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Abstract— We propose a new method for collecting infor-
mation on regulatory elements found by any motif discovery
program. We suggest that combining the results of n leave-one-
out motif discovery runs provides additional information. By
examining motifs found in n − 1 of the sequences and scoring
them on the remaining sequence, we overcome some of the issues
arising from noisy data to identify more high-quality motifs.

We describe preliminary investigations of this approach,
using MEME for motif discovery. We show that the Leave-one-
out method highlights different motifs than a single MEME run
would. We demonstrate that our method increases the power
of small datasets. We also explore how the information gain of
the method changes as the number of sequences increases. Our
approach may be generalized to any number of sequences, and
may be applied with any motif-inference package that generates
a final population of solutions and scores.

I. INTRODUCTION

This paper introduces an alternative system for ranking the

results of software packages that identify common regulatory

elements in sets of sequences. The question of whether

several related runs of a system analyzed together could

provide more information about the overall strength of a

motif than a single such run was examined. This work is

a preliminary exploration of the effects of using a Leave-

one-out Scoring strategy inspired by n-way cross-validation,

similar to the Jackknife approach used by statisticians to

improve error estimation [15], [6]. By observing the changes

caused by adding or removing a sequence, we are able to

further evaluate the motifs found.

Building upon existing motif discovery systems, Leave-

one-out Scoring provides a new method of evaluating com-

mon regulatory elements. Here, we describe preliminary

investigations of this approach, using MEME for motif

discovery. We study the behavior of Leave-one-out Scoring

on four sequence clusters that are expected to share com-

mon regulatory elements: two sets of orthologous promoter

regions spanning a wide range of organisms, and two sets

upstream of C. elegans genes tightly co-expressed in multiple

time series.

We show that the collection of motifs found by combining

multple Leave-one-out runs is larger than the set found by a

single traditional run, but not hugely so, reflecting substantial

overlap of the motifs found in each run. The intuition behind

the method is that the overlap information provides more

information about the motifs than their original score in a

single set of sequences. Overall, we are interested in whether

this method provides sufficient new information to justify the

added expense of computation.

II. BACKGROUND

A DNA sequence can be represented as a string over

the four letter language of nucleotides {A, C, G, T }, and

genes can (simplistically) be viewed as substrings of a DNA

sequence. These substrings are used by living cells as the

blueprints for making specific proteins, which in turn carry

out all the functions of cellular life. While all cells in an

organism contain the same DNA sequences, different cells

make radically different sets of proteins, reflecting both the

cells’ function in the organism and current conditions or

needs. The first step in the process of making a protein from

its gene blueprint is called transcription or gene expression.

Understanding how cells control the expression of various

genes gives us clues into the nature of the relevant proteins,

leading to a better understanding of biology, evolution, and

cellular responses to stress or disease. Embedded in the non-

coding DNA of an organism are many control sequences that

influence when a gene is expressed and which potentially-

coding portions of the gene (exons) are spliced together to

form the gene product.

Commonly, the DNA region just upstream of a particular

gene is thought to contain many short substrings of DNA

that do not actually encode any part of a protein, but that

may be used to control the associated gene’s expression. For

example, molecules called transcription factors may bind to

these regions of the DNA, either inhibiting or facilitating the

expression of the gene. These DNA sequences are known as

transcription factor binding sites (TFBSs). These and other

sequences that may be used to regulate gene expression

are collectively known as regulatory elements or regulatory

motifs; in this manuscript we will just refer to them as motifs.

Though a given transcription factor may have a preferred

TFBS sequence that it binds to, identification of such motifs

is non-trivial, in part because the motifs are short (lengths

of 6-8 base pairs are common), their locations may be

anywhere within 1-2 kilobases of the gene, and any particular

binding site may be only an inexact match to the ideal

sequence. Thus, distinguishing biologically functional motifs

from those appearing just by chance is difficult.

