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Fig. 1. The Gaggle user interface allowing people to steer multiple models for classification and ranking.

Abstract— Recent multi-model visual analytics systems make use of multiple machine learning models to better fit the data. This has
been shown to be an improvement over traditional single-model approach in which systems rely on a single, pre-defined model that
may lack the flexibility needed to capture nuances in the data. However, while multi-model visual analytic systems can be effective,
their added complexity poses usability concerns as users are required to interact with the parameters of multiple models. In this paper,
we present Gaggle, a multi-model visual analytics system that utilizes the advantages of steering multiple models while hiding the
added complexity from the user. Specifically, user interaction with Gaggle is similar to existing single-model systems, in that users
can demonstrate groups of similar data points for classification or partial ordering of data points for ranking models. Based on these
user interactions, Gaggle generates multiple models but only presents the best model based on user preferences. As a result, this
multi-model steering approach allows the user to benefit from the increased accuracy of multiple models while retaining the ease-of-use
of a single-model system. To evaluate Gaggle, we conducted a controlled user study. The result confirms our hypothesis that Gaggle
is easy to use and users can discover accurate models without being burdened with keeping track of multiple models. This finding
suggests a possible new approach for visual analytics systems that we discuss in the paper.

Index Terms—visual analytics, user interaction, model steering, interactive machine learning

1 INTRODUCTION

Visual analytic techniques continue to leverage machine learning to pro-
vide people effective systems for gaining insights into data [23]. These
systems help domain experts combine their knowledge and reasoning
skills about a dataset or domain with the computational prowess of ma-
chine learning. For example, domain experts may understand nuances
of the domain or datasets that are not emphasized by the model such
as data quality issues, seasonal effects of temporal data, the increased
importance of a small subset of the data otherwise washed out in the en-
tirety of the whole dataset, or more. Thus, methods are needed that steer
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and parameterize models to incorporate user feedback into the machine
learning algorithms. This paradigm of incrementally incorporating user
input into models is often referred to as model steering [56].

Visual analytic techniques exist that allow users to steer mod-
els. For example, exposing model parameters through control pan-
els give users direct control over aspects of models (e.g., iPCA [28],
Clusterophile2 [15], Hawkeye [45]). More recently, an alternative
method for model steering focuses on giving users the ability to visually
demonstrate their intended changes to the model rather than controlling
the model parameters directly (e.g., [13, 19, 22, 58, 59]). For instance,
InterAxis [31] incorporates user feedback to adjust a linear dimen-
sion reduction model by letting people suggest similar data points that
should be placed near each other. In both of these methods for user
feedback, the mechanism for model steering adjusts the single model
for which the system is designed and developed for. When this model is
correctly chosen for the phenomena, task, data distribution, or question
users try to answer, these existing techniques can effectively support
users in exploration and analysis.

However, this “single-model” approach can be limiting in ex-
ploratory data analysis. For instance, what if the single model for



which the tool is designed for is insufficient in modelling the specific
dataset used? Alternatively, what if the exploratory task of the users
changes over time, and thus a different model is better able to cap-
ture the phenomena being explored? Finally, how can visual analytic
systems support more realistic analysis sessions that regularly require
multiple tasks to be supported (e.g., classifying items into groups, then
ranking the items within each class)?

In these situations, visual analytic techniques that utilize multiple
models may be better suited. Such “multi-model” approaches allow
users to traverse a greater set of possible models that might align better
with their task or domain. For example, Clustervision [?] allows users
to inspect multiple clustering algorithms and select one based on quality
and preference. Similarly, Snowcat [14] allows inspecting multiple ML
models across a diverse set of tasks such as classification, regression,
time-series forecasting, etc.

However many of the current multi-model systems such as Snowcat
do not support multi-model steering. This is likely because with the
added computational advantage of using multiple models comes with
added complexity in usability. For example, Clustervision [?] requires
user input on model parameters, their properties, and metrics such as
the Silhouette Coefficient, Calinski-Harabaz Index, Davies-Bouldin
Index, etc. Thus, while existing multi-model systems are powerful,
some do not support multi-model steering such as Snowcat and others
can be difficult to use such as Clustervision, especially for users with
limited understanding of machine learning or data science.

In this paper, we present Gaggle, a visual analytic system that uses
simple user interactions to enable user feedback to a multi-model steer-
ing technique. Gaggle enables users to classify and rank data items,
where each of these two tasks is supported by a multi-model steering
approach. To keep the interactivity simple, the model steering inter-
actions operate on data cases which serve as demonstrations to steer
the models. For example, to steer classification models, users can drag
data items into specific classes. Similarly, to steer ranking models,
users can demonstrate that specific items should be higher or lower
within a class. Gaggle incorporates user feedback using a multi-model
steering technique. This multi-model steering technique applies user
feedback to multiple models, by steering hyperparameters of multiple
classification and ranking models within a single user interface. Given
user feedback, Gaggle computes an optimal hyperparameter combina-
tion for both types of models using a Bayesian optimization strategy
[39]. Further, our multi-model technique automatically selects the best
model based on model metrics inferred from user interactions. This
simplifies the complexity of steering multi-model systems, allowing
users to interact with Gaggle as if it is a single-model system while
retaining the benefits of using multiple models.

At first glance, it may seem that multi-model approaches are over-
whelmingly advantageous over single-model alternatives. Since they
can explore a broader space of model parameterizations and model
types, it would seem that they should be able to generate a better fit and
thus support exploration better. However, this claim has not been fully
tested. Thus, our paper presents the results of a study that explores
single-model vs. multi-model steering approaches. The purpose of the
study is twofold. First, we want to understand the model switching be-
havior for multi-model steering. How often does the model change, and
why? Second, does the multi-model steering technique produce better
models? To minimize potential confounds caused by user interfaces, we
used the Gaggle interface and interactions for both conditions, where
the only difference between the two is the model steering approach.

The results of our study indicate that multi-model steering outper-
formed single-model steering for complex tasks such as classification
and ranking of a multi-class dataset. However, both multi-model and
single-model steering showed comparable performance for simple tasks
such as binary classification and rankings tasks. Furthermore, the study
revealed when during the analysis process this switching occurred.

Overall, the contributions of this paper include:
• A visual analytic system (Gaggle) which provides either single-

model or multi-model steering for classification and ranking using
simple, demonstration-based user interactions.

• A multi-model steering technique facilitating Bayesian optimiza-

tion based hyperparameter tuning and automated model selection.
• The results of a user study comparing single-model and multi-

model steering for classification and ranking tasks.

