models. For example, in a classification task an objective function
may specify that the model should perform well on chosen class
labels or may require a model to get certain data instances (rows in
the data) correct or may include regularizers to create generalisable
models. ML practitioners often create and edit objective functions,
specifying feedback to ML processes to achieve desired goals such
as a model with a high test accuracy, or creating a fair classifier.

When objective functions are made interactive, they can serve as
the medium through which people can directly communicate their
domain expertise, preferences, and other relevant information to
the system. However, specification of such intricate objective func-
tions is difficult for users who do not have programming or ML
expertise. For instance, creating custom objective functions require
translating one’s preferences, goals, and constraints into mathemat-
ical expressions by writing code. To support interaction with objec-
tive functions, we need interactive visual interfaces which can help
users who seek to construct ML models, expressively communi-
cate their preferences or intents to the underlying models. Even for
expert ML users (who can write code), interactive construction of
objective functions can help them rapidly test various forms of ob-
jectives to find optimal models that suits their goals.

There are numerous constraints or specifications that can be
added to objective functions. For example, in a classification task
a user might prefer models which correctly predict specific data
instances [RSG16] (data instances are rows in a tabular data). Fur-
thermore, users might expect to see similar data instances placed in
the same class [KLTH10; TLB*11], remove data instances which
are noise/outliers [TLKT09], etc. Based on a literature review of
previous work focused on interactive construction of ML models
(e.g., [ZSZR18; RSG16; YSCR18; KLTH10]), we investigated the
design space of such constraints.

In this paper, we present a prototype visual analytic (VA) sys-
tem called QUESTO that translates user interactions with data into
objective functions for classification. QUESTO facilitates interac-
tive construction of a classifier by allowing users to formulate their
preferences as an objective function while they explore and interact

with a tabular dataset. QUESTO visualizes the underlying objec-
tive function to help users understand their specified goals and con-
straints. Furthermore, through iterative interactions with the data,
the user can refine the specified constraints and the objective func-
tion to find a model that correctly characterises the data. The re-
sulting user-defined multi-objective objective function can be used
with Auto-ML optimizers (such as Hyperopt [KBE14]) to guide
and facilitate the construction of classification models (see Fig-
ure 2), with the advantage of users being able to specify domain-
specific constraints and objectives.

In addition, we present the findings of a within-subjects user
study. In this study we compared QUESTO with traditional com-
mand line workflows (CMD) that allow construction of classifiers
and objective functions by writing code, and with stand alone Auto-
ML. Our study showed that: (1) QUESTO is easier and faster to
use than CMD workflows to specify/test several objective functions
to classifiers, and (2) Although QUESTO generates models which
are slightly less accurate than models from stand alone Auto-ML,
these models outperform Auto-ML in attaining user-specified con-
straints. Furthermore, we seek qualitative participant feedback to
understand their response on QUESTO’s interface/interaction de-
sign, and usability issues to further improve interactive construc-
tion of objective functions. Our contributions are:

• A design space of constraint specification derived from prior
work which categorizes various user goals for a classifier.
• A prototype VA tool, QUESTO, for interactive objective func-

tion construction for classification tasks.
• A user study evaluating how people specify objective functions

with QUESTO compared to writing them with code, as well as
compared to existing Auto-ML approaches.

2. Related Work

2.1. Visual Analytics for Interactive Machine Learning

Many visual analytics systems incorporate demonstration-based
interactions to adjust underlying models [BNHL14; EFN12;
LHM*13; EHM*11; EBN13; GLG*13]. Demonstration-based in-
teractions allow users to directly manipulate on-screen visual data
representations to adjust models without the need to write code
or adjust widgets in a control panel [BNHL14]. These visual in-
terfaces have helped researchers discover novel workflows in in-
teractive machine learning to assist users to build models aligned
with their goals. For example, Gestalt [PBD*10] showed the inte-
gration of ML with traditional software development workflows.
Their system implemented a classification model pipeline helping
users in model construction and analysis. Other similar VA systems
include [BGV16; RHY14; KPHH11; EFN12; SKBE17; KDJH08;
KLTH10; TLKT09; SRL*07]. A complete overview of this inter-
active process is discussed by Amershi et al. [ACKK14].

VA systems use explicit user interactions to specify param-
eters of underlying models. These interaction techniques have
proven useful in various domains of ML (other than classi-
fiers [VDEW11]), such as clustering [WN17], dimensional re-
duction [KCPE16; KKW*17; EHM*11; JZF*09], metric learning
[BLBC12], etc. Recent work utilised multiple ML models to satisfy
user preferences [SHB*14; PSTW*16]. For example, Hypertuner
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[TCWM18] and BEAMES [DCCE18] allowed tuning hyperparam-
eters of multiple regression models to support user goals. Cluster-
vision enabled exploring multiple cluster models to analyze the fit-
ness based on metrics such as Silhouette Coefficient [KEV*18].

In general, these current VA tools interactively adjust ML models
based on a pre-defined objective function (by ML practitioners or
system developers) which users often cannot adjust or view. Such
tools do not allow users to interactively design an objective function
that seeks to adjust the behavior of ML models or select models
that better suits the specified constraints. Rather, user interaction in
these tools is interpreted as changing feature weights, or adjusting
values of model parameters for model steering. Instead, this paper
explores how people can interact with objective functions.

