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Learning from Imperfect Data in Theory and PracticebyDonna Karen SlonimSubmitted to the Department of Electrical Engineering and Computer Scienceon May 3, 1996,in partial ful�llment of the requirements for the degree ofDoctor of PhilosophyAbstractThis thesis explores several problems of learning with noisy or incomplete data. Mostmachine learning applications need to infer correct conclusions from available informa-tion, although some data may be incorrect and other important data may be missing.Human learners often compensate e�ortlessly for imperfect data. Even animals canlearn from conditioning in which they are rewarded inconsistently. However, it seemsdi�cult to build such fault-tolerance into machine learning systems. In this thesis, wedescribe algorithms for handling imperfect data in several projects that range from thetheoretical to the practical.In Chapter 2 we present new formal models of learning with a teacher who makes mis-takes or fails to answer some questions, and we show that learning can succeed in thesemodels. We �rst consider learning with a \randomly fallible teacher" who is unable toanswer a random subset of the learner's questions. We present a probabilistic algorithmfor learning monotone DNF formulas in this model; asymptotically, our algorithm runsas quickly as the error-free algorithm even when half the questions remain unanswered.We then introduce a learning model in which queries on \borderline" examples mayrecieve incorrect answers. We describe e�cient algorithms for learning intersections ofhalfspaces and subclasses of DNF formulas in this new model. Our positive results arethe �rst in a learning model where the teacher's ignorance depends in a realistic way onthe question asked.Our results in Chapter 3 show how teams of learners can work together to learngraphs in the absence of key information that distinguishes nodes. On a graph withindistinguishable nodes, a robot cannot tell if it is placed on a node that it has previouslyseen. This problemmodels that of a real robot learning with imperfect or missing sensordata. We describe a probabilistic polynomial-time algorithm for two cooperating robotsto learn any strongly-connected directed graph, even graphs that would most likelyrequire exponential time to explore by walking randomly. We also present a random-walk algorithm that is more e�cient than the previous algorithm for the special class ofgraphs with high conductance. Our work illustrates that even in the extreme case wherethe environment provides no information for distinguishing nodes (or where the robots'3



4landmark-recognition sensors fail completely), there is su�cient information availablefor two cooperating robots to learn the map perfectly.In Chapter 4 we examine the application of machine learning techniques and algo-rithm design to a real problem in molecular biology: building large-scale human genemaps using the new technique of radiation hybrid mapping. We represent uncertaintyabout noise in the data with a hidden Markov model. Our algorithms then search anexponentially-large space for maps that are likely to have produced the observed data.While the theoretical model guides our search, alone it is insu�cient. Thus we investi-gate several practical methods for solving the problem despite the limits of the model.Finally, we use these methods to build the �rst radiation hybrid map of the entire hu-man genome. Our work demonstrates that an approach combining theoretical modelsand practical search heuristics can yield excellent results in a real application of learningfrom imperfect data.Keywords: computational learning theory, machine learning, computational biology,query learning, imperfect teachers, graph exploration, noisy data, radiation hybrids,hidden Markov models, physical mapping, genome mapping.Thesis supervisor: Ronald L. RivestTitle: Professor of Computer Science
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C h a p t e r 1Introduction
Machine learning is a crucial aspect of many computer applications. Consider the prob-lem of designing a computer system to aid in medical diagnosis. It would be impracticalto require the designer to pre-program the system with every possible combination ofsymptoms that might occur. Rather, one would prefer to design a system that can learnfrom examples and draw conclusions about how to handle new situations.Another example might be a biologist studying the relationships between proteinamino-acid sequences and the proteins' functions in the body. Since computers are bettersuited than humans to �nding patterns in vast amounts of sequence data, a computerprogram might detect novel correlations, suggesting areas for future research. In thiscase the computermust learn from the data; no one can explicitly tell the computer whatto look for, since no one knows precisely what is wanted. As the role of technology insociety increases further, the demand of applications for machine learning will expandaccordingly. Thus the development of algorithms that learn is a major challenge incomputer science.An essential aspect of any practical learning algorithm is the need to learn fromimperfect data. Few real-world problems operate under perfect conditions. The medicaldiagnosis system may have to learn from inconsistent data provided by di�erent doctors,11