2 RELATED WORKS

2.1 Interactions in Visual Analytics
Interactive model construction has been a flourishing avenue of research
in the recent past. In general, the design of such systems make use of
both explicit user interactions such as specifying parameters via graphi-
cal widgets (e.g., sliders), or implicit feedback including demonstration-
based interactions or eye movements to provide guidance on model
selection and steering. These types of systems build many kinds of
models, including metric learning [13], decision trees [55], and dimen-
sional reduction [22, 31, 34]. For example, Jeong et al. presented iPCA
to show how directly manipulating the weights of attributes via control
panels helps people adjust principal component analysis [28]. Similarly
Amershi et al. presented an overview of interactive model building [4].
Our work differs from these models in two primary ways. First, our
technique searches through multiple types of models (i.e., Random
Forest models with various hyperparameter and parameter settings,
as well as ranking models). Second, our tool interprets user interac-
tion as feedback on all models causing hyperparameter tuning directly
changing model behavior in parallel.

Stumpf et al. conducted experiments to understand the interaction
between users and machine learning based systems [50]. Their re-
sults showed that a collaborative shared intelligence-based framework
grounded in user interactions can help both users and systems. Stumpf
et al. conducted a think-aloud study to understand the forms of feedback
humans might give to machines [49]. They found that these included
suggestions for re-weighting of features, proposals for new features and
feature combinations, relational features, and wholesale changes to the
learning algorithm. They showed that user feedback has the potential to
improve ML systems, but that learning algorithms need to be extended
to assimilate this feedback [49].

Interactive model steering can also be done via demonstration-based
interaction. The core principle in these approaches is that users do
not adjust the values of model parameters directly, but instead visually
demonstrate partial results from which the models learn the parameters
[11, 13, 20–22, 25, 35]. For instance, Brown et al. showed how reposi-

tioning points in a scatterplot can be used to demonstrate an appropriate
distance function [13]. It saves the user the hassle to manipulating
model hyperparameters directly to reach their goal. Similarly, Kim et
al. presented InterAxis [31], which showed how users can drag data ob-
jects to the high and low locations on both axes of a scatterplot to help
them interpret, define, and change axes with respect to a linear dimen-
sion reduction technique. Using this simple interaction, the user can
define constraints which informed the underlying model to understand
how the user is clustering the data. Wenskovitch and North used the
concept of observation level interaction in their work by having the user
define clusters in the visualized dataset [59]. By visually interacting
with data points, users are able to construct a projection and a clustering
algorithm that incorporated their preferences. Finally, prior work has
shown benefits from directly manipulating visual glyphs to interact
with visualizations, as opposed to control panels [10, 21, 30, 36, 42, 44].
From a user experience perspective, the work presented in this paper
aligns closely with these demonstration-based techniques. Gaggle’s
interaction design does not presume expertise in model building or steer-
ing, but rather lets users manipulate the visual results of the models to
incrementally refine and steer them.

2.2 Multi-Model Visual Analytic Systems
Das et al. showed interactive multi-model inspection and steering
of multiple regression models [17]. Hypertuner [54] looked at tun-
ing multiple machine learning model’s hyperparameters. Sedlmair et
al. [47] defined a method of variation of model parameters, generating
a diverse range of model outputs for each such combination of pa-
rameters. This technique called visual parameter analysis investigated
the relationship between the input and the output within the described
parameter space. Similarly Pajer et al. [37] showed a visualization



technique enabling visual exploration of the weight space which ranks
plausible solutions in the domain of multi-critieria decision making.
Kwon et al. [?] demonstrated a technique to visually identify and select
an appropriate cluster model from multiple clustering algorithms and
parameter combinations. However they target data scientists, while
Gaggle is designed for users who are non-experts in ML.

Clusterophile 2 [15] enabled users to explore different choices of
clustering parameters and reason about clustering instances in relation
to data dimensions. Another system StarSpire from Bradel et al. [11]
showed how semantic interactions [21] can steer multiple text analytic
models. While effective, their system is scoped to text analytics and
handling text corpora at multiple levels of scale. In contrast, our work
focuses on tabular data, and steering of multiple models within two
classes of models (classification and ranking). Further, our work also
steers hyperparameters of each of these models.

2.3 Human-Centered Machine Learning
Human-Centered Machine Learning focuses on how to include people
in ML processes [4–6, 43]. A related area of study is the modification
of algorithms to account for human intent. Sacha et al. showed how vi-
sual analytic based processes can allow interaction between automated
algorithms and visualizations for effective data analysis [43]. They
examined criteria for model evaluation on an interactive supervised
learning system. The found users evaluate models by conventional
metrics, such as accuracy and cost, as well as novel criteria such as
unexpectedness. Sun et al. developed Label-and-Learn, allowing users
to label data facilitated by interactive visualizations [51]. Their goal
was to allow users to determine a classifier’s success, and to analyze the
performance benefits of adding expert labels [51]. Bernard et al. em-
phasized the knowledge generation process of users performing visual
interactive labeling tasks, as opposed to conventional machine learning
methods [8, 9]. Ren et al. explained debugging multiple classifiers
using an interactive tool called Squares [41].

Holzinger et al. discussed how automatic machine learning methods
are useful in numerous domains [26]. They note that these systems
generally benefit from large static training sets, which ignore frequent
use cases where extensive data generation would be prohibitively ex-
pensive or unfeasible. In the cases of smaller datasets or rare events,
automatic machine learning suffers from insufficient training samples.
They claim, such an NP-hard problem can be successfully solved by
interactive machine learning via input and assistance from a human
agent [26, 27]. This concept of computational models fostering human
and machine collaboration are further explored in [16]. In our system
and technique description, we extend these formalizations by consid-
ering human interaction as an estimation of the loss function of the
models viewed by the user. In doing so, we generalize human centered
machine learning to multiple models.

2.4 Automated Model Selection
Model building requires selecting a model type, finding a suitable
library, and then searching through the hyperparameter spaces for
an optimal setting to fit their data. For non-experts, this task can
amount to many iterations of trial and error. In order to combat this
guessing game, non-experts could use automated model selection tools
such as AutoWeka [33, 53], SigOpt [38], HyperOpt [7, 32], and AUTO-
SKLEARN [24]. These tools execute intelligent searches over the
model space and hyperparameter spaces, providing an optimal model
for the given problem type and dataset. However, these tools are
all based on optimization of an objective function which takes into
account only features or attributes that are quantifiable, often ignoring
user feedback. Instead, our work explores how to incorporate domain
expertise into the model selection process through user feedback.

