
BROADWAY: A SOFTWARE ARCHITECTURE FOR
SCIENTIFIC COMPUTING

�

Samuel Z. Guyer
Dept. of Computer Sciences

The University of Texas

Austin, TX 78712 USA

sammy@cs.utexas.edu

Calvin Lin
Dept. of Computer Sciences

The University of Texas

Austin, TX 78712 USA

lin@cs.utexas.edu

Abstract Scientific programs rely heavily on software libraries. This paper describes the
limitations of this reliance and shows how it degrades software quality. We
offer a solution that uses a compiler to automatically optimize library imple-
mentations and the application programs that use them. Using examples from
the PLAPACK parallel linear algebra library, we present our solution, which in-
cludes a simple declarative annotation language that describes certain aspects of
a library’s implementation. We also show how our approach can yield simpler
scientific programs that are easier to understand, modify and maintain.

Keywords: software libraries, optimization, meta-interfaces

�
This work was supported in part by NSF CAREER Grant ACI-9984660, DARPA Contract #F30602-97-

1-0150 from the US Air Force Research Labs, and an Intel Fellowship.

1

2

1. INTRODUCTION

The goal of a software architecture is to promote code reuse and to allow
programs to be easily maintained and modified. These goals are particularly
difficult to achieve in the context of scientific computing, which can be char-
acterized by three properties: (1) efficient runtime performance and efficient
memory usage are critical, (2) the practitioners of scientific computing are typ-
ically not schooled in software engineering, and (3) deep knowledge of the
scientific domain is required. The first property tempts programmers to em-
phasize performance over clarity, which often complicates the long term main-
tenance and portability of scientific codes. The second property explains why
scientific programmers are typically unwilling to try novel languages or to use
sophisticated design methodologies. In particular, it explains why scientific
computing relies so heavily on software libraries. The third property, the re-
quirement of deep domain knowledge, represents an underutilized opportunity
that we will attempt to exploit.

Software libraries offer several strengths. They do not require the user to
learn new language syntax, they can raise the level of abstraction to support
common operations, and they provide a simple means of reusing code. Thus,
software libraries have become a de facto software architecture for scientific
programming. Unfortunately, libraries place the burden of optimization on the
library user and force optimizations to be implemented directly in the appli-
cation’s source code. As this paper will illustrate, these manual optimizations
adversely affect the application program by decreasing clarity, reusability, and
portability, while increasing program complexity.

This paper describes a method of automating the optimization of library
implementations and the application programs that use them. This new ap-
proach allows applications to use simpler interfaces to existing libraries, and it
yields cleaner application programs that are easier to understand and maintain.
Furthermore, our approach allows scientific programmers to continue using
libraries in the same manner with which they have become accustomed. In
essence, we are proposing a method of transforming software libraries into a
viable and effective software architecture.

Figure 1 shows the overall architecture of our system. At the core is the
Broadway compiler, which takes as input the application source code, the
library source code, and a set of annotations that describe the library. The
compiler produces as output an integrated, optimized library and application
program.1 The annotation language is critical because it conveys to the com-

1Many variations of this system are possible. For example, the library source might be encoded to prevent
general access to the source, and the output code does not necessarily need to be produced as a single unified
piece of code.

Broadway: A Software Architecture for Scientific Computing 3

Broadway Compilersource code

Library

Application

Annotations Header files Source code

Integrated and optimized
code

Figure 1 Architecture of the Broadway Compiler system

piler domain-specific information that can be used in the optimization process.
These annotations allow the Broadway compiler to analyze and manipulate
library operations in the same way that ordinary C compilers analyze and ma-
nipulate the primitives of the C language.

This paper makes the following contributions.

We illustrate the long term maintenance and portability problems caused
by the use of libraries in high performance programs.

We describe the Broadway annotation language as a meta interface and
explain how it improves the maintenance and portability of applications
that use libraries.

The remainder of this paper is organized as follows. Section 2 explains
the weaknesses of using software libraries as an architecture for creating
performance-critical applications. Section 3 then explains how performance
optimizations are typically applied to traditional libraries, and Section 4 ex-
plains how our solution uses a meta interface to address the weaknesses of
existing software libraries. Section 5 discusses the long term benefits of our
solution and its meta interface. We distinguish our work from related work in
Section 6 and conclude in Section 7.