There are many different methods designed to identify

motifs from sets of sequences thought to share common or

homologous regulatory proteins (see reviews [11], [16]). Pop-

ular approaches include searching clusters of co-regulated

genes (often those whose expression patterns are similar

across many conditions) for statistically over-represented mo-



tifs, using techniques such as expectation maximization[1] or

Gibbs sampling[19]. Alternatively, one can examine multiple

orthologous sequences for motifs that are preferentially con-

served throughout evolution [4], [5]. Interspecies comparison

is a powerful tool to distinguish actively conserved sequences

(an indicator of functionality) from sequences conserved due

to shared ancestry [7], [17], [18]. The best such methods take

advantage of phylogentic information to model the evolution

of a putative motif.

In this manuscript, we consider both types of sequence sets

- those from co-expressed genes and those from orthologous

sequences corresponding to the promoter regions of the same

gene in multiple species. For this study, we use MEME to

find the motifs[1]. MEME uses an EM algorithm to identify

motifs of maximum likelihood with respect to a probabilistic

model of the sequence. While MEME does not make use of

any phylogenetic information, it and other similar methods

have successfully been used to identify conserved motifs

from orthologous sequences[4].

III. APPROACH

Suppose that an arbitrary motif-finding program P is used

to find the best motifs, according to some scoring system,

common to a set of n sequences. While the motifs identified

this way are the best according to the given scoring system,

it is not clear that they are always the most biologically

meaningful. Furthermore, when the sequences are derived

from different species or from potentially-noisy clusters

of co-expressed genes, it is possible that some functional

regulatory motifs are not actually well represented in all

sequences. Such motifs might not score very well on the

full set of n sequences, or might not even be found at all.

Suppose that instead, we run the same program P on n−1
of the sequences, to identify a new set of motifs. We can do

this n times, leaving out each sequence in turn, just as in

leave-one-out cross-validation[13]. If we find a motif that

scores well in the n − 1 sequences, especially if it does so

multiple times, it may be interesting and functional even if it

does not score well enough in all n sequences to be detected

by P . This is the intuition behind the approach we investigate

here.

First, let us introduce some terminology. We use the term

AllMax to denote the motif set found in the n-species run,

because it represents motifs found by all the sequences, using

the maximal set of sequences available (rather than a subset

of it). We also consider subsets of sequences, and run the

same leave-one-out approach (called LOO hereafter in the

text) on those subsets. We therefore call a run of P (in this

case, MEME) on a subset of k sequences an AllSubset run,

and we can then talk about LOO runs on the subset of size

k as well.

To assess the quality of the motifs we discover using the

LOO method is challenging without biological validation of

the motifs. However, we address this question in part by

evaluating whether LOO can be used on small subsets of

sequences (of size k < n) to help approximate the results

of an AllMax run. The idea here is that better motifs are

Cluster 60 Cluster 177

Gene All (17) 3 4 5 All (8) 3 4 5

alh-9 X
aqp-2 X X X X
C09D4.2 X X X X
C46H11.2 X
cwn-1 X
F35D2.3 X
hnd-1 X X
lin-17 X
lin-18 X X X X
R02D3.1 X
spp-10 X X X
T22B7.3 X
T27D12.1 X
vab-8 X
ZK1307.1 X
ZK593.1 X
ZK622.3a X

C34B2.7 X X
cyn-7 X
F25H2.5 X
gly-3 X X X X
R06C7.4 X X X
rskn-1 X X X X
T05H10.7 X
T12D8.8 X X X X

TABLE I

GENES USED FOR THE DIFFERENT RUNS OF LEAVE-ONE-OUT SCORING

found as the data set grows in size, and that if LOO can

help identify these motifs with a small subset of the data,

it is improving the quality of the motif-discovery process

throughout.

IV. METHODOLOGY AND DATA

A. Data Sets

The Leave-one-out motif-finding procedure (LOO) was

tested on two types of datasets: orthologous regulatory se-

quences from a range of species, and regulatory sequences

from clusters of co-expressed genes.