3 MOTIVATION

Multi-model steering techniques facilitate the adjustment of model hy-
perparameters to incrementally construct models that are better suited to
user goals. In this paper, we consider the common problem of datasets
that either lack adequate ground truth, or do not have it [40, 52, 60]. To
resolve this problem, Gaggle allows users to iteratively define classes

Fig. 2. A hypothetical binary classification problem shows how different
model hyperparameters may be needed to model the changing user
interest at each iteration. Blue and orange points represent positive and
negative classes; white points represent data items not interacted with.

and add labels. On each iteration, users add labels to data items and then
build a classification model. Further, users are able to rank data items
within each class based on criteria relevant to their task or domain.

The need for multi-model steering is exemplified in this iterative
exploration and model building scenario. During this process, users
may change their task definition slightly, or learn new information about
their data. In these cases, their user feedback may be better modelled by
a different model hyperparameterization than their feedback earlier in
the process. Updating the class definition or showing better examples
directly affects the underlying decision boundary which the classifier
needs to map correctly. For example, in the first iteration, a linear
decision boundary might characterize the data. However, when new
examples for classes are provided the decision boundary might be
mapped only using a polynomial or radial surface (Refer Figure 2). In
situations like this, a multi-model steering approach benefits the user
by adjusting model hyperparameters and then automatically selecting a
model which is most appropriate for the task, the label distribution, and
the underlying decision boundary. In contrast, a single-model steering
technique will struggle based on the pre-selected hyperparameters. For
example, an SVM with a linear kernel would inadequately characterize
a non-linear decision boundary.

4 MODEL SEARCH SPACE AND STEERING

This section describes core concepts and terminology used.

4.1 Models
We define a model as a function f : X 7→ Y , mapping from the input
space X to the prediction space Y . We are concerned primarily with
semi-supervised learning models, in which we are provided with a
partially labeled or un labeled training set Dtrain = DU ∪DL, where
DL is labeled data and DU is unlabeled data such that if di ∈ DL, then
di = (xi,yi), and if di ∈ DU , then di = (xi), where xi are features and
yi is a label.

A learning algorithm A maps a training set Dtrain to a model f
by searching through a parameter space. A model is described by its
parameters θ , while a learning algorithm is described by its hyper-
parameters λ . A model parameter is internal to a model, where its
value can be estimated from the data. Model parameters refer to val-
ues that are learned during training of a model, such as coefficients,
while hyperparameters are typically determined through some process
external to training, such as cross validation.

Automatic model selection algorithms search across the set of hy-
perparameter spaces Λ λ ∈ Λ, that correspond to a particular learning
algorithm, and return the model f ∗ = Aλ (Dtrain) that minimizes a loss



Table 1. User tasks, learning algorithms, hyperparameters, and parame-
ters in Gaggle.

Tasks Learning
Algorithm Hyperparameters Parameters

Classification Random Forest
Criteria
Max Depth
Min Samples

Attribute Entropy,
Information Gain

Ranking Ranking
Random Forest

Criteria
Max Depth
Min Samples

Attribute Entropy,
Information Gain

function L ( f ) such as accuracy or mean squared error. In contrast,
visual analytics systems such as Interaxis [31] and Dis-Function [13]
search over the parameter space Θ of a particular learning algorithm
that already has its hyperparameters defined. These systems incorpo-
rate user input to steer model selection by choosing a loss function
L ( f , i) that is dependent on a human interaction i. Our system Gaggle
incorporates user input to search over multiple learning algorithms. The
interactions i that affect our loss function are labelings and rankings
of data points, and learning algorithms are the set of classification and
ranking algorithms.

4.2 Model Search Space

Here we describe model search space, which we define as the complex
possible combinations of different learning algorithms and hyperpa-
rameter values. For example, SVM, Naive Bayes, and Decision Trees
are some of the learning algorithms but there are many more. Every
algorithm has a known set of hyperparameters, which can take values
within a domain range. The space of learning algorithms and hyperpa-
rameters form a potentially infinite model search space. Our definition
of model search space is related to the work by Brown et al. [12] where
they presented a tool called ModelSpace to analyze how the model
parameters have changed over time during data exploration.

Gaggle uses Random Forest and thus builds multiple Random Forest
models by taking hyperparameter combinations within a set domain
range. Gaggle samples across three hyperparameters of Random Forest
(criteria, max depth, min samples to set a node as a leaf) to generate new
models. Specifically, we sample the hyperparameter “criteria”, which
can have the value ‘gini’, or ‘entropy’, the ”max depth” parameter,
D, which represents the maximum depth of the tree, min sample leaf
(see Table 1). While Gaggle uses a Random Forest model for the
quantitative and qualitative system evaluation (explained later in the
paper), the general optimization method used is designed to work with
other learning algorithm and hyperparameter combinations as well.
Gaggle’s optimizer can build multiple SVM models using a set of
chosen hyperparameters such as kernel type, C-value, etc.

4.3 Model Ranking and Selection

Many models can be created by traversing the model search space.
Exposing all of these models to the user might be overwhelming. The
system ranks n = 200 models in the search space by a loss function
L (Aλ ,Dtrain,Dvalid) which returns a single model based on metrics
such as training accuracy, correctly labeled interacted data items, and
correct ranked ordering of interacted data items (Figure 5). This optimal
model is applied to the dataset and shown to the user.

We call our approach semi-automatic because even though the sys-
tem automatically selects the optimal model, they are evaluated based
on metrics the user specifies by interacting and exploring the data. This
approach is well-suited for situations where there is no ground truth,
the quality of training data is questionable, or the end user knows more
about the data than what is explicitly contained in the data. In those
cases, semi-automatic human-in-the-loop based strategies have the po-
tential to build models which accurately represent the user’s expertise
and knowledge. In Gaggle, we infer the value of the loss function based
on the user interactions with the data and model predictions.

Fig. 3. Diagram highlighting Gaggle’s workflow, also exemplified in the
described usage scenario.