2. WEAKNESSES OF SOFTWARE LIBRARIES

Software libraries lead to a number of closely related performance prob-
lems:

1 Different clients have different needs. An implementation that is ap-
propriate for one client can be inappropriate for another. Here we use
the term “client” to refer to an application program that invokes library
routines.

2 “Separation of concerns” inhibits information flow across interfaces.
The performance of a library can typically be improved if the implemen-
tor is made aware of the client’s needs.

3 Worst case assumptions provide generality at the expense of per-
formance. To provide correct behavior in all situations, libraries make

4

worst case assumptions, which can lead to excessive copying of data,
excessive synchronization, and unnecessary initialization of data.

4 Modular structure leads to poor resource management. To provide
encapsulation and safety, memory management is typically performed
by library routines. However, resource management can often be im-
proved by giving the application program control so that resources can
be managed globally.

These performance problems are significant because they lead to a phe-
nomenon that we call Interface Bloat. The only way that libraries can support a
diverse set of clients is to provide a wide interface that includes a large number
of specialized routines. Such interfaces can often be separated into two groups,
a Core interface that provides all of the basic functionality of the library, and an
Advanced interface that provides specialized routines that are applicable only
in specific situations.

Interface Bloat leads to both short term and long term problems. The first
short term problem is that large, complex interfaces are difficult to use. For ex-
ample, MPI provides 12 ways to perform point-to-point communication [18].
These routines don’t differ in their functionality, but differ in their buffering
of data, their completion semantics, etc. The second short term problem is
that the routines in the Advanced interface are typically more difficult to use,
which increases the complexity of application programs. For example, MPI’s
Ready-Send assumes that the sending and receiving processes are already syn-
chronized and that the receiver has prepared a sufficient buffer for the receipt of
the message. Thus, Ready-Send requires the careful orchestration of the send-
ing and receiving processes. Another example comes from the GNU Multi-
Precision Library [11]:

The ����� functions [the Advanced interface] are designed to be as fast as pos-
sible, not to provide a coherent calling interface. The different functions have
somewhat similar interfaces, but there are variations that make them hard to use.
These functions do as little as possible apart from the real multiple precision
computation, so that no time is spent on things that not all callers need.

More seriously, Interface Bloat leads to long term software engineering
problems with respect to both portability and maintenance:

No performance portability. Ready-Send is typically the most effi-
cient form of point-to-point communication on distributed memory machines,
but on machines with hardware support for shared memory, ���	�
������� and
���	� �������� are faster. Thus, programmers must recode their application to
optimize the communication for different machines. This means, for exam-
ple, that the invasive changes required to use Ready-Send can be counter-
productive, as they complicate any subsequent porting and tuning efforts.

Broadway: A Software Architecture for Scientific Computing 5

Premature Optimization Complicates Maintenance. The use of special-
ized routines represents a form of premature optimization, which is a common
source of problems [16]. Because the optimizations are embedded in the source
code, the program’s overall logic can be obscured, making programs more dif-
ficult to read and maintain. For example, to be profitable, an asynchronous
receive requires that some computation be moved above the ���

� ���� to hide
the latency of the message:

��� ���
	�� ��� ���
	�
������� 	�� ����� ������� 	�
��� ������� � 	��� ��� ������� ��� 	���

 �! ���
	�
��� ������� ��" 	���

This restructuring of the computation can make the program more difficult
to understand since it breaks a single logical unit of computation into two
pieces. It also implicitly introduces new dependence relations among the dif-
ferent pieces of code that must now be maintained. In the above example, the
code in #%$'&)(�� ��+*	��� cannot be dependent on the data that is being sent.

Interface Bloat Defeats Modularity. Bloated interfaces often expose im-
plementation details to the client. This violation of Parnas’ modularity prin-
ciple [19] leads to an overly strong coupling between modules. Whereas a
buffered Send routine encapsulates all synchronization, Ready-Send scatters it
throughout the program. Strong coupling defeats portability, as different hard-
ware environments can prefer different versions of the point-to-point commu-
nication routines [6].

3. LIBRARY-LEVEL OPTIMIZATION

This section explains how the use of libraries can be optimized without in-
curring the penalties described in the previous section. We present a detailed
example using a parallel linear algebra library, and we use this example to draw
conclusions about library-level optimization and to characterize our compiler-
based solution.