Two sets of co-expressed genes were taken from [2], which

studied gene expression during embryonic development in

the worm C. elegans. To be in the same cluster, genes dis-

played similar expression patterns in 10 timepoints spanning

early embryonic development in each of the wild-type and

two RNAi knockout models. Clustering was done as in [3].

Briefly, genes were grouped using a quality-based clustering

method [9], but only if the co-expressed genes were consis-

tently co-clustered under a noise model fit to the expression

data. Such an approach ensures that clusters are particularly

tight and robust. Since the knockout experiment was designed

to highlight genes likely to be directly or indirectly regulated

by the transcription factor pal-1, we focused here on clusters

likely to contain pal-1 targets. Clusters 60 and 177 were

chosen from those that showed a clean pal-1-target expres-

sion pattern because of their sizes, respectively 17 and 8

genes. The 1000bp region upstream of the transcription start

site for each gene was downloaded from WormBase using

WormMart (www.wormbase.org/biomart/martview). Table I

displays the genes found in these clusters.



Fig. 1. Phylogeny for the selected vertebrate species. This evolutionary

tree describes relationships among the set of vertebrates selected for Leave-

one-out Scoring. The phylogeny was constructed using data from [12], [14],
[17].

SDF4 CCNL2

Species All (15) 3 4 5 All (11) 3 4 5

Human X X X X X X X X
Chimp X X X X
Macaque X X
Cow X X
Elephant X X
Dog X X X X X X
Tenrec X X
Rabbit X
Mouse X X X X X X X X
Rat X X X X X X X X
Opossum X X
Chicken X X
Frog X
Zebrafish X
Tetraodon X

TABLE II

SPECIES USED FOR THE DIFFERENT RUNS OF LEAVE-ONE-OUT SCORING

Two other sets of sequences were chosen from aligned up-

stream regions of orthologous genes (SDF4 and CCNL2) in

multiple species. The data came from the multiple alignment

of 15 vertebrate genomes to the human genome available

at the UCSC Genome web site, release 18 (March, 2006)

[10]. These particular genes were chosen because they had

at least 1000bp in all available species that aligned well with

the 2000bp upstream of the transcription start site in human.

Not all species had unique orthologs for each gene, so there

are 15 sequences in the SDF4 but only 11 for CCNL2. Table

II shows which species were used for these genes; Figure 1

shows the putative evolutionary relationships between these

species.

B. Method

For the purposes of this study, regulatory motifs were

identified using MEME[1], version 3.5.3. For all experiments

with MEME, we searched for a maximum of 100 motifs,

exactly 6 bp in length, under the assumption that a motif

appeared at most once in each sequence (i.e., using the zero-

or-one option). The E-value cutoff was 1e-100, and motifs

were allowed to occur on either the positive or negative

strand.

Note that any other motif identification scheme with a

system for scoring a given motif on a given sequence could

be used. We chose to use MEME’s reported information

content as a way of scoring the motif on the input sequences.

Given a position weight matrix W for a motif, let Wi,a be

the frequency of base a at position i, and let ba be the

background frequency of base a in the input sequence. Then

the information content of that motif [16] is

∑

position i

(

∑

letter a

Wi,alog
Wi,a

ba

)

(1)

For each LOO run, a subset of the sequences was chosen.

Within that subset, MEME was run with all sequences but

one, returning the best motifs and their information content.

We then scored those motifs in the left-out species as

well, by computing their information content for the best

possible motif match in the remaining sequence. The left-

out information content was calculated using the background

letter frequencies and the position weight matrix from the

corresponding n− 1 sequence run. This was repeated for all

possible combinations (to leave out every sequence once),

for each set of sequences.

As a baseline experiment, MEME was also run with all

the sequences for comparison purposes, to obtain the AllMax

set (or AllSubset in the case of a subset).