5 USAGE SCENARIO

The tasks of classification and ranking are frequent problems faced
by domain experts while exploring and making sense of their data. In
support of this task, Gaggle allows users to assign data points to classes
and then partially order data items within the classes to demonstrate
classification and ranking. Next, the system responds by building multi-
ple variants of classification and ranking models. Gaggle optimizes the
machine learning models to automatically find an optimal model from
the model search space based on performance criteria (explained in the
sections below). This process continues until the users are satisfied with
the model, meaning that the chosen model has correctly learned the
user’s subjective knowledge and interpretation of the data (Figure 3).
At every iteration, users provide feedback to the system through various
forms of interaction (e.g., dragging rows, assigning new examples to
the class labels, correcting previous labels, etc.).
Problem Space: Imagine Jonathan runs a sports camp for baseball
players. He has years of experience in assessing the potential of players.
He not only understands which features from the data are important
to his assessments but also has prior subjective knowledge about the
players. In his day to day work, Jonathan needs to judge areas in
which the players need further improvement. He would like to do this
by placing players into different categories: “Best Players”, “In-form
Players” and “Struggling Players”.
User-Provided Labeling: Jonathan starts by importing the dataset of
baseball players (data publicly available from OpenML [57]). The
data contains 400 players (represented as rows) and 17 attributes of
both categorical and quantitative types. The dataset does not have any
ground truth labels. He sees the list of all the players in the Data Viewer
(Figure 4-B). He creates the three classes mentioned above and drags
respective players in these bins or classes to add labels. Knowing Ernie
Banks and, Carl Yastrzemski as very highly rated players, he places
them in the “Best Players” class. Gaggle shows him recommendations
of similar players in order to facilitate faster labeling. (Figure 4).
Automated Model Generation: Jonathan clicks the build model but-
ton from the Side Bar (Figure 1-F). Based on Jonathan’s interaction so
far, Gaggle runs its optimizer and automatically finds the best perform-
ing model, out of an exhaustive search of over 150 models. When the
system responds, Jonathan continues his analysis of the data. He finds
player Ernie Banks is mis-classified and places him in the “In-form
Players” class instead of the “Best Players”. He moves Ernie Banks and
similar other mis-classified players to the correct class label and asks
Gaggle to find an optimal model that takes his feedback into account.

Gaggle generates a new model and shows Jonathan the updated state
of the training data in the data viewer. He reviews the results to find
that many of the previously mis-classified players are correctly labeled,
and pins them to ensure they do not change labels in future iterations
Next, he looks at the attribute viewer (Figure 1-B) in search of players
with high “batting average” and “home runs” values. He moves players
that match his criteria into respective labels (e.g., placing “Sam West”
and “Bill Madock”, and in the “In-Form Players” class). After the



Fig. 4. Gaggle’s recommendation dialog box.

model recomputes, he verifies the results returned by the model in the
interacted row visualization (Figure 1-C). He accepts the classification
model and moves on to rank the players within each class.

For each class, Jonathan drags players up and down to demonstrate
his understanding of the ranking of players within classes. He iterates
to check the updated optimal ranking model built by Gaggle. He checks
the interacted row visualization to find where the model ranked each of
the players he interacted with. It shows him expected player rank and
assigned player rank (by the current model). He moves player “Norm
Cash” and “Walker Cooper” to the top of the “struggling players” class,
and moves player “Hal Chase” in the “best players” class down. He
iterates further and sees that most of the players are relatively at the
correct ranked spot. As a result, Gaggle helped Jonathan to classify and
rank players solely based on his prior subjective domain knowledge,
following the iterative process shown in Figure 3.

6 GAGGLE: SYSTEM DESCRIPTION

6.1 User Interface
Data Viewer. The main view of Gaggle is the Data Viewer which
shows the data items within each class (Figure 1-A). Users can add,
remove, or rename classes at any point during data exploration and
drag data instances to bins to assign labels. Users can also re-order
instances by dragging them higher or lower within a bin to specify
relative ranking order of items. Gaggle marks these instance with a
green highlight, see Figure 1-G. When Gaggle builds models and finds
an optimal model, the Data Viewer updates the class membership and
ranking of items. Our design decision to solve for a single model to
show at each iteration is to simplify the user interface by removing a
model comparison and selection step.
Attribute Viewer. Users can hover over data items to see attribute
details (Figure 1-B) on the right. Every quantitative attribute is shown
as a glyph on a horizontal line. The position of the glyph on the
horizontal line shows the value of the attribute in comparison to all the
other data instances. The color encodes the instance’s attribute quality
in comparison to all other instances (i.e., green, yellow, and red encodes
high, mid, and low values respectively).
Data Recommendations. When users drag data instances to different
bins, Gaggle recommends similar data instances which can also be
added (Figure 4). This is to expedite class assignment during the data
exploration process. The similarity is computed based on the total
distance Da of each attribute di of the moved data instance to other in-
stances in the data. Users can accept or ignore these recommendations.
Interacted Row Visualization. This view (Figure 1-C) shows the
list of all interacted data items. In addition, with color encoding it
shows correct label matches (shown in blue color) and incorrect label
matches(shown in pink color). Same is true for ranking ( blue for
correct ranked order prediction as expected and pink for otherwise. It
helps users to know how many constraints were correctly predicted.
User Interactions. Gaggle lets users give feedback to the system
to sample models in the next iteration, adjust model parameters and

Fig. 5. The multi-model steering technique used in Gaggle.

Fig. 6. The model sampling and optimization approach for classification
and ranking used in Gaggle.

hyperparameters, and allow users to explore data and gain insight.
• Assign Class Labels: Users can reassign classes by dragging

data items from one class to another. They can also add or remove
classes. These interactions provide more constraints to steer the
hyperparameters of the classification model.

• Reorder Items within Classes: Users can reorder data items
within classes as shown in Figure 1-G to change their ranking.
This interaction helps users exemplify their subjective order of
data instances within classes. This feedback is incorporated into
the models as training data for the Ranking model.

• Pin Data Items: When sure of a class assignment of a data item,
the user can pin it to the respective class bin. It ensures that
data item will always be assigned that class in every subsequent
iterations.

• Constrain Classification Model: When satisfied by the classifi-
cation model, users can constrain the last best classifier. It allows
users to move on to show ranking examples for Gaggle to focus
on improving the ranking model (See Figure 1-C).