Past researchers have looked at human-in-the-loop based ML
processes [AFKT11; BZSA17; BM17; KBS*11; GFT*16; KTD17]
where they showed human contribution in ML processes in vari-
ous ways. For example, the system Label-and-Learn facilitated a
user-guided labeling process in ML using interactive visualization
techniques [SLT17]. Squares showed humans interactively debug-
ging ML models [RAL*17]. Liu et al showed an interactive system
called CNNVis that helps ML experts debug, diagnose, and fur-
ther improve CNN models [LSL*17]. Sacha et al. have examined
various VA systems to discover that users evaluate models by a
plethora of measures including conventional metrics such as, ac-
curacy and cost, as well as novel criteria such as unexpectedness
[SSZ*17]. Holzinger et al. have claimed that in cases of insuffi-
cient training data, ML problems are often NP-hard, which can be
solved by interactive ML-based solutions using a domain-expert
user’s input [Hol16]. To increase human input, crowd-sourcing is
a new avenue in human-machine collaboration [CFEC17]. Crowd
workers perform various tasks such as, clean/transform data, ano-
tate/add labels, etc. Novel techniques have improved the reliability
of having crowd workers be part of conventional ML pipelines as
shown in [CAK17; NKHK17; CB15; SRL*09; WLDW01].

2.2. Auto-ML Systems

Conventional ML pipeline requires selecting an appropriate learn-
ing algorithm, and finding an optimal combination of hyperparam-
eters to construct a model. Evidently, this workflow is not suitable
for novice ML users, who otherwise rely on GUI based tools such
as WEKA [EW16]. To help novices construct better ML models,
new tools are developed in the space of automated ML or Auto-ML
such as Auto Weka [THHLB13; KTH*16], BigML [MLa] SigOpt
[PPJ07], Hyperopt [BYC13; KBE14], Snowcat [CHH*19] and
AUTO-SKLEARN [FKE*15]. Holzinger et al. explored Auto-ML
based workflows in various domains to further confirm the useful-
ness of such systems [Hol16]. While useful, these tools are limited
to optimize ML models based on conventional metrics such as Pre-
cision, or Recall. Users cannot specify constraints or metrics that
are more meaningful/useful to them. In this paper, we seek to create
a novel technique to incorporate domain expertise and user’s sub-
jective preferences in model construction, selection, and evaluation.

2.3. Visualizing Objective Functions and Solutions

Various techniques have been used to visualize solution sets from
an objection function space such as MDS, RadViz, bubble chart,
parallel coordinates, self organizing map, etc. [HY17]. Further, He
et al. proposed a new visualization technique to map solutions from
a high-dimensional objective space to a 2D polar coordinate plot.
Their method helped a user to understand tradeoffs between ob-
jectives and find desirable solutions [HY16]. Sahu et al. showed
the use of a radar chart to visualize many-objective solution spaces
[SC11]. Walker et al. visualized a set of mutually non-dominating
solutions using Radviz to show multi-objective solutions, and intro-
duced techniques to measure the similarity of non-dominating so-
lutions [WEF13; WFE12]. Many researchers have looked at mea-
sures to assess the diversity of pareto-optimal solutions in multi-
objective optimization problems [MLY17; LYL14]. In QUESTO,
we leverage these techniques to visualize solutions to a multi-
objective objective function. However, the focus of our work is not
on the visualization of the solution spaces, but in helping users ex-
press their analysis intent through objective functions.

2.4. User Preferences/Modeling

ML users solve various problems which are context dependent
and personal [AF18], e.g, interaction with robots in a hospital
[RLD*18; EIZ*13]. Diverse problem scenarios create an opportu-
nity to specify a diverse set of user preferences. These preferences
are the building blocks to construct an objective function. We stud-
ied the literature to understand what kind of specifications users
can provide to construct a classifier [ZSZR18; YSCR18; CW18;
CES*09; TDCF07]. Kapoor et al. discussed often users have to
rely on the overall classification accuracy of predictive models in-
stead of relying on predictions generated by marginal models. This
often leads to a bad model selection [KLTH10]. Zhu et al. de-
scribed the machine teaching paradigm where a machine teacher
(usually a domain expert) shows informative data instances of pos-
itive and negative class labels to maximize the distance between the
classes [ZSZR18].

Lime, a submodular optimization technique helped users
interpret models by explaining the prediction of a classifier on a
set of relevant data instances [RSG16]. This showed the relevance
of a model’s performance on a specific subset of data items that
the users care about. Tamuz et al. showed an adaptive algorithm
that estimated a similarity matrix from human judgments based
on comparisons of triples [TLB*11]. Applying the same ideology
in classification tasks, users can specify data instances that are
similar and should be predicted to be in the same class label. The
system Flock asked crowd workers to define the reason behind a
pair of instances to be in a positive class and vice versa [CB15].
Kapoor et al. discussed if users can understand the model behavior,
they can assess the possible next moves to adjust the model further
[KLTH10]. For example, users can evaluate if models correctly
predict similar data instances in the same class label. If these are
not in the same class, users may provide additional examples to
refine the model. These pioneer works in the literature inspired
us to help users define their measure of success in a classifier
construction process through interactive objective functions.
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3. Design space of objectives and constraints

We define objectives as a component or a function term of a multi-
objective objective function. These objectives are also referred to as
user preferences, goals, subjective requirements, etc. in the paper.
Next, each of these objectives may have constraints. For example a
user may have an objective of finding a highly performant model.
A constraint can be the accuracy be calculated using precision, re-
call, or F1-score metrics. Similarly another objective could be that
the classifier performs better on hand-chosen data instances. In this
objective one constraint may be that it labels similar data instances
(specified by the user) in the same class label.

We analyzed 61 papers from visual analytics and interactive ma-
chine learning areas, which included 18 VA systems to formulate
a set of objectives and their respective constraints for a classifica-
tion task (†). Using an affinity diagramming approach, we clustered
similar papers and VA systems with similar interactive constraints.
Further, we iteratively refined these until we were satisfied with
the relationships between the clusters. For example, based on the
literature, we derived constraints such as Critical that represents
data instances which users find important to be correctly predicted,
Candidate that captures data instances which are strong represen-
tatives of a class label (and not necessarily Critical). Finally, we
derived 15 constraints users can define, organized into 4 objective
categories for a classification task: Instance-based, Feature-based,
Train-objectives, and Test-objectives, described below.