3.1. PLAPACK EXAMPLE

The PLAPACK library is a set of routines for coding parallel linear algebra
algorithms in C or Fortran [21]. PLAPACK aims to provide high performance,
and the library has been carefully designed by experts in the area of parallel
linear algebra. PLAPACK consists of parallel versions of the same routines
found in BLAS [8] and LAPACK [1]. At the highest level, it provides an
interface that hides much of the parallelism from the programmer.

6

PLAPACK provides abstractions that can be useful for performing optimiza-
tions. For example, PLAPACK programs manipulate linear algebra objects
indirectly though handles called views. A view consists of data, possibly dis-
tributed across processors, and an index range that selects some or all of the
data. A typical algorithm operates by partitioning the views and working on
one piece at a time. While most PLAPACK procedures are designed to accept
any type of view, the actual parameters often have special distributions. Rec-
ognizing and exploiting these special distributions can yield significant perfor-
mance gains [2].

(6) Continue using A22 as A:

(3) Factor A11:

(2) Logically partition A:

(1) Find best partition size:

(4) Solve A21 <− A21*A11 :

(5) A22 <− A22−A21*A21 :

while (1) {

}
 A = A22;

 minus_one, A21, one, A22);
 PLA_Syrk(PLA_LOW_TRIAN, PLA_NO_TRANS,

 one, A11, A21);
 PLA_TRANS, PLA_NONUNIT_DIAG,
 PLA_Trsm(PLA_SIDE_RIGHT, PLA_LOW_TRIAN,

 Factor(A11);

 if (size == 0) break;
 size = min3(nb, size_l, size_t);
 PLA_Obj_split_size(A, PLA_SIDE_TOP, &size_r, &tmp);

 &A21, &A22);
 PLA_Obj_split_4(A, size, size, &A11, &A12,

 PLA_Obj_split_size(A, PLA_SIDE_LEFT, &size_l, &tmp);

−T

T

Figure 2 Cholesky factorization using PLAPACK.

Figure 2 shows a Cholesky factorization program written with PLA-
PACK, along with graphical depictions of the matrix at each step. The
����� ����� 	�(�
 � 	 ��� � routines ensure that the split occurs on a processor
boundary. Thus, the smallest piece, �+* * (the black view in step 3), resides
entirely on a single processor, and �� * (the black view in step 4) resides on a
column of processors. We can exploit these two facts by replacing the general-
purpose ������������	�& and ��������������� routines with customized routines that run
as much as three times faster [12].

3.2. LESSONS FROM OUR EXAMPLE

A key concept in the above optimization is the replacement of general rou-
tines with specialized routines that can make stronger assumptions about their

Broadway: A Software Architecture for Scientific Computing 7

calling context, and thus can execute more efficiently. Such optimizations are
possible because most bloated library interfaces provide many specialized rou-
tines in their Advanced interface. In the case of PLAPACK, the interface is
technically an “open infrastructure,” which allows library users to see the lower
levels of the library.

Another key to this optimization lies in analyzing the program to discover
the special case matrix distributions. Human programmers who are facile with
PLAPACK can perform such analysis manually. Conventional compilers, how-
ever, cannot perform such analysis because most programming languages have
no notion of a matrix, let alone matrix distributions. Thus, to perform the types
of optimizations described above, the compiler must be informed of the rele-
vant domain-specific abstractions so that program analysis can be phrased in
these terms.

Our compiler-based solution thus uses an annotation language to describe
domain-specific information. The language provides a mechanism for identi-
fying important library-specific concepts, such as the notion of a view in PLA-
PACK, and for enumerating important properties of those concepts, such as the
fact that a view can reside on a single processor. For example, the following
annotation identifies four important properties of views:

� ��� � ��� ������� � � � ��������� � � ����� ����!
	��� ������� ����! � � ��� ������	���! � �
	���� �
��! � ��	�� �
The annotations can also describe how the various library routines manip-
ulate these properties and how such properties can be used to replace a
general routine with a more specific and efficient one. For example, the
����������������� � � ���	 (�
 � ��� ��� routine might have the following annotation:

� ��� � �
�
��������� ����� ��� � � 	 ���
� " 	 � ��� � 	�� ��!��#" �$	��#% � � � ��!#"��'�
�
&�&�&('�' � �#" ��� ! ��� � � ! � � � � � � �%����� � �

� ��� � ��� ������� � � � ������� � � �)�
	+*�� �� %� & � � � � � �,����� � � � ��� ��! � � ���'� ��� 	��#% � �-� ����!�	�� � ��!#"�� � ��! � � ���
��

� � ��� � !
	 ��. ! � � � � � �
	+*�� �� %� & � � � � � �,����� � � � ��� ��������� ���0/��#� � ��

�

The (��
$%(� � �� construct indicates that this routine creates two views,
��21�
and � ��3�4 , with the specified properties; the 	�(��# � ��
 � � �� � $�5 	 construct
indicates that if 6 � ��� * (which is associated with $ � � through an anno-
tation that is elided from this figure) is 7%&)(�� , then an invocation of
����������������� � � ���	 (�
 � ��� ��� can be removed since it is a no-op. Our anno-
tation language also provides other features that facilitate program analysis.
Details of our language can be found elsewhere [12, 13].

8

While the optimizations described in this section can be performed manu-
ally, two points are significant. First, such optimizations are tedious and require
intimate knowledge of the PLAPACK library. Second, manual optimization is
limited by the library’s interface, but compiler-based optimization is not. In
particular, the Broadway compiler can specialize library routines in ways that
the library designer did not foresee, producing inlined or cloned versions that
are optimized for their specific calling context.

4. BROADWAY AS A META INTERFACE

Section 2 enumerated four weaknesses of software libraries. The first of
these has previously been identified as a limitation of black boxes [14, 15, 17].
In particular, the use of black boxes leads to performance problems because
the implementation and interface that black boxes provide will inevitably be
inappropriate for some client. One solution to this problem is to provide two
interfaces, a base interface, which most clients use, and a separate meta inter-
face, which allows the black box to adapt to the needs of different clients [14].
Figure 3 shows a Black Box and a Black Box that has been augmented with a
meta interface.

Application Application

Base InterfaceBase Interface

Interface
Meta− Meta−

Program
Black BoxBlack Box

Figure 3 Black Boxes (left) and Black Boxes with Meta Interfaces (right).

The meta interface provides a controlled method of exposing the innards of
a black box. The separation of the two interfaces is significant because each
has different goals and each is aimed at a different user. The meta interface
is aimed at sophisticated users and is typically accessed much less frequently
than the base interface. Meanwhile, the base interface is aimed at the typical
user who does not want to modify the black box. The separation of the two
interfaces allows the base interface to retain the simplicity of an idealized black
box interface.

The remainder of this section evaluates libraries and the Broadway compiler
with respect to meta interfaces. We identify the different types of users in each
system, the interfaces that are presented to these users, and the type of expertise
that is expected of these users.

Broadway: A Software Architecture for Scientific Computing 9

Traditional Libraries. Traditional libraries (Figure 4) have no meta inter-
face. In such systems, there are only two users: the applications programmer
who uses the library, and the library creator. The only way to provide cus-
tomized implementations is for the library creator to expand the base interface,
which forces the library user to deal with all of the problems of interface bloat.
Bloated interfaces are poor substitutes for meta interfaces because they do not
provide any mechanism for changing the implementation. This means that
all specialized routines must be anticipated in advance by the library creator,
rather than created in response to specific client needs.

The shaded boxes in Figure 4 represent the amount of expertise that is re-
quired to implement the various components. For example, with traditional
libraries we see that the library writer must have considerable expertise in the
library domain and must have some understanding of performance and appli-
cation needs to implement algorithms efficiently. Significantly, we see that
the C/Fortran compiler is given no knowledge of the library domain, so any
library-level optimizations must be performed by the applications program-
mer. Thus, considerable burden is placed upon the applications programmer,
who must not only understand the application domain, but must also possess
considerable library, performance, and compiler expertise to achieve good per-
formance.