6.2 Multi-Model Steering Technique
This section describes the computational techniques which enable Gag-
gle to steer multiple models based on user feedback. Gaggle uses a
multi-model steering approach for both classification and ranking tasks.
When users classify data items, Gaggle constructs multiple classifiers
and finds the best one using Bayesian optimization. When ranking,
Gaggle constructs multiple ranking models and then finds the best one
based on ranking metrics described in this section.
Bayesian Optimization Technique: To facilitate the interactive user
feedback and steering of hyperparameters, Gaggle uses a Bayesian
optimization technique [39, 48] to search and sample models (for both
classification and ranking tasks) from the model search space as shown
in Figure 5. Gaggle seeds the optimization technique by providing:
a learning algorithm A, a domain range Dr for each hyperparameter,
the total number of models to sample n, and how many models to
visualize k. The Bayesian optimization module randomly picks a
hyperparameter combination hp1, hp2 and hp3. For example, a model



M1 can be sampled by providing ”criteria type” = gini, ”max-depth”
= 30, and ”min-samples-leaf” = 12 (”criteria type”, ”max-depth”, and
”min-samples-leaf” are the hyperparameters used in Gaggle). Likewise,
Bayesian optimization samples M1, M2, M3, M4 ... Mn models. For
each such model, it also computes and stores the cross-validation score
defined as cv1,cv2,cv3, ... cvn.

Bayesian optimization uses a Gaussian process to find an expected
improvement point in the search space over current observations. For
example, a current observation could be mapped to a machine learning
model, and its metric for evaluation of the expected probability will be
the model’s cross-validation score. Using this technique, the optimiza-
tion process ensures new sampled models improve over the currently
best-known observation or model. Next, the Bayesian optimization
module finds the model with the best score and updates the remaining
views of the system (see Figure 5). Gaggle performs this process for
both classification and ranking models.

Classification Model Technique: Gaggle begins with an unlabeled
dataset. As the user interacts with a dataset of n items, labels are added.
For example, if the user interacts with f data items, they become part of
the training set for the classification model. The rest of the instances n−
f , are used as a test set to assign labels from the trained model. If f is
lower than a threshold value t, then Gaggle automatically finds s similar
data instances to the interacted items and places them in the training set
along with the interacted data items. The similarity is measured by the
cosine distance function using the features of the interacted samples.
This ensures there is enough training samples to train the classification
model effectively. As the user iterates and interacts with more data
instances, the size of the training set grows and test set shrinks, helping
build a more robust classifier. For each classification model, Gaggle
also determines the class probabilities Pi j , representing the probability
of item i classified into class j.(e.g., P10,P20,P11,P21,P31,P41, ...etc.)
The class probability is used to augment the ranking computation as
they represent the confidence the model has over a data instance to be
member of a said class.

Ranking Model Technique: Gaggle’s ranking model is inspired
by [29, 58] which helps users to subjectively rank multi-attribute data
instances. However, unlike these works, we used a Random Forest
model (a similar approach to [61]) to classify between pairs of data
instances Ri and R j. The model predicts if Ri should be placed above
or below R j. We do the same between all the interacted data samples
and the rest of the data set. Besides, we augmented it with a feature
selection technique based on the interacted rows. For example assume
a user moves Ri from rank Bi to B j where i > j (the row is meant to
have a higher rank). The feature selection technique checks all the
quantitative attributes of Ri and retrieves m = 3 (the value of m is learnt
by heuristics) quantitative attributes Q1, Q2 and Q3 which best repre-
sents why Ri should be higher in rank than R j These features are the
ones in which Ri is better than R j. If i < j (or if the row was meant
to have a lower rank) Gaggle again retrieves m = 3 features. These
features are the ones which best represents why Ri should be lower in
rank than R j. We do the same for all the interacted rows and finally
we get a set of features (Fs, by taking the common features from each
individually interacted row) which defines the user’s intended ranked
order. In this technique, if a feature satisfies one interaction but fails on
another, they are left out. Only the common features across interacted
items gets selected. The set of selected features Fs was then used to
build the Random Forest model for Ranking. Using the classification
models (class probabilities) and the ranking models Gaggle ranks the
data instances within each class. A ranking model assigns a ranking
score Ei j to each data instance by which they are sorted (ith instance, of
jth class). A final ranking score is computed by combining the ranking
score of a data instance Ri and its class probability Pi j , derived from the
classification model. It is represented as Rni = Ei j ∗Wr +Pi j ∗ (1−Wr)
where Rni is new rank, Wr is the weight of the rank score and 1−Wr is
the weight of the classification probability (See Figure 6). The weights
represent the proportion by which the class probabilities affect the
ranking score, and sum to 1.

6.3 Model Ranking and Model Selection

This section describes how our multi-model steering technique ranks
multiple ML models and automatically selects the best model. Gaggle
selects an optimal model from a pool of models based on the following
metrics which describe each model’s performance:
Classification Metrics: Metrics used to evaluate the classification
models include: percentage of wrongly labeled interacted data instances
Cl , cross-validation scores from 10-fold evaluation Cv, and accuracy
of the whole dataset Ca. The final metric is the sum total of these
components computed as, Cl ∗Wl +Cv ∗Wv+Ca ∗Wa where Wl , Wv, Wa
are the respective weights for each of the aforementioned classification
metric components. Different weight values were tested for both single
and multi-model steering technique. Finally we chose the set of weights
which led to the best gain in model accuracy.
Ranking Metrics: To evaluate the ranking models, Gaggle computes
three ranking metrics based on the absolute distance from the instance’s
position before and after a said model Mi is applied to the data. Assume
a row r is ranked q when the user interacted with the data. After
applying model Mi to the data, the row r is at position p, then the
absolute distance is given by Dr = abs(p−q). The first ranking metric
computes the absolute distances only between the interacted rows. It is
defined as Du = ∑r∈Ri

dr where row r is in the set Ri of all interacted
rows. The second metric, Dv, computes the absolute distance between
the interacted rows and the immediate h rows above and below of each
interacted rows. In Gaggle, h defaults to 3 (but could be adjusted).
The third metric, Dw, computes the absolute distance between all the
instances of the data before and after a model is applied. defined
as Dw = ∑r∈R dr where row r is in the set R of all rows. A lower
distance represents a better model fit. The final ranking metric is
computed by the weighted summation of these metrics defined as
Dtotal = Du ∗Wu + Dv ∗Wv + Dw ∗Ww, where, Wu, Wv, Ww are the
weights for the three ranking metrics. Weight values were tested for
both single and multi-model steering techniques, and chosen based on
the set of weights which gave the best model accuracy.

7 USER STUDY

The goal of the study is to compare the multi-model steering (MMS)
technique presented in this paper with a single-model steering (SMS)
technique for a classification and ranking task. We tested the two model
steering techniques using Gaggle. Both conditions use Gaggle’s user
interface and interactions to minimize the potential confounds caused
by used different tools, and isolate the effect of MMS.