3.1. Instance-based

This objective allows users to specify that the classifier should per-
form well on a set of data instances. While many of the constraints
in this section involve adjusting weights on specified data instances,
we categorized them separately based on how they are revealed in
the user interface and the user task supported.

Similarity: This constraint captures the degree of similarity (or dif-
ference) between data items. A user specifies a set of similar data
instances and expects them to be predicted in the same class label.
Users can also specify pairs of data items to be predicted in dif-
ferent classes. However, in both cases (“similar” and “different”)
users do not specify the class in which the specified data instances
should be placed. There are various VA systems/techniques where
similarity and difference between data samples was sought from
users to construct models. For example, Tamuz et al. discussed a
similarity matrix to infer if an object ”A” is similar to ”B” or ”C”
for a user [TLB*11]. Another system, Flock, asked crowd workers
to specify paired examples to define similar or different instances
of positive or negative class [CB15].

Candidate: This constraint type refers to user feedback on a set of
data instances from the training set which are good representatives
of their class. Based on prior knowledge, users can specify that data
instances represent a given class well.

Critical: This constraint lets users specify a set of data instances to
show that correct prediction of these are critical for them. This con-
straint can be specified when users want a set of data instances to

† The full list of papers is provided in the supplemental material

be correctly classified, while the accuracy of other data instances is
less important. For example, consider a financial analysis scenario
where a company needs a classifier to predict which clients should
be granted a loan. The analyst might know a few clients who are
more profitable than others. Thus, he or she might prefer a classi-
fier that correctly predicts these clients than the less profitable ones.
Users can assess constructed classifiers based on how accurately
they predict the specified critical data instances. Other researchers
have looked at critical data instances. For example, Lime is a ML
algorithm which helps users to interpret models by explaining their
predictions on data instances that are critical [RSG16].

Ignore: This constraint specifies if the user intends to remove noisy
or outlier data instances from the training set. Removal of noise or
an outlier increases the accuracy of prediction and the power of the
model to generalize on unseen data. This constraint may also in-
clude specification of data instances whose prediction (correct or
incorrect) is irrelevant to users. Elzen et al. prototyped Baobab-
View for inspecting outliers and noisy data to improve interactive
construction of decision trees [VDEW11].

3.2. Feature-based

This category includes items which users can specify to help a
model in its learning process. The following constraints defined un-
der this category operates at the level of the features (or attributes).

Feature selection: This constraint allows users to specify fea-
tures that are important for classification. A classifier will only use
the specified features when it is learning the data or the Auto-ML
system will penalize any model that uses features other than the
ones specified by the user. This is inspired from previous work
that showed the value of human-centered feature selection in model
construction [KPB14; LWLZ17; CB15].

Correlation and Variance: This constraint allows users to spec-
ify correlation and variance in the features based on their domain
expertise. Users specify perceived correlation between features and
variance per feature in the data. Correlation and Variance are based
on the user’s domain knowledge and not necessarily grounded in
the training data. For example, a financial analyst might know that
experienced bank customers in the age group of 40− 50 are more
likely to spend economically and pay on time. Thus the features
age and payment are correlated based on the domain knowledge of
the user, which may or may not be present in the data. Hall showed
a feature selection method based on correlation in the data [H.99].
Instead of computing correlation in the features from the training
data, users may specify correlation and variance in the data, an in-
formation that affects how the model learns from the data.

3.3. Train-objectives, and Test-objectives

ML models can be evaluated using conventional model met-
rics or constraints such as Accuracy, Precision, Recall, and F1-
Score. When applied to the training set, we consider them Train-
objectives, compared to applying them to the test set when we con-
sider them Test-objectives. Together these two objectives help users
control for model overfitting. Using the Train-objectives users can
verify how well the model is learning from the data, while using
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the Test-objectives they can validate if the model generalises well
on unseen data. For example, one can first find models with high
training accuracy (i.e., low bias), then tune the hyperparameters
to achieve a high test set accuracy (i.e., low variance), and finally
weight or rank these constraints to find classifiers that show an op-
timal tradeoff between bias and variance.

4. QUESTO: System Design and Description

QUESTO helps users interactively construct classifiers that ad-
dress their subjective goals specified in the form of interactive
objective functions. The interface is designed to facilitate inter-
active specification of constraints at the data instance and fea-
ture level. QUESTO enables users to see specified constraints, and
add/remove/edit them. QUESTO supports classifier inspection and
selection from a set of candidate models generated from the user-
specified objective function with Hyperopt in the backend.

Upon data import, QUESTO splits the datasets into a training
set, multiple test sets, and a final validation set. The training set is
used to build the initial model. The multiple test sets are used for
each iteration of user feedback to test how well the model meets the
objectives and constraints specified. When users are satisfied, there
is a final validation set (which is never seen by the model during
the previous iterations) used to validate the model.

4.1. User Interface and Interactions

Data table view: It displays the training and test data sets in
two data tables. In addition, it supports specification of 4 types
of constraints: Critical, Ignore, Similarity, and Candidate. To
specify Critical or Ignore constraints, users can click on the row
(See Figure 4-E). To specify a Similarity constraint, users can
specify either ”Similar” or ”Different” on pairs of data instances.
To specify the Candidate constraint (see Figure 4-B, E), users
can select rows within a class to specify example data instances.
When users select a model from the model interpreter view, the
class label column of both training and test data shows correct
predictions with a check mark, while incorrect predictions are
shown with a cross mark (see Figure 1-A).

Scatterplot matrix view: Shows the relationship between various
attributes, and helps users find missing data, outliers, etc.

Confusion matrix: A confusion matrix for both the training and
test dataset is shown on the right of the data table view (see Fig-
ure 1-C). Clicking on cells in the confusion matrix filters the data
table to show data instances responsible for the prediction.