Specification

Interface
Compiler

����������
����������

Application Expertise
Library Expertise
Performance Expertise
Compiler Expertise

������C/Fortran

��	

�����

����������

��������������

�� ��

Application

Advanced

Library

Core +

Traditional Libraries

Advanced
Annotations

BroadwayApplication

Library

Core

Broadway

Figure 4 Comparison of Software Architectures

Broadway. The Broadway Architecture provides a meta interface to soft-
ware libraries: The annotation language provides a way to change the library’s
implementation so that it is more suitable for a specific client. In this approach,
there is, in addition to the library writer and user, a library expert who creates
the annotations. This person may or may not be the same as the library cre-
ator. While the Broadway architecture shown in Figure 4 is more complex than

10

the traditional library architecture, the added complexity is completely hidden
from the applications programmer and the library writer. For example, the fig-
ure shows how the Advanced interface can be considered a part of the meta
interface, rather than exposed to the applications programmer.

The Broadway meta interface is a language for describing domain-specific
analysis and domain-specific transformations. For example, the language can
easily configure an analysis that determines the data distribution of matrices in
a PLAPACK program, as described in Section 3.1. The annotations can also
concisely specify code transformations that are triggered by the results of this
analysis [12, 13].

5. RESULTS AND DISCUSSION

This section evaluates our solution. We provide experimental evidence that
our solution is effective, and we explain how our system’s meta interface pro-
vides many benefits over traditional libraries.

Figure 5 [12] shows the result of applying our techniques to the ����������� 	�&
routine of the Cholesky factorization program described in Section 3. The
baseline measures the performance of the high quality but general purpose
������������	�& routine. The hand-optimized routine was optimized by members
of the PLAPACK development team to exploit the specific distribution of ma-
trices found in the Cholesky factorization program. Finally, the Broadway-
optimized version represents a compiler-based approach that uses the same
principles. The gap between the hand-optimized and Broadway-optimized ap-
proaches shows an important benefit of automated approaches—they can apply
tedious transformations uniformly and completely.

5.1. BENEFITS OF THE BROADWAY
ARCHITECTURE

Provides a mechanism for improving performance. The Broadway meta
interface improves performance by addressing all four weaknesses of tradi-
tional software libraries (Section 2). First, our solution can create different li-
brary implementations and interfaces for different clients. Second, our solution
conveys library-specific information to the compiler and uses this information
to customize the library for different users. Thus, information flows across the
meta interface through the Broadway compiler. Third, our solution replaces in-
vocations of general routines with invocations to specialized routines, thereby
relaxing worst case assumptions. These specialized routines might already ex-
ist in the library’s Advanced interface, or these specialized routines might be
created by the Broadway compiler. Finally, by integrating library and client
code, our compiler can schedule operations globally, removing redundant op-
erations across procedure call boundaries. While conventional compilers can

Broadway: A Software Architecture for Scientific Computing 11

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
F
L
O
P
S
/
P
r
o
c
e
s
s
o
r

Matrix Size

PLA_Trsm kernel, Cray T3E 36 processors

Broadway optimized
hand optimized

baseline
no optimize

Figure 5 Performance comparison of baseline, hand-customized and Broadway-customized
PLA Trsm() function for the Cholesky program.

perform interprocedural analysis to remove redundant primitive operations, our
compiler can remove redundant domain-specific operations, which typically
leads to much greater runtime savings.

Improves the maintenance and portability of applications. The Broad-
way architecture provides long term benefits in terms of maintenance and
portability. The existence of the meta interface allows the Broadway compiler
to perform library level optimizations, reducing the application programmer’s
temptation to perform premature optimizations. By avoiding the Advanced in-
terface, the programmer improves maintenance and portability. For existing
libraries, our solution allows the Core and Advanced interfaces to be sepa-
rated, with the Advanced interface being considered a part of the meta inter-
face. This separation gives the programmer a simpler view of the library. For
future libraries, our solution allows library designers to create simpler library
interfaces. Thus, as shown in Figure 4, the applications programmer’s task is
considerably reduced, so the predominant expertise required of the library user
is application expertise.

Enhances the value of legacy codes. The annotations are stored sepa-
rately from the application source code and are not visible to the applications
programmer, so our solution applies to existing libraries and existing appli-

12

cations without modification to the vast base of existing source code. Thus,
by separating the annotation language from the base interface, the Broadway
architecture enhances the value of legacy codes.