For the SMS condition, Gaggle used a single model steering tech-
nique with a pre-selected ML model. The hyperparameters for this
model were chosen by training the model with a preset target label
as the ground truth, using SK-Learn’s random search technique [46]
to find a hyperparameter combination with the best cross-validation
score. This provided the SMS condition with a realistic starting model
for the task. The MMS technique performed multi-model steering, as
described in Section 6.2.

The primary research questions our study seeks to answer are:
Q1 How and when does model switching occur in the MMS condi-

tion?
Q2 How does performance compare between the MMS and SMS

conditions?
Overall, we hypthesize that MMS will outperform SMS in our study,

as it searches through a larger model space in each iteration, and should
thus fit the user’s preferences more closely. To understand this in more
detail, our study tests the following hypotheses:
H1 MMS will outperform SMS (with respect to accuracy) for the

combined task of classification (both multi-class and binary) and
ranking.

H2 For multi-class classification and ranking problems, MMS will
outperform SMS with respect to accuracy.

H3 For binary classification and ranking problems, MMS will outper-
form SMS with respect to accuracy.



7.1 Participants

We recruited 22 graduate and undergraduate students (14 male, 8 fe-
male). The only inclusion criteria were that participants should be
non-experts in ML, and have adequate knowledge of movies and cities
(datasets used for the study). All participants rated themselves fluent in
English. None of the participants used Gaggle prior to the study. We
compensated the participants with a $10 Amazon gift card. The study
was conducted in a quiet lab environment using a laptop with a 17-inch
display and a mouse. The full experiment lasted 60-70 minutes.

7.2 Study Design

The experiment with Gaggle was a 2 × 2 within-subjects study. Par-
ticipants used Gaggle with SMS and MMS techniques to classify and
rank data items. For each technique, participants were asked to com-
plete 4 tasks: multi-class classification of items (3 classes), ranking
the classified data items, binary classification of items, and ranking the
classified data items. To reduce learning and ordering effects, both of
the model steering techniques (SMS and MMS) and the dataset choice
(Movies [3] and Cities [2]) were randomized for each trial. In total,
each participant performed 8 tasks, 4 per model steering technique.

7.3 Tasks and Procedure

We began each study with a practice session to teach users about the
workflow and interaction capabilities of the system. During this session,
participants performed 4 tasks (multi-class classification + ranking and
binary classification + ranking) on a Cars dataset [1]. We proceeded
to the experimental sessions only when participants were confident
enough to correctly use the system. For each trial, we randomized
the order of SMS and MMS to minimize ordering effects. For each
technique (SMS and MMS) participants built a multi-class classifier
first. This was followed by a binary classification and ranking task on
the same dataset. Then they repeat the same set of tasks on the alternate
dataset. The study used two datasets, Movies [3] and Cities [2]. The
movies data had 210 items, with 11 attributes while the cities dataset
had 140 items with 45 attributes. We asked participants to create
specific classes for each dataset. For the Movies dataset multi-class
labels were sci-fi, horror/thriller, and misc, while for the Cities dataset
multi-class labels were fun-cities, work-cities, and misc. For the binary
classification task, the given labels were popular and unpopular (for
Movies dataset), and western and non-western (for Cities dataset).

After each set of tasks, we asked users to answer a questionnaire..
We asked users to tell us in which class a sample of 15 data points
(either Cities or Movies, depending on trial) should appear to test how
well the user’s categorization matches that of the model. Then, we
ask them to provide the relative rank order of these data items, and
compared that to the model’s ranking. After completing both sessions,
we conducted a semi-structured interview, where we asked open-ended
questions, including: What was your experience using Gaggle? Tell me
what intrigued you about the interactions? Which model do you think
performed better (SMS or MMS)? Which interactions were helpful or
confusing to perform the designated tasks?

7.4 Data Collection and Analysis

For quantitative assessment, we primarily rely on log data which stores
model hyperparameters per iteration, class labels of the data items per
iteration, the model’s learning algorithm, data items users interacted
with, etc. We also collected screen and audio recordings. We also
collected qualitative feedback through a semi-structured interview.

We considered five dependent variables for this study: Model accu-
racy (classification): the accuracy of the model in predicting correct
labels, Model accuracy (ranking): the accuracy of the ranking model
Perceived accuracy (classification): number of correctly labeled data
items (as obtained from the 15 data points we ask users to label), Per-
ceived accuracy (ranking): number of correctly ranked data items (as
obtained from the questionnaire after each session), and User prefer-
ence: preference of SMS or MMS for various tasks (see Figure 9)
provided by the user as a feedback from the questionnaire.

Fig. 7. The number of correctly predicted labels for interacted data items.

Fig. 8. Average Model and Percieved accuracy of SMS and MMS.

7.5 Quantitative Study Results
Defining Task Accuracy. We compare the two model steering tech-
niques (SMS and MMS) with respect to which one is more capable of
building a model which satisfies the user constraints. We analyze and
report accuracy for each task (ranking and classification) using the met-
rics model accuracy and perceived accuracy. We compared the model
accuracy and perceived accuracy for each interface and tested for sta-
tistically significant differences. Figure 8 shows model and perceived
accuracy for each task.
Task Accuracy Across All Tasks. To test H1, we conducted a
Friedman Test for Repeated-Measures and found a significant dif-
ference in model accuracy between the interface type SMS (M =
0.512 [0.477,0.547]) and MMS (M = 0.786 [0.732,0.840]) for all
four tasks combined. Post-hoc Wilcoxon signed-rank tests with Bon-
ferroni correction found statistical significance (M(p < 0.05)). We
used the Friedman Test for Repeated-Measures as it is a good indi-
cator of statistical significance for multi-class classifiers with multi-
ple datasets as suggested by [18]. Similarly, we conducted Friedman
Test for Repeated-Measures with Post-hoc Wilcoxon signed-rank tests
for perceived accuracy for SMS (M = 0.410 [0.406,0.414]) and MMS
(M = 0.721 [0.708,0.734]). We found MMS significantly outperformed
SMS for all tasks (M(p < 0.05)), confirming H1 (see Table 3).
Task Accuracy for Multi-class Classification. To test H2, we con-
ducted a Friedman Test for Repeated-Measures using model accuracy
between the two conditions to determine effects specifically on multi-
class classification and ranking tasks. The results show that participants
performed significantly better with MMS (M = 0.824 [0.821,0.827])
than the SMS (M = 0.623 [0.618,0.628]) for multi-class classification
with M(p < 0.05). Similarly, results for the multi-class ranking indicate
M(p< 0.05). Then we conduct a Friedman Test for Repeated-Measures
between the two interfaces to determine effects on multi-class classi-
fication and ranking tasks with respect to perceived accuracy. These