12 Introductionor may be missing information about crucial symptoms. The biologists' data may bederived from experiments that are subject to many types of errors. Some crucial experi-ments might produce inconclusive results. Nonetheless, even imperfect data can containa great deal of valid information. Therefore we would like to design systems that learnas much as possible from the data available.This thesis explores several problems of learning with noisy or incomplete data. Mostmachine learning applications need to infer correct conclusions from available informa-tion, even though some data may be incorrect and other important data may be missing.Human learners often compensate e�ortlessly for imperfect data. Even animals can learnfrom conditioning in which they are rewarded inconsistently. However, it seems di�cultto build such fault-tolerance into machine learning systems. In this thesis, we describealgorithms for handling imperfect data in several projects that range from the theoreticalto the practical.Each chapter of the thesis treats a di�erent aspect of the problem of learning withimperfect data. Chapter 2 discusses some theoretical problems of machine learning withthe help of imperfect teachers. In this chapter, we present new models of learning witha teacher that makes mistakes or fails to answer some questions, and we show thatformal learning can succeed in these models. Our results in Chapter 3 show how teamsof learners can work together to learn graphs in the absence of key information thatdistinguishes nodes. While this work is also theoretical, it may have applications indesigning exploration algorithms for robots in unknown environments.In Chapter 4, we look at applications of machine learning techniques and algorithmdesign to a real problem in molecular biology: building large-scale human gene mapsusing the new technique of radiation hybrid mapping. Unlike the previous two chapters,in which the learner is generally a machine, our goal in this chapter is to use computersto help us learn from imperfect data. Many techniques from the machine learningliterature are applicable to this problem. Furthermore, the project described in thischapter is a case study that explores the tradeo�s between theory and practice. We



Introduction 13develop a theoretical model of the noisy data and then explore practical methods forsolving the problem despite the limits of our model. Finally, we demonstrate thatsuch hybrid methods can be successful: we describe how we have constructed the �rstradiation hybrid map of the entire human genome.While the three projects described in this thesis are clearly very di�erent, there aresome common threads that bind them together. Each project illustrates the union of thetheoretical and the practical: our theoretical models in Chapters 2 and 3 are informedby the need to represent noisy or incomplete information in more realistic ways, whilethe real application in Chapter 4 is solved through the use of theoretical modeling. Ineach project, the learner is faced with the task of drawing accurate conclusions fromimperfect data. And in each case, we solve the problem by presenting algorithms thatwe prove, either theoretically or empirically, can successfully learn from imperfect data.The rest of this chapter presents a more detailed overview of each part of the thesis.Imperfect TeachersThe �rst part of the thesis discusses formal models of learning. This work is in the �eldof computational learning theory. Since its inception with Valiant's seminal paper [108]in 1984, this �eld has sought to de�ne new mathematical models of machine learning,to design e�cient learning algorithms within these models, and to apply the techniquesand knowledge developed in this process to practical learning problems.Within this paradigm, Chapter 2 focuses on the problem of concept learning withthe help of an imperfect teacher. In concept learning, there is some known domain X ofobjects and an unknown target concept f � X . The learner's goal is to learn e�cientlyto classify objects with respect to f . The learner does not know f , but is helped by theknowledge that f belongs to some known concept class C = ff1; f2; : : :g (whose size maybe in�nite).As input, the learner is presented with a number of randomly-chosen correctly-classi�ed examples. For example, suppose that the domain is the set of points in the



14 Introductionplane and the concept class C is the set of all concepts that can be represented as theintersection of two halfspaces in the plane. Then the learner might see the labeled exam-ples shown in Figure 1.1a, where each point is labeled \+" if it is within the intersectionof the two halfspaces and \{" otherwise. the learner's goal is to determine the targetconcept f shown in Figure 1.1b, given the labeled examples.a) b)
Figure 1.1: Learning the intersection of two halfspaces in the plane. a) The learnersees only labeled examples chosen at random from the domain of points in the plane.b) The learner's goal is to determine the underlying target concept, shown here. Allpositive examples are chosen from the shaded region.In the stronger \query learning" model, the learner is also allowed to ask an omni-scient teacher how to classify speci�c examples. Previous work has shown that a learnerwho asks questions can learn more complicated concepts than one who learns by passiveobservation alone. Our work explores what happens when the learner can ask queries,but the teacher is not omniscient.Section 2.2 studies the problem of learning with a \randomly fallible teacher" whois unable to answer a random subset of the learner's questions. Our work in this sectionintroduces the �rst general model of query learning with an imperfect teacher.We describe an algorithm that with high probability learns certain classes of boolean