The results of all the runs were then compiled to produce

a LOO score for each motif (equation 2).

sn−1 ∗ (n − 1) + s1

n
(2)

The LOO score is based on the information content (score)

the motif received in each of the runs. In equation 2, sn−1

refers to the score obtained in the n− 1 sequence run, while

s1 refers to the left out sequence score, and n is the total

number of sequences tested. If a motif was found in more

than one run, the scores sn−1 and s1 were obtained by taking

the average score of each run. Taking the minimal or maximal

value has the potential for skewing the score too much, while

taking the average smooths out these irregularities. We then

ranked the motifs according to their LOO score. A frequency

index for each motif was also calculated: this figure indicates

the percentage of the n LOO runs where the motif was found.

For each dataset, four different LOO tests were conducted.

First, we ran LOO with the maximal number of sequences

available (between 8 and 17). Then, subsets of 3, of 4 and

of 5 sequences were selected from each of the datasets and



tested with the LOO method. Tables I and II indicate which

sequences were selected for each test, with each dataset.

V. RESULTS AND DISCUSSION

In this section, we will address issues of motif quality

using LOO and the stability of the LOO approach as n
increases.

Overall, the number of distinct motifs discovered by the

LOO method does not increase linearly with the number of

sequences in the subset (Figure 2). Rather, in most cases, we

observe an eventual decrease when LOO is executed with

all the sequences. The number of motifs found by LOO is

considerably less than k times the number of motifs in the

single run, proving there are strong similarities among the

motifs found by each of the runs.

Fig. 2. Total number of LOO motifs found for 3, 4, and 5 species subsets.

A. LOO increases power of small data sets

Hoping to estimate motif quality without actually knowing

which motifs are biologically meaningful, we investigated

whether the use of LOO with only a few sequences would al-

low us to identify more of the motifs that could be identified

with larger amounts of data. If so, LOO could be particularly

useful both for finding promoter signals controlling only a

small number of target genes, and for cross-species motif

finding when the relevant sequences are only available in a

few species.

The idea that this test reflects motif quality relies on the

assumption that motifs found in the full AllMax run are more

likely to be biologically relevant than those identified from

only a small subset of the data. This assumption might not al-

ways hold true, especially when the subset runs contain only

sequences from a few closely related mammals, while the

AllMax data set includes fish and birds. To address this possi-

bility, while we chose only mammals for the subset runs, we

attempted to include some diversity within the mammalian

population rather than picking the closest trio of mammals

available (see Table II for details). For the co-expressed

gene clusters, where subsets were chosen arbitrarily and the

clusters are designed to exclude spuriously correlated genes,

the argument seems more compelling. However, as we found

consistent results across all the sequence sets, we suspect that

the assumption does hold for all of them.

We found that the AllSubset runs, for subsets of size 3

to 5, typically detected only 20 to 30 percent of the motifs

found by the AllMax run (Figure 3a). By considering both

AllSubset and the additional motifs found only in one or

more LOO runs, we were able to approximately double the

number of the AllMax motifs identified, using just 3, 4, or

5 sequences instead of n. Thus, it appears that this approach

allows us to extract more information from smaller datasets.

Figure 3a shows the average results over all four data sets.

Figures 3b, c, and d show the details for each data set using

just LOO, just AllSubset, and the two combined, respectively.

These results show that LOO motif-finding using small

amounts of data can help approximate the results of having

a much larger set of related sequences. This suggests that the

LOO method can help identify more meaningful motifs in a

variety of contexts.

B. Gain from LOO changes as n increases

If LOO were run on a larger set of sequences than our

trial data sets (whose sizes range from 8 to 17 sequences),

the doubling of the percentage of AllMax motifs that we

obtain using LOO (as shown in Figure 3) might no longer

be seen. For example, if we limited our attention to motifs

detected with reasonable frequency in the LOO runs, (that is,

not just in one of n runs), we might expect that the results

of LOO for a sufficiently large subset or cluster would not

be very different from the AllMax results themselves. We

decided to investigate whether the sequence sets we chose

were large enough that this was the case.