Feature panel: The features of the data are visualized as a parallel
coordinate plot (Figure 4-G). Brushing on any feature (represented
as vertical lines) allow users to filter the data instances in the data
table. Users can specify a Feature Selection constraint by clicking
on the cells over the vertical lines (Figure 4-F). Further, right click-
ing on these cells specifies a Correlation and Variance constraint.

Objective function stack: This view visualizes the interactive ob-
jective function. Each box (see Figure 1-G) represents an objec-
tive category and contains constraints under the categorization de-
scribed in section 3. Users can specify a constraint by clicking

on its name (a specified constraint is shown with a green check-
mark, see Figure 1-E). When users explore and interact with the
data QUESTO automatically infers constraints such as Candidate,
Critical, etc. However, users can override the inferred constraints
if they disagree. Underneath each box is a slider (Figure 1-D, E),
which allows users to adjust the weight of each objective. Users can
also reorder constraints vertically to indicate priority.

Model interpreter: Shows metrics of k ML models. Users can
choose to inspect each model by seeing it in a parallel coordinate
or in a star plot (see Figure 1-F). Users can select a model which
updates the data table view (showing predictions for each data in-
stance) and updates the confusion matrices. This view also shows
the top 3 features used by the classifier.

Rule Panel: When users specify any constraints by filtering data
instances, QUESTO saves these data instances as part of a rule
(Figure 1-I) that can be interacted with through this view.

4.2. Technique

This section describes the underlying techniques in QUESTO that
drive the construction of an interactive objective function (see
Figure 3). QUESTO uses an Auto-ML module called Hyperopt
[KBE14] to find an optimal hyperparameter combination which
may meet user goals. QUESTO specifies a learning algorithm,
and a set of hyperparameters for Hyperopt to construct models
(e.g., we used a random forest classifier with the hyperparame-
ters MaxDepth, Criteria (“gini” or “entropy”), and MinSamples).
Our technique uses an iterative model construction and evaluation
workflow. Users formulate their preferences in the objective func-
tion O by specifying a set of constraints Φ, and a weight vector
W . Per iteration Hyperopt consumes O to construct and rank new
models M. This cycle allows users to search for models by defining
their goals and constraints in O.

4.2.1. Classifier Creation and Selection

Model Construction: QUESTO splits the loaded data set Z, into
training D, multiple test sets T = T1,T2,T3...Tt , and a validation set
V . Next it triggers Hyperopt to start the model optimization pro-
cess on the supplied data D to build M classifiers of size N (M =
m1,m2,m3, ...mN ). It constructs each model mi using a supplied
learning algorithm κ and sampled B hyperparameter combinations.
We used Scikit-Learn’s machine learning package to build the clas-
sifiers [MLb] further supported by Hyperopt which provides new
hyperparameter combinations. Finally, each of the trained model mi
predicts class labels for both D, and Ti. The models are evaluated
based on their performance on the supplied objective function O.

Model Optimization: Hyperopt traverses the space of pre-defined
hyperparameters to construct a set of models. As an input, Hyper-
opt expects a list of hyperparameters to tune, H = h1,h2...hB and
a domain space νi for each hyperparameter hi. We pre-selected
B hyperparameters and their domain space. For example, if a
domain space of 2 − 100 for MaxDepth hyperparameter was
chosen, Hyperopt will sample a value between 2 to 100. Fur-
ther, using user-defined constraints such as Testing-Accuracy or
Cross-val-score, Hyperopt samples the hyperparameter space to
control for model overfitting. Hyperopt evaluates each model in
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Figure 3: QUESTO system architecture.

M with the supplied objective function O. The objective function
O is constructed by a weighted linear combination of user-defined
constraints Φ. Each model mi in M gets a objective function score
S = s1,s2, ...sN based on its performance on O. Hyperopt ranks the
N classifiers (we set N = 100, but can be changed) based on the
objective function scores in S.

4.2.2. Interactive Objective Function Creation

The set of constraints Φ represent the different categories of goals
and constraints in our taxonomy (see Section 3). Using QUESTO,
users can define the following constraints interactively:

Critical: Hyperopt trains a model mi on the supplied training set
D with original labels Ld,o. Next it predicts labels on the training
set as Ld,p. Users specify a list of IDs of x critical data instances
C = c1,c2...cx. QUESTO retrieves the prediction on the critical
data instances based on supplied IDs C as Lc,p (Lc,p ⊂ Ld,p).
QUESTO retrieves the original class labels of the critical data
instances as Lc,o. QUESTO initializes the score for the Critical
constraint as s1 = 0. It compares Lc,o with Lc,p, to find the number
of correct matches and save in s1 (normalized between 0 to 1).

Similarity: This constraint is of two types. The first type captures
similar data items when a user specifies a list of data items Y that
are similar and should be placed in the same class. The algorithm
iterates over Y to find the original class label Ln,o. If Y belongs to
more than one class label, the most frequent class label is assigned
to Ln,o. Next the algorithm matches the prediction Ln,p with the
original class label Ln,o, where i is the index, iterating from 0 to
b (the number of user-specified similar data instances). For every
correct match, the score for this constraint s2,a gets a +1 score.
Next, it normalizes s2,a as (s2,a)/b, to get a score between 0 to 1.

The second type consists of users specifying items that should be
different. A user does so by specifying a list of tuples σ, where each
item in the list is represented as σi = (σx,σy). Here σx and σy are
data instances that users expect to be predicted in different classes.
The algorithm iterates over σ and matches the predicted class label
Lσ,p,i of item σi to class label Lσ,p, j of item σ j. For every incorrect
match, the score for this constraint s2,b gets a +1 point. Next, it
normalizes s2,b as (s2,b)/b, to get a score between 0 to 1. Finally
the score for this constraint is computed as s2 = (s2,a + s2,b). We
normalize s2 to get a score between 0 to 1.