Table 2. The change in hyperparameters in MMS and change in cross
validation score per iteration for both SMS and MMS

Iter. SMS
Score

SMS
Hyperparam

MMS
Score

MMS
Hyperparam

1 0.76
MaxDepth = 4
Criteria = ’entropy’
MinSamples = 10

0.58
MaxDepth = 2
Criteria = ’entropy’
MinSamples = 3

2 0.45
MaxDepth = 4
Criteria = ’entropy’
MinSamples = 10

0.55
MaxDepth = 12
Criteria = ’gini’
MinSamples = 8

3 0.45
MaxDepth = 4
Criteria = ’entropy’
MinSamples = 10

0.62
MaxDepth = 22
Criteria = ’entropy’
MinSamples = 10

4 0.32
MaxDepth = 4
Criteria = ’entropy’
MinSamples = 10

0.68
MaxDepth = 24
Criteria = ’entropy’
MinSamples = 10

results confirm H2. See Table 5 for results.
Task Accuracy for Binary Classification. We followed a similar
process of analysis for binary classification and ranking tasks. The
Friedman Test for Repeated-Measures with post-hoc Wilcoxon signed-
rank tests with Bonferroni correction on model accuracy could not
prove the statistical significance (p = 0.73 for binary classification and
p = 1.03 for binary ranking task) across SMS and MMS. Similarly we
did not observe statistical significance on perceived accuracy (p = 0.98
for binary classification and p= 1.43 for binary ranking task). Thus, we
cannot conclude that MMS outperformed SMS with respect to model
accuracy for binary classification and ranking tasks. These results do
not confirm H3 (see Table 4).
Model Switching Behavior: For all participants, the MMS technique
resulted in model switching. For participants using the Movies dataset
(multi-class classification task) the max-depth hyperparameter changed
values (ranging from from 3 to 18). Similarly, for the Cities dataset
(multi-class classification task) the hyperparameter Criteria ranged
from entropy to gini. The min-samples hyperparameter varied within
the range of 5 to 36 for both datasets. For the binary classification
task, max-depth ranged from 4 to 9 for both datasets. Also we noticed
the criteria hyperparameter switching from gini to entropy for both
datasets for the binary classification task.

On average the hyperparameters switched M = 9.34 [7.49,11.19]
times to support the multi-class classification and ranking task, while
the average change was M = 5.41 [4.89,5.93] for binary classification
and ranking task. On the other hand, SMS adhered to the pre-defined
hyperparameter setting in each iteration. Though on certain iterations
SMS was able to satisfy the majority of the user constraints, however,
more frequently SMS failed to satisfy most of the user constraints. For
example in the classification task in SMS, the model showed very low
cross-validation score (higher is better, see Table 2). This is explain-
able from the fact that the pre-defined hyperparameter settings in SMS
could model the correct decision boundary only on some iterations (as
observed from the log-data). On the other hand, for each iteration the
MMS technique searched for an optimal model which best character-
ized the decision boundary of the data. Thus, the decision boundary
changed per iteration as the user provided new examples.
Model Performance over time: We compare the model performance
in terms of the number of wrongly predicted labels for interacted data
instances per iteration. For the multi-class classification task, SMS
model output was inconsistent which meant on some iterations the
model correctly predicted most of the data items, but the prediction
quality may drop in later iterations (see Fig. 7). In comparison to
SMS, MMS showed a more consistent performance gain, meaning the
number of correctly predicted labels improved over time. However,
for the binary classification task, the model performance for SMS
and MMS were comparable (see Fig. 7). The results indicate that
binary class labels were relatively easier to predict for SMS even if the
underlying model’s decision boundary was not the best representation
of the actual decision boundary of the data instances.
Number of iterations: Using the SMS technique, participants iter-

Table 3. The mean, SD, and p-value for all tasks combined for both SMS
and MMS. All p-values are Bonferroni-corrected.

Tasks Single-Model
(SMS)

Multi-
Model
(MMS)

p-val

Model Accuracy
All tasks

M = 0.512
SD = 0.035

M = 0.786
SD = 0.054 < 0.05

Perceived Accuracy
All Tasks

M = 0.410
SD = 0.004

M = 0.721
SD = 0.013 < 0.05

Table 4. Mean, SD, and p-values of model accuracy for both classification
and ranking using SMS and MMS. All p-values are Bonferroni-corrected.

Tasks (Model Accu-
racy)

Single-Model
(SMS)

Multi-
Model
(MMS)

p-val

Multi-class classifica-
tion

M = 0.623
SD = 0.005

M = 0.824
SD = 0.003 < 0.05

Multi-class ranking M = 0.781
SD = 0.040

M = 0.912
SD = 0.023 < 0.05

Binary classification M = 0.725
SD = 0.120

M = 0.810
SD = 0.076 = 0.73

Binary ranking M = = 0.81
SD = 0.034

M = 0.832
SD = 0.233 = 1.03

ated more (compared to the MMS technique) until they found an ac-
ceptable ML model. For example, the average number of iterations
and standard deviation for the multi-class classification task on the
Movies dataset was M = 3.85 [3.31,3.49] with MMS, compared to
M = 6.36 [5.08,7.64] with SMS. Thus compared to MMS, users had
to iterate more with SMS to adjust the model behavior by showing
meaningful examples to suit their goals.
User Preference: We analyzed the data to for correlations between
user preference (Likert scale rating between 1 to 5) per condition (SMS
or MMS) with classifier type (multi-class and binary, hot encoded to
convert to numeric data, 0 for multi-class, 1 for binary). We found a
significant Spearman’s correlation (rs = 0.51, p ¡ .001) between classi-
fier type (multi-class and binary) and system preference (preference of
SMS or MMS as indicated by the user). This means that users strongly
preferred MMS (Likert rating, MMS = 4.1 and SMS = 3.2) over SMS
for multi-class classification task. For binary task users gave average
rating to both systems (Likert rating, MMS = 4.1 and SMS = 3.2).
The mean preference for SMS and MMS interface, were 3 and 4.05
respectively (from a score between 1-5). See Figure 9.

7.6 Participant Feedback
Drag and drop interaction: All the participants liked the drag and
drop interaction to demonstrate examples to the system. “I like the
drag items feature, it feels very natural to move data items around
showing the system quickly what I want” (P8). However, with a long
list of items in one class, can become difficult to move single items.
One participant suggested, “I would prefer to select a bunch of data all
at once and then drag-drop them as a collection”.