To do so, we compared the number of distinct motifs

we found from the combined LOO runs (with frequency

of at least 1/3) to the number of motifs found in the full

AllSubset run, when the subset size was 3, 4, 5, or n. (That

is, in the last case, we ran LOO on each full sequence

cluster). We call motifs found in at least 1/3 of the LOO

runs frequent motifs. The results are reported in Figure 4 as

the percentage of new motifs found with LOO compared to

the corresponding AllSubset run. We call this value the gain

of the LOO run. We expected to see the gain converging

from a large percentage (over 100) for a 3-sequence subset

to a fairly low percentage when run on the full n sequences.

While the trend in the Figure 4 generally agrees with

the expected pattern, several interesting points arise. The

first is that this “convergence” is not consistent across all

sequence sets. Though there is a downward trend across

the co-expressed cluster data as the number of sequences

used increases, the data from the multiple species alignment

actually shows a higher gain for n species than for 4 or 5

species, particularly for the gene SDF4. Partially this is due

to the fact that the number of motifs found in the AllMax run

for SDF4 drops significantly, but there may be other factors

at work as well.

One possible contributing factor is that the subset runs

were selected to contain only mammalian species. While

convergence may be expected when more and more closely



Fig. 3. Percent of AllMax motifs found for 3, 4, and 5 species subsets. a) Average (over all 4 data sets) percent of AllMax motifs found using just
AllSubset, just LOO, and both methods combined. b) LOO details for all 4 data sets. c) AllSubset details. d) Combined LOO and AllSubset details.

related sequences are added to a data set, it is not expected

when the sequences being added are noisy, or more distantly

related. Thus, we see a trend reasonably consistent with

the convergence theory for CCNL2, whose eleven sequences

include ten mammals and a bird. However, for SDF4, adding

in the full set of sequences means adding two fish and

an amphibian sequence to the bird and eleven mammalian

sequences. Thus, fewer motifs meet the significance criteria

for the the AllMax run, and the higher gain for the n species

run is perhaps to be expected. Also consistent with this theory

is the fact that the co-expressed clusters of worm genes better

fit the expected convergence pattern, and that the pattern is

strongest for Cluster 60, the largest cluster.

Another interesting point arising from this experiment is

that even for Cluster 60, with 17 sequences, using LOO on

all 17 sequences yields a 44% increase in the set of frequent

motifs (those found in at least 1/3 of the LOO runs) over the

sequences found by using AllMax alone. This suggests that

even a cluster of 10-20 sequences is not sufficiently large for

this process to have converged. While one possible cause is

that there is an increasing amount of noisy data in the full

cluster, it seems equally plausible that clusters need to be

considerably larger before this process converges.

For example, Table III shows some sample motifs found by

the LOO approach on all 11 CCNL2 sequences. In the table,

TABLE III

20 BEST MOTIFS FOUND IN CCNL2. Score refers to the LOO score

obtained from equation 2; Rank to the ranking according to Score.

AllScore is the score obtained with the All-sequence run (no LOO),

AllRank to the ranking according to AllScore. Blank scores and ranks in

AllScore and AllRank indicate the motif was not ranked as one of the 100

best motifs found in the All-sequence run.