Candidate: Users specify a list of b data items in G with a class
label A. The algorithm increases the training data weights (W =
w1,ws2,ws3...wb) for these data items. It inputs W to Hyperopt

which trains the classifiers M based on the updated weights. The al-
gorithm iterates through G and matches each items predicted class
label L f ,p with A. The score for this metric s3 is initialized as 0.
For each correct match in the iteration, s3 is assigned a +1 point.
Finally the algorithm normalizes s3 as s3 = s3/b.

Ignore: Users specify a list of data items I. The algorithm removes
these data items from D to form a new training set DII . Further
when computing classification model metrics such as Precision,
Recall, etc. the algorithm removes the data items in I from D.

Accuracies: This captures the classification model metrics defined
as part of the category Train-objectives and Test-objectives (see
section 3). These are Precision, Recall, F1-Score, etc. For each of
these, QUESTO uses Scikit-Learns classification metrics [MLb].

Feature Selection, Correlation, and Variance: QUESTO incor-
porates a user-based feature selection technique. Users can guide
feature selection in one of two ways. First, users can select a set
of features Fd using the feature panel. QUESTO interpretes that
the user chose a set of features which has a high correlation with
the class label. For model construction QUESTO will only use the
features in Fd . Second, users can specify a set of correlated fea-
tures Fc or features with low variance in Fv. QUESTO automati-
cally discards the features which show high correlation (negative
or positive) with each other and selects the ones which are uncorre-
lated. Similarly QUESTO discards features with low variance. The
selected features F = F−Fc or F = F−Fv are fed to Hyperopt.

Objective Function Formulation: The resulting objective func-
tion in QUESTO is a weighted linear combination of constraints
Φ. The algorithm computes the scores for each constraint. Finally,
it linearly combines these individual constraint scores as shown in
the equation: O = s1 ∗ω1 + s2 ∗ω2 + s3 ∗ω3 + s4 ∗ω4 + s5 ∗ω5
where s1,s2,s3, etc. are the scores of the user-specified constraints.

Weighting Preferences: Initially the weights W = ω1,ω2, ...ωU
are evenly set for each constraint in Φ However, users can over-
ride and specify weightings for each constraint by interaction tech-
niques shown in Section 4.1. The weight vector W sums to 1, to
ensure correctness in computing the contribution of each item in Φ.

Guarding Against Data Leakage: QUESTO searches for best
models from a pool of sampled ML models (facilitated by Hyper-
opt). This is different from optimizing the internal algorithm of ML
models such as designing the loss function for a random forest. As
our technique treats each model as a black box, it can optimize for
models that may perform better on train or test data. This is similar
to conventional model construction processes, where ML practi-
tioners aim for a higher training or test accuracy or a balance be-
tween each. However, to guard against data leakage, our technique
uses multiple sets of test data T = T1,T2...Tt (each used per itera-
tion of model construction). When QUESTO loads input data Z it
automatically splits into three sets: train D, test T , and validation
V . Next it makes t subsets of the test data, each used per iteration
of model construction. This serves to address potential data leak-
age as the models are tested on unseen data and during training, the
test data is not used. Per iteration, the model gets a new test set Ti
to compute the objective score (test-accuracy, test-F1-score etc.). In
addition, when the model is exported by the user they get to validate
it on the validation set V , which is not used on any prior iteration.
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5. Usage Scenario

We describe a scenario showing how QUESTO can help users build
classifiers on an imbalanced dataset through the specification of in-
teractive objective functions. Chris is a public policy analyst (with
basic knowledge of ML), is analyzing San Francisco’s employment
data to predict employees department [Off] (10000 samples). Chris
explores the salary data in QUESTO and begins constructing clas-
sifiers. They inspect the best classifier from the model interpreter
to observe that it scored poorly on both training and test set (avg.
48% accuracy). Chris explores the confusion matrix to discover that
80% of the original labels are of type public service indicating that
the data is imbalanced (there are 5 class labels). While the current
model correctly predicted 70% of this label type, it failed to predict
the other labels accurately. Chris expects the classifier to predict
each class label with at least 80% accuracy to be valuable for their
analysis. Next, using the objective function stack view Chris spec-
ifies the constraint F1-Score to account for the imbalanced nature
of the dataset, and the constraint Cross-val-score to construct gen-
eralisable models.

Chris triggers QUESTO to construct a set of new classifiers (seen
through the model interpreter) based on the updated objective func-
tion. They click on model 2 as it shows the best performance on all
the specified constraints in the star plot view. However, other than
the class public service), this model failed to perform as per expec-
tation on other labels. For example, the label cultural/recreation
and admin/finance showed 0 correctly predicted data items. Mo-
tivated to resolve these two classes, Chris brushes on the feature
retirement on the feature panel to filter jobs with high retirement
benefits. Next, Chris picks the constraint Candidate from the drop-
down menu as seen in Figure 4-B. They click on a set of data items
of label administration/finance on the table (shown with a green
highlight, see Figure 4-E). When Chris specifies the Candidate con-
straint, QUESTO automatically records the selected data instances
as part of a rule (see Figure 1-I). Chris assigns it a custom name
high-retirement. Next, they filter the data instances using the fea-
ture panel with low overtime and high salary values. Chris speci-
fies a subset of these data instances as Candidate constraint for the
class cultural/recreation. QUESTO saves these data instances as a
rule, which Chris calls high-sal (Figure 1-I).

Chris inspects one of the new models (model 2) by hovering over
the two rules (high-retirement and high-sal, shows associated data
items in the table view). Quickly glancing through these data items,
Chris observes that the prediction error is less than 10% which they
find acceptable. Next, Chris explores the confusion matrices and
finds that the performance score for the model increased to 72%
accuracy (see Figure 5-B,C). Furthermore, Chris notices that the
model’s performance improved significantly achieving on average
70% accuracy for all classes except admin/finance. In order to boost
the performance of the label admin/finance, Chris specifies all the
data instances of this label (in the training set with more than 80000
retirement benefits, total 12 items) as a Critical constraint.