Amortizes costs. From the compiler writer’s point of view, the Broadway
compiler is ideally written once, and this cost is amortized across many dif-
ferent libraries. From the library annotator’s point of view, the meta interface
is ideally used once to create a set of annotations, and this cost is amortized
over the lifetime of the library and across many applications. By contrast, the
effort to perform manual library level optimization improves the performance
of only a single application.

Provides clean division of labor. Finally, our architecture separates the
roles of the compiler writer, the library writer, and the application writer so
that each task is simplified. All of the domain-specific expertise is localized
in the annotations, which are supplied once by a library expert. The annota-
tion language has been designed to minimize the amount of compiler expertise
required to use it. Thus, all of the static analysis and optimization strategies
are encapsulated in our Broadway compiler, as specific analyses and optimiza-
tions are implicitly configured by the information supplied by the annotations.
Together, the annotation language and Broadway compiler free the application
programmer to focus on designing clean applications and to resist the tempta-
tion to prematurely optimize their source code.

6. RELATED WORK

There has been considerable work in optimizing and customizing software
libraries. The related work can be grouped into two categories. The first main-
tains the traditional library structure as shown in Figure 4, while the second
uses a meta interface approach that is similar to ours. Among the meta inter-
face systems, our approach has the advantage of preserving the existing base
interface exactly.

Smart Libraries. A number of libraries have been built that attempt to
select efficient implementations based on the specific values of input parame-
ters [3, 5, 20]. These libraries provide a restricted degree of customization that
is limited to a pre-defined set of implementations.

Automatically Generated Libraries. ATLAS [23], PHiPAC [4], and
FFTW [10] have shown that efficient machine-specific libraries can be auto-
matically generated. As with the “smart libraries,” these automatically gener-
ated libraries preserve the traditional library structure. These approaches ad-

Broadway: A Software Architecture for Scientific Computing 13

dress the issue of portability but do not provide a mechanism for customizing
libraries for specific clients.

����������Magik

Specification

Interface
Compiler

������
���
���
���
��� Application Expertise

Library Expertise
Performance Expertise
Compiler Expertise

��������������

	�	
�
 ����������

��������������������

�� ������ ����������meta−
program

MOP Compiler

Meta−Object Protocols

Library

Magik

Extensions
AST funcs

Core Core

Application

Library

Application

MOP

Figure 6 Comparison of Software Architectures

Magik. Engler’s Magik system [9] has a structure that is very similar to
ours (see Figure 6). Magik gives the programmer access to a C compiler’s in-
ternal representation and symbol table. Thus, Magik can be used to perform
certain compiler transformations, as well as to extend the C language in limited
ways. Magik differs significantly from Broadway in two ways. First, Magik
theoretically provides more powerful transformational capabilities since it ex-
poses all of the compiler’s internals to the meta programmer. However, this
power comes at a cost: the meta programmer must possess both compiler ex-
pertise and library domain expertise. Second, Magik does not provide the abil-
ity to define new domain-specific analyses, which are central to library-level
optimizations.

Meta-Object Protocols. The notion of meta interfaces was pio-
neered in the domain of object oriented languages and Meta-Object Protocols
(MOPs) [7]. Like Magik, these systems provide a mechanism to change the
way a language is compiled, which provides both optimization and extension
capabilities. In comparison to Broadway, MOPs provide more limited support
for analysis and transformations. Most MOPs also provide ways to change the
syntax of the base language.

Formal Semantics. Vandevoorde [22] defines a system whose structure is
almost identical to Broadway’s, but whose approach is fundamentally differ-
ent. Vandevoorde optimizations are based on formal semantics and theorem
proving, so the transformations require complete formal semantics of a pro-

14

cedure’s behavior, and they depend on theorem proving, which can only be
partially automated.

7. CONCLUSION

In this paper we have explained how the lack of a meta interface encourages
library designers to produce bloated interfaces. These bloated interfaces in turn
create long term portability and maintenance problems. We have shown how
the Broadway solution provides a meta interface that yields a desirable division
of labor—among the library writer, the compiler writer, and the applications
programmer—that is essential in the domain of scientific computing in which
high performance is critical and both libraries and applications require a large
degree of domain expertise. Finally, we have argued that Broadway’s meta
interface enhances the use of software libraries and improves the quality of
application code.