Introduction 15formulas e�ciently from this teacher, even when half the queries asked are not answered.Our results hold in a limited sense even when the teacher may answer incorrectly. Byde�ning a measurable tradeo� between asking queries and learning from examples only,our model yields some insight into the degree of additional information that queriesprovide a learning algorithm.In many cases, however, it is unrealistic to assume that a teacher's ignorance is ran-dom. The more recent work described in Section 2.3 proposes an intermediate approach,in which queries on examples near the boundary of a target concept may receive incor-rect or \don't care" responses. The randomly-chosen examples, however, are not chosenfrom the boundary region and are labeled correctly. The motivation behind our modelis that the boundary between positive and negative examples may be complicated or\fuzzy."We describe e�cient algorithms for learning intersections of halfspaces and subclassesof DNF formulas in this new model. Our positive results are the �rst in a learning modelwhere the teacher's ignorance depends in a realistic way on the question asked.Learning Graphs with Indistinguishable NodesChapter 3 shows how teams of robots can work together to learn graphs in cases where asingle robot alone would be helpless. Consider the problem of a robot trying to constructa street map of an unfamiliar city by driving around. Since many streets are one-way,the robot may be unable to retrace its steps, but it can learn by using street signsto distinguish intersections. However, if it is nighttime and there are no street signs(or if the robot's sensors provide imperfect data), the task becomes signi�cantly morechallenging.We describe a polynomial-time algorithm for two cooperating robots to solve anabstraction of this problem. Instead of learning a city, they learn a strongly-connecteddirected graph. Nodes are indistinguishable, so a robot cannot tell if it is placed on anode that it has previously seen. However, the robots can see each other when they are



16 Introductionboth at the same node. They learn about the graph by moving around it and notingwhen they see each other.This problem models that of a real robot learning with imperfect or missing sensordata. Robots that rely on vision for navigational purposes often get lost; their landmark-recognition systems can fail for a variety of reasons. Our work illustrates that even in theextreme case where the environment provides no information for distinguishing nodes(or where the robots' landmark-recognition sensors fail completely), there is su�cientinformation available for two cooperating robots to learn the map perfectly.With high probability, two robots using our algorithm can learn any graph in poly-nomial time, even if they would expect to need exponential time to explore the graph bywalking randomly. We also show that no probabilistic polynomial-time algorithm for asingle robot can solve the same problem. Thus, our work demonstrates that two robotsare strictly more powerful than one.Algorithms for Building Human Genome MapsAn intense worldwide e�ort is underway to determine the location, DNA sequence, andfunction of human genes. Physical maps play an important part in this process. Aphysical map of a chromosome shows the relative locations and estimated distancesbetween landmarks along the chromosome. A recent technique for building physicalmaps uses radiation hybrid data, which may be subject to many types of experimentalerror. Chapter 4 discusses the application of machine learning techniques and algorithmdesign to the problem of inferring accurate physical maps from noisy radiation hybriddata.We use a hidden Markov model to represent uncertainty about noise in the data.The model allows us to estimate the likelihood that a given arrangement of the markersproduced the observed data. We then try to �nd a likely arrangement of the markersthat is as close to the true order as possible. Evaluating all possible arrangements ofn markers requires O(n!) computations. Since maps generally contain several hundred



Introduction 17markers, exhaustive search is computationally infeasible.We build our maps in a top-down fashion by �rst �nding a sparse but accurate mapthat spans the entire region. Then we greedily add additional markers into the map,indicating the degree of con�dence we have in each placement. Thus, researchers usingthe map know which markers to believe and which to treat with suspicion.We also develop a greedy divide-and-conquer algorithm for