Iterating further Chris finds a new set of classifiers from the col-
lection satisfied the constraints Candidate, Critical, and F1-Score.
However, the performance dropped on the test set in all of these
models. To further emphasize the performance on the test set as an
important criteria, Chris specifies the Testing-Accuracy constraint.

Figure 4: A. Critical constraint. B. Other constraints. C. Class
selector. D. Filter tags. E. Selected data. F. Select features, corre-
lation, and variance. G. Parallel coordinate plot.

Figure 5: Views for Evaluating Model Performance.

In addition, they lower the weights on the constraints in the
categories Train-objectives and Instance-based, and increases the
weight on the category Test-objectives (see Figure 1-D, E). They
also re-order individual constraints specifying highest priority
to the constraint Candidate. Chris constructs new classifiers and
chooses model 3 based on its performance as viewed in the star
plot view. They hover over the two custom rules (see Figure 1-I) to
see that most of the data instances in them are correctly predicted
and performs equally well on all class labels. Content with the
current model, Chris tests the model on a validation set and then
exports it for future use. This usage scenario shows how QUESTO
enabled a domain expert to build an accurate classifier on an
imbalanced dataset by exploring various objective functions that
captured his subjective preferences.

6. Evaluation

Other than using interactive visual interfaces like QUESTO, two
popular alternatives to constructing classifiers are: (1) manually
creating them via code or command-line (CMD) interfaces, and (2)
automatically generating them using Auto-ML. We wanted to com-
pare QUESTO with manually coding to verify if QUESTO is easier
and faster to specify constraints. Furthermore, we wanted to com-
pare QUESTO with Auto-ML to verify if QUESTO satisfies sub-
jective user goals better, and to compare the resulting accuracy. We
conducted a within-subject controlled lab user study of QUESTO
comparing it with CMD, and Auto-ML to construct a classifier. Our
study addresses the following research questions:

RQ1 Is QUESTO easier and faster to use than CMD workflows?
RQ2 Does QUESTO build more accurate models than

automatically-generated models from Auto-ML?
RQ3 Does QUESTO build models that addresses user-specified

constraints better than models from Auto-ML?

We hypothesize the interactive visual interface of QUESTO will
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be easier and faster to use compared to command-line interfaces.
Here “faster” refers to the time it takes to specify constraints and
construct classifiers; it does not include the time needed to train
classifiers. Further, we hypothesize that Auto-ML will generate
more globally accurate models, given the objective function op-
timizing towards a specified accuracy metric such as high cross-
validation score. However, RQ3 tests our hypothesis that QUESTO
will be better at building models that fit specific user constraints
given the customized objective function, thus illuminating this
tradeoff between accuracy and user goals.

In the literature there is no well-defined metric to measure how
well user-defined constraints are satisfied in classifier construction.
Thus, we defined constraint satisfaction score as a metric that
captures how well a model attains user-specifed constraints such
as Critical, Candidate, etc. These scores are normalized between
0− 1 (higher is better). It is expressed as (∑U

0 ωi ∗ γi)/U , where ω

is the weight of U constraints, γ is the score of each constraint, U is
the total number of specified constraints in the objective function.

We recruited 16 participants (7 Male, 9 Female), aged between
21-29 (M=25, SD=2.91), by inviting participants through our uni-
versity mailing lists. We required them to at least have a basic ex-
pertise in writing python code with elementary understanding of
ML. All of the participants (undergraduate and graduate students)
were familiar with basic/intermediate data analysis using tools such
as MS Excel, Tableau, etc. The experiment lasted 60 minutes and
we compensated each participants with a $10 Amazon gift card.
The study was conducted using a 17-inch display and a mouse.

6.1. Study Design

We began the study with a practice session teaching users how
to interact with both QUESTO and CMD (with VS Code as the
scripting editor). During the practice session, participants were en-
couraged to ask questions to clarify uncertainty in relation to the
workflow or the interaction design. We proceeded to the experi-
mental sessions only when the participants felt confident in using
each system. For quantitative evaluation each participant interacted
with both QUESTO and CMD using one dataset. Furthermore, the
order of the interfaces (QUESTO and CMD), the datasets, and
the tasks were randomized to remove any ordering/learning effect.
We considered these dependent variables for quantitative analysis:
(1) Task completition times: in specifying an objective function
through QUESTO or CMD, (2) Model accuracy: the accuracy of
the model constructed using QUESTO, CMD, and Auto-ML stand
alone, (3) Constraint satisfaction score: measure to capture con-
straints satisfied by the model, and (4) User preference rating: av-
erage preference rating of Ease of Use for QUESTO and CMD.

6.2. Datasets

For the practice session, we provided a dataset of 10000 credit card
transaction records [YL09]. The data has attributes such as bill paid
month 1, bill paid month 2, bill paid month 3, account balance,
etc. It was a binary classification task to predict if a bank customer
will default on a bank loan or not. For the experimental sessions,
we provided San Francisco’s employment dataset [Off] containing
5000 data items for the quantitative evaluation. Each row in the data

contains information about an employee’s remuneration containing
attributes such as dental benefits, annual salary, monthly salary,
extra benefits, etc. The task was to predict the employee’s depart-
ment (5 classes). For the qualitative evaluation we used a movies
dataset [Mov] (5000 samples) containing attributes such as budget,
gross revenue, facebook likes of lead actors, director, cast, etc. The
data has three labels for movie rating: high, medium, and low. Fol-
lowing best ML practices, we use multiple test datasets, so that the
constructed model never sees unseen data instances,

6.3. Tasks and Procedure

In the practice session, we asked users to perform 2 tasks per inter-
face. The first task was to design an objective function in QUESTO
by specifying a Critical constraint. They were asked to iterate mul-
tiple times and improve the classifiers performance by refining the
constraint. The next task was to add two more constraints (Similar-
ity, and Candidate) to the objective function in QUESTO and iter-
atively improve the classifiers performance. They repeat the same
tasks by writing code and using CMD to run their code to con-
struct a classifier. For the quantitative evaluation participants are
randomly assigned an interface (QUESTO or CMD). Participants
were encouraged to think aloud while they interact with each sys-
tem. The interviewer was a silent observer and was away from the
participant to mitigate Hawthorne and Rosenthal effect during the
session. Participants performed 3 tasks per interface (6 tasks total).
Each of the tasks were in increasing level of difficulty.