Acknowledgments. We are happy to thank Brad Chamberlain and E
Christopher Lewis for their many helpful comments on the presentation, and
we are grateful to Robert van de Geijn for his invaluable help in explaining the
innards of PLAPACK.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, second edition, 1995.

[2] G. Baker, J. Gunnels, G. Morrow, B. Riviere, and R. van de Geijn. PLAPACK: high per-
formance through high level abstractions. In Proceedings of the International Conference
on Parallel Processing, 1998.

[3] M. Barnett, S. Gupta, D. Payne, L. Shuler, R. van de Geijn, and J. Watts. Interprocessor
collective communication library. In Proceedings of Supercomputing ’94, November
1994.

[4] Jeff Bilmes, Krste Asanovic, Chee whye Chin, and Jim Demmel. Optimizing matrix
multiply using PHiPAC: a Portable, High-Performance, ANSI C coding methodology. In
Proceedings of International Conference on Supercomputing, Vienna, Austria, July 1997.

[5] Eric A. Brewer. High-level optimization via automated statistical modeling. In Proceed-
ings of the Fifth Symposium on Principles of Parallel Programming, July 1995.

[6] Bradford Chamberlain, Sung-Eun Choi, E Christopher Lewis, Calvin Lin, Lawrence Sny-
der, and W. Derrick Weathersby. The case for high level parallel programming in ZPL.
IEEE Computational Science and Engineering, 5(3):76–86, July-September 1998.

[7] S. Chiba. A metaobject protocol for C++. In Proceedings of the Conference on Object
Oriented Programming Systems, Languages and Applications, pages 285–299, October
1995.

[8] J.J. Dongarra, I. Duff, J. DuCroz, and S. Hammarling. A set of level 3 basic linear algebra
subprograms. ACM Transactions on Mathematical Software, 16(1):1–28, 1990.

Broadway: A Software Architecture for Scientific Computing 15

[9] Dawson R. Engler. Incorporating application semantics and control into compilation. In
Proceedings of the Conference on Domain-Specific Languages (DSL-97), pages 103–118,
October, 1997.

[10] Matteo Frigo and Stephen G. Johnson. An adaptive software architecture for the FFT. In
IEEE Int’l Conference on Acoustics, Speech and Signal Processing, vol 3, pages volume
3, pp 1381–1384, 1998.

[11] Torbjorn Granlund. The GNU Multiple Precision Arithmetic Library. Free Software
Foundation, April 1996.

[12] Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software li-
braries. In Second Conference on Domain Specific Languages, pages 39–52, October
1999.

[13] Samuel Z. Guyer and Calvin Lin. Optimizing the use of high performance software
libraries. In Languages and Compilers for Parallel Computing, August 2000.

[14] Gregor Kiczales. Beyond the black box: Open implementation. IEEE Software, 13(1):8–
11, January 1996.

[15] Gregor Kiczales, John Lamping, Cristina Videira Lopes, Chris Maeda, Anurag Mend-
hekar, and Gail Murphy. Open implementation design guidelines. In Proceedings of the
19th International Conference on Software Engineering, pages 481–90, Boston, Mas-
sachusetts, 17–23 May 1997. IEEE.

[16] Donald Knuth. Literate programming. Computer Journal, 27(2):97–111, May 1984.

[17] John Lamping, Gregor Kiczales, Luis H. Rodriguez Jr., and Erik Ruf. An architecture for
an open compiler. In Proceedings of the IMSA’92 Workshop on Reflection and Meta-level
Architectures, 1992.

[18] Message Passing Interface Forum. MPI: A message passing interface standard. Interna-
tional Journal of Supercomputing Applications, 8(3/4), 1994.

[19] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Commu-
nications of the ACM, 15(12):1053–1058, 1972.

[20] Anthony Skjellum and Chuck Baldwin. The Multicomputer Toolbox: scalable parallel
libraries for large-scale concurrent applications. Technical Report UCRL-JC-109251,
Lawrence Livermore National Laboratory, December 1991.

[21] Robert van de Geijn. Using PLAPACK – Parallel Linear Algebra Package. The MIT
Press, 1997.

[22] Mark T. Vandevoorde. Exploiting Specifications to Improve Program Performance.
PhD thesis, MIT, Department of Electrical Engineering and Computer Science (also
MIT/LCS/TR-598), 1994.

[23] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In
SC’98, 1998.