Table 5. Mean, SD, and p-values of perceived accuracy for classification
and ranking using SMS and MMS. All p-values are Bonferroni-corrected.

Tasks (Perceived Ac-
curacy)

Single-Model
(SMS)

Multi-
Model
(MMS)

p-val

Multi-class classifica-
tion

M = 0.324
SD = 0.121

M = 0.611
SD = 0.100 p < 0.05

Multi-class ranking M = 0.418
SD = 0.055

M = 0.578
SD = 0.210 p < 0.05

Binary classification M = 0.592
SD = 0.101

M = 0.622
SD = 0.051 = 0.98

Binary ranking M = 0.583
SD = 0.087

M = 0.654
SD = 0.212 = 1.43



Fig. 9. User preference for SMS vs MMS for the four tasks.

Need for Filtering: Users found the large list of data attributes cum-
bersome to navigate. P9 said “I was comfortable with the movies
dataset as the number of attributes to look at was less, however for
the other dataset (cities), there were way too many attributes to look
through and I ended up classifying and ranking by my prior knowl-
edge instead.” Further, participants found the design of the attribute
viewer helpful to find representative data items to label. “Seeing the
attributes with red, yellow, and green color encoding helped me under-
stand movies which are high or poorly rated and I made the judgment
on popular and unpopular movies based on that” (P14). However,
others pointed that filtering the data by attributes and working on the
subset would have helped them find and specify examples to the system
more easily. For example, P19 said “Setting a filter range by attribute
would have shown me all the cities with English speaking population
with an active nightlife. However, I had to figure that out by hovering
over each city one by one.” One of the motivations of the current design
was to encourage users to think at the data item level, however filtering
functionality may improve performance by reducing the dataset into
smaller subsets to work on.
Ease of system use: Our system design methodology was to shield
the complexity of model building and model selection as much as
possible. We focused on designing the system in a way that encourages
users to think about their prior knowledge and communicate that to the
system. Most participants found the system simple to use. P12 said

“The process is very fluid and interactive. It is simple and easy to learn
quickly.” P12 added “While the topic of classification and ranking
models is new to me, I find the workflow and the interaction technique
very easy to follow. I can relate to the use case and see how it [Gaggle]
can help me explore data in such scenarios.”
Recommended items: Recommending data while dragging items
into various labels helped users find correct data items to label. P12
said “I liked the recommendation feature, which most of the time was
accurate to my expectation. However, I would expect something like
that for ranking also ....” P02 added “I found many examples from the
recommendation panel and I did not have to scroll down. I felt it was
intelligent to adapt to my already shown examples.”
User-defined Constraints: The interacted row visualization helped
users understand the constraints they placed on the classification and
ranking models. P14 said “The interacted row visualization shows me
clearly what constraints are met and what did not. I can simply keep
track of the number of blue encodings to know how many are correctly
predicted”. Even though the green highlights in the data viewer also
mark the interacted data items, the interacted row view shows a list of
all correct or incorrect matches in terms of classification and ranking.
P03 remarked “Without the interacted row view, I cannot keep track of
all the data items I interacted with, especially after iteration 4 when
the number of items I interacted was over 20.”

8 DISCUSSION AND LIMITATIONS

Several important challenges and opportunities arose throughout the
development and design of Gaggle. We reflect on these below.

Over-fitted Models: One of the challenges in a system like Gaggle is
overfitting. An overly aggressive search through the model space might
lead to a model which best serves the user’s added constraints, but
might underperform on an unseen dataset. While we designed Gaggle
with the assumption that the data does not necessarily have ground
truth in it, understanding the role of overfitting in this context is still
and open challenge for human-in-the-loop visual analytic systems.
Large Search Space: Searching models by combining different learn-
ing algorithms and hyperparameters leads to an extremely large search
space. As a result, a small set of constraints on the search process would
not be able to sufficiently reduce the space, leading to a large number
of sub-constrained and ill-defined solutions. This leads to the ques-
tion, how many interactions are considered optimal for a given model
space? In this work, we approached this challenge by using Bayesian
optimization model ranking. However, for larger search spaces scala-
bility may become an issue. Similarly, too many user constraints may
“over-constrain” models, leading to poor results.
Model Selection Strategy: The current model selection strategy
in Gaggle automatically picks an optimal model from the pool of n
models based on model performance metrics. This shields the user
from reviewing each model’s complex model metrics and parameters.
However, for advanced users we can think of a scenario where Gaggle,
instead of selecting the best model, exposes k models for the user to
review and select. To ensure a diverse set of models, these k models
can be selected such that their output on the data is noticeable different
from each other. The intent in such a design will be to give the user a
diverse set of models to review and explore.
Abrupt Model and Result Changes: As users steer different models
while interacting with Gaggle, there may be significant changes in the
results of these models. For example, users might choose Random
Forest with ”criteria = gini with depth of tree = 50” in one timestep and
”criteria = entropy with depth of tree = 2”, a model with entirely different
hyper-parameter values, and potentially different results. One argument
against the possibility of a cognitive dissonance is that, Gaggle was
designed with the notion, that in a model, the user only cares about its
implication on the data. As the user is not conversant with the meaning
of specific model details like parameters or hyperparameters, the design
focus should be on the ability to evaluate the efficacy of a model at the
data instance level (i.e., if a critical data instance is correctly classified
or ranked). The results of these new models are likely judged based
on how well they meet the constraints based on the data points (e.g.,
did the model correctly classify and rank the points I interacted in the
previous iteration?). However, exploring methods for showing users
what changed between model iterations is an open challenge.
Experimental Design: Our study showed that MMS outperformed
SMS in complex multi-class classification and ranking tasks. However,
the performance of SMS relies on the choice of learning algorithms
and hyperparameters selected. If an optimal single model is selected,
the performance of SMS will increase, and may change the results of
the study. However, MMS approaches are still valuable in situations
where choosing the optimal hyperparameter settings a priori is difficult,
or where the user’s task may change during the analysis.

9 CONCLUSION

In this paper, we present a multi-model steering approach for helping
people perform classification and ranking tasks. Steering models is
a commonly used technique for helping people explore data through
the lens of models. Existing visual analytic techniques that leverage
model steering focus on steering a single model. However, as explo-
ration typically involves exploring different alternatives and performing
different tasks, the need to steer different models becomes important.
In response, we present Gaggle, which lets users incrementally steer
model hyperparameters of multiple models based on user feedback.
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