Task 1 Specify the constraint Similarity. (Max time: 3 minutes)
Task 2 Specify Critical, and Candidate. (Max time: 5 minutes)
Task 3 Specify Critical, Similarity, Candidate, F1-Score, Preci-

sion, Accuracy, and Cross-Validation. (Max time: 7 minutes)

For the qualitative evaluation, we asked participants to freely use
QUESTO (may specify any constraint) to build a classifier (on the
movies data), and improve its objective function score in 5 minutes.

6.4. Data Collection

For quantitative assessment, we saved log data which stores (per
iteration) models selected by users, their learning algorithms, and
hyperparameters, predicted class labels, interacted data items, user-
specified constraints etc. When participants completed the three
tasks on both interfaces, we asked them to fill a NASA-TLX form
[HS88], and a post-study questionnaire with a set of likert scale
questions. We asked questions to seek user preference rating to each
interface’s various dimensions such as: (1) Ease of use, (2) Flexi-
bility, (3) Fun to use, (4) Learnability, and (5) Intuitiveness. After
the qualitative evaluation we conducted a semi-structured interview
asking open-ended questions about the workflow, system usability,
and interaction design for each interface. In this interview we asked
questions such as: (1) Describe your thought process while you in-
teracted with QUESTO?, (2) Explain your experience in construct-
ing an objective function interactively vs, through writing code?,
(3) How do you think we can improve the current workflow, and de-
sign of QUESTO? We also captured video and audio of participants
screen while they interacted with QUESTO.
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Figure 6: The study results comparing QUESTO with coding interfaces and Auto-ML techniques for classification tasks.

6.5. Quantitative Analysis

For the following we used the Friedman Test for Repeated-
Measures as it is a good indicator of statistical significance for
multi-class classifiers with multiple datasets, which may not fol-
low a normal distribution as suggested by [Dem06]. Furthermore,
we utilised Post-hoc Wilcoxon signed-rank tests with Bonferroni
correction (new p value = 0.03) to test for statistical significance.

Ease of use: To answer RQ1 we used likert scale rating scores
(5-point scale) from participants (average ease of use rating 4.64,
higher is better, see Figure 6-D). The ease of use of QUESTO was
significant across all tasks: (χ2(1) = 48.03, p < 0.03). thus answer-
ing RQ1 that QUESTO is easier to use than CMD.

Task completion times: Participants were significantly faster to
specify constraints in QUESTO than CMD (Figure 6-C). Every par-
ticipant completed all tasks except for three who failed to complete
task 3 in the allotted time using CMD. In these cases, we recorded
the maximum alotted time for that task. Quantitatively we found
statistically significant difference in task completion time for all
tasks: Task1 (χ2(1) = 16.0, p < 0.03), Task2 (χ2(1) = 16.0, p <
0.03), and Task3 (χ2(1) = 4.0, p < 0.03). This answered RQ1 that
QUESTO is faster to specify constraints than CMD.

Model Accuracies: To answer RQ2, we compared the models gen-
erated using QUESTO, CMD, and Auto-ML with respect to their
accuracies. We found QUESTO generated similar quality models
in relation to accuracies as produced by CMD (refer Figure 6-A).
However, accuracies generated by models from Auto-ML stand
alone were higher in comparison to QUESTO. We observed sta-
tistically significant difference in the model accuracy for task 1
(χ2(1) = 12.25, p < 0.03), and task 3 (χ2(1) = 4.0, p < 0.03).

Constraint satisfaction: We found that QUESTO outperformed
Auto-ML in meeting user-specified constraints for all tasks: Task1
(χ2(1) = 6.25, p < 0.03), Task2 (χ2(1) = 2.25, p < 0.03), and
Task3 (χ2(1) = 9.0, p < 0.03). This answered RQ3. We analysed
this based on data collected from the employment dataset [Off]
(users were given the example data items to specify as constraints),
and on the movie dataset [Mov] (users freely specified constraints).

6.6. Qualitative Analysis

User Preferences: We measured user preferences using 5-point
likert scale rating. QUESTO’s user preference ratings (out of 5)

were higher than CMD workflow in various aspects such as, Easy
of use (Q: 4.53, CMD: 3.22), Fun to use (Q: 4.69, CMD: 2.88) ,
Learnable (Q: 4.34, CMD: 2.97), and Intuitive (Q: 4.38, CMD:
2.87) (see Figure 6-D). In addition, through the NASA-TLX
survey we found that average participants’ cognitive workload was
significantly lower in QUESTO than CMD interfaces (Q: 4.30,
CMD: 8.87, out of 10; lower is better). Based on these results it
is likely that participants preferred QUESTO compared to using
the CMD interface for objective function creation. However, many
participants found CMD comparably flexible to QUESTO to
specify preferences (Q: 3.78, CMD: 3.52) and debug models.

Easy workflow: Every participant found QUESTO’s interface and
the workflow easy to learn and use. Users liked the table view, with
the ability to filter and search for specific data items as examples
for constraint specification. P03 said, “I like how I can mouseover
on the cells of the confusion matrix to see incorrectly predicted
data items.” P08 added, “I frequently brush over the feature panel
to filter data items by a set of attributes I care about.” However,
users recommended that more advanced sorting feature in the table
would have helped them find appropriate examples quickly.