Motif Score Rank AllScore AllRank Freq

TTAAAA 14.57 1 14.8 1 0.91
AAAATA 14.54 2 14.8 1 0.82
TTATTT 14.49 3 0.64
TTAATA 14.49 4 14.8 1 0.82
TTTATT 14.11 5 0.09
TTTTAT 13.93 6 0.55
TGAAAA 13.8 7 1
GTTTTT 13.71 8 0.36
TTTCTT 13.64 9 12.6 30 0.82
TTCATT 13.55 10 0.27
AAACAT 13.54 11 0.45
TACTTA 13.53 12 14 4 1
TTCTTT 13.53 13 13.5 11 0.73
TTTTTC 13.52 14 14 4 0.55
GTAAAA 13.52 14 0.55
AAAAGA 13.52 16 12.6 30 0.45
TGAATT 13.51 17 14 4 0.45
TTTTCT 13.48 18 13 27 0.27
TGTTTT 13.47 19 14 4 0.45
TGAATA 13.46 20 0.09



Fig. 4. a) Frequent new motifs found by the combined LOO runs, as
a percentage of those found by the corresponding AllSubset run b) Raw
numbers of frequent motifs found by each AllSubset run (the numerator in
part a).

“Rank” refers to the sequence rank by information content

(score) in the original 11-species AllMax run. AllMax motifs

with the same information content are listed as having the

same Rank. The table shows examples of many motifs with

high information content that are found with high frequency

in the LOO runs, but that would not have been found at

all using a single MEME run on all the sequences. Thus,

it seems worth considering the LOO approach even for

sequence clusters of reasonable size.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

A new method of motif analysis, Leave-one-out Scoring,

was developed and tested. Using this strategy, it may be

possible to achieve “better” rankings of motifs than those

obtained using a single run of a given motif finding method.

We believe that the additional information derived from the

approach will often justify the added computational expense.

The behavior of the LOO method as n increases suggests

that typical clusters containing tens of co-expressed genes

may not yet have “converged” to the point where LOO pro-

vides only redundant information. As motif finding is often

done in much less conservatively-formed clusters than those

described here (generally a full partitioning or hierarchical

clustering method is used, and no noise-tolerance filter is

applied), typical clusters of co-expressed genes are likely

to be much noisier than those we tested. Thus, even larger

cluster sizes are likely to benefit from the Leave-one-out

approach.

Furthermore, the LOO approach may allow the extraction

of better motifs using a single motif-finding method, without

relying on the consensus of a number of different methods.

Thus, radically novel motif-detection programs that identify

regulatory elements rarely found by other methods might

particularly benefit from the use of Leave-one-out Scoring.

Future work should extend the preliminary findings re-

ported here to larger data sets and additional methods. At a

minimum, we would like to investigate the effects of the LOO

method using several common motif-recognition algorithms.

We would also like to further investigate convergence behav-

ior by examining a much greater range of cluster sizes, and

to compare the behavior of these methods on the promoter

regions of co-expressed genes to those on aligned sequences

from multiple species. Another interesting possibility would

be to extend Leave-one-out Scoring to Leave-k-out Scoring.

This new method would examine motifs in n − k (k > 1)

sequences. Finally, to combat the rising computational costs

as n and k grow, one could perform only random subsets

of the desired LOO runs (essentially a constrained form of

Bootstrapping).

The ideal test of this method would be a labeled data

set with “correct” motifs. While this is not available as

such, one possible strategy would be to start with known,

experimentally-validated transcription factor binding sites,

and to work backwards to show that this approach validates

a higher percentage of those than the straightforward appli-

cation of any of a variety of motif detection techniques. The

genes with the greatest number of long orthologous promoter

regions in the most species, those we selected for this study,

did not happen to contain clusters of experimentally validated

binding sites. However, as sequence availability increases, it

should be possible to find some good candidate sequence sets

for this experiment.

With datasets from orthologous sequences, adding a pa-

rameter concerning the evolutionary distance of each species

would allow us to make decisions about the validity of a

motif based on the distance to the evolutionary norm of the

held-out species. To enforce this rule, it would perhaps be

possible to eliminate motifs that are outside of a certain

range, defined by a multiplier of the standard deviation.

Certainly, a number of motif detection programs make use

of evolutionary data [4], [8]; it would be interesting to

explore the effects of integrating the LOO method with

such algorithms in a way that takes full advantage of the

phylogenetic data.
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