Level of Detail: Some participants had elementary knowledge of
python and ML, while a few others had in-depth ML expertise. P09
reflected “Best part of this workflow is how easy the tool makes
to change my constraints in terms of weighting or ordering them,
which lets me look into a new set of classifiers”. While advanced
ML users appreciated the idea of an interactive interface to define
an objective function, reflected that they would prefer to look at the
numerical weights on each constraint so that they can better trust
how the modeling engine is selecting classifiers. P13 said "Though
the objective function view is very useful, I am not sure if I un-
derstand what’s happening on the background without knowing the
numerical weights on these constraints.

Meaningful constraints: Participants found the constraints in
QUESTO appropriate and useful for classifier construction. P10
added “I think the constraints make a lot of sense to me. When I
test models I frequently look at specific data items to verify if the
classifier modeled the data correctly”. However, a few participants
commented that it would help if QUESTO could recommend items
to consider next. For example, P03 suggested “I think you can use
prediction probabilities to reflect on how confident the model is on
each prediction. That may help me specify better examples.”

Intuitive model selection: Users found the model interpreter view
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useful to compare models based on their performance on the spec-
ified constraints. P17 noted “From the star plot view, I can inspect
the size of the polygons to select models that performed better on
relevant constraints. I would prefer to mouseover (instead of click)
to browse the model output results on the table and the confusion
matrices.” However, participants wanted to see a bookmark feature
to save models they like. Furthermore, one participant desired to
see how each constraint contributed to a change in model output to
understand what interaction improved performance.

Task complexity: The three tasks in the user study had different
levels of complexity. While task 1 and task 2 involved satisfying
only subjective user preferences, task 3 included finding models
that are accurate yet address constraints such as Similarity, Can-
didate, etc. Participants found task 3 more challenging, as finding
the right model that is accurate and addresses their personal goals
was difficult. P15 noted “It was hard to improve the classifiers per-
formance when I had more than 4 constraints to specify. However,
with QUESTO I could rapidly test different weightings/rankings to
these constraints to find an optimal classifier”.

Conflicting constraints: We observed that participants sometimes
specified conflicting constraints. For example, they specified a set
of data item as a Candidate constraint, but in a later iteration they
specified a subset of these data items as a Ignore constraint. As
QUESTO currently does not support alerting users about conflicts,
in future we plan to mitigate them in objective specification.

Modeling process: From the study we found that QUESTO’s
workflow does not help users understand the underlying modeling
process. Often participants wondered what interaction in the previ-
ous iteration led to the improvement or degradation in the accuracy
or the objective function score. Future work could make the mod-
eling process more transparent and allow users to reason about the
impact of their objective specification on classifier selection.

7. Discussion

User-System Feedback loop: Interactive objective functions may
guide an Auto-ML model solver to select models that weigh data
instances preferentially to better support user goals. For example,
an objective function with the Critical constraint will guide the
Auto-ML solver to prefer classifiers that correctly predict specific
items. In response, users may inspect a model in relation to how
well it supports the specified constraints. Thus interactive objec-
tive functions employ a two-way feedback loop between the user
and the system for: (1) communicating preferences to find suitable
models, and (2) providing a medium for understanding classifier
performance. Participants confirmed that (per iteration) they vali-
dated models in relation to how well they support the constraints.

Tradeoff Analysis: Practically, in a multi-objective optimization
problem, satisfying every objective might not be feasible [SAS02]
due to a plethora of reasons including conflicting constraints, math-
ematical infeasibility, noise/outliers in the data, high dimensional-
ity, etc. [KLTH10]. Formalizing user goals as a set of constraints
in an objective function facilitates searching for a set of pareto-
optimal solutions which may only satisfy a subset of the specified
user goals. Furthermore, visualizing these pareto-optimal models
help users inspect them and understand tradeoffs.

ML users often seek models that support other customized
subjective goals/objectives that are personal and problem-specific
([KLTH10]). This study validated that while QUESTO produced
slightly less accurate models than Auto-ML model solvers, they
met subjective user-specified constraints. We envision that users
will need to find a balance between these two extremes.

7.1. Limitations

Scope and assumptions of the user study: In the study we timed
each task to ensure the study can be completed within a reasonable
time. However, in more realistic settings, optimizing for (or lim-
iting) time may not be meaningful. Further, we used pre-defined
hyperameters within which Hyperopt sampled values to construct
classifiers. The study results may vary if the set of hyperparameters
used are different. Also, our study only included participants with
basic expertise of python and ML.

Model overfitting: Good ML practices entail that trained models
have no knowledge of test data. In QUESTO we follow the same
process. The test data view in the data table allows users to inspect
classifiers by reviewing the predictions made at the data instance
level. Furthermore, by specifying the objectives Train-objectives,
and (and weighting them), users can control for model overfit-
ting. Nevertheless, we are aware that if users do not specify , they
may produce overfitted models. However, this may be the case for
command-line classifier construction as well if addition of regular-
izers or cross-validation approaces are not used.

Scalability: The current UI design is based on datasets of mod-
est size. Thus, there are aspects of the UI that would become less
usable if datasets grew larger. For example, while the table view
supports sorting and filtering the fundamental design of showing
items in a table may make finding individual relevant data items
challenging. However, for larger datsets we can augment QUESTO
with visualisations that can aggregate data and show example data
items on demand (e.g., grouped heatmap view, etc.).

8. Conclusion

In this paper we present a design space of constraints, categorizing
various user goals for a classification task. Grounded in this design
space, we developed a prototype system QUESTO that supports in-
teractive construct of objective functions to specify their subjective
preferences to a classifier. Finally we validate the effectiveness of
QUESTO by a within-subject user study that proved that QUESTO
is easier and faster to use than conventional command line alterna-
tives. We also demonstrate that while QUESTO produces slightly
less accurate classifiers than Auto-ML, it produces models that bet-
ter satisfy user-specified constraints. This presents a step towards
understanding how to integrate people into Auto-ML processes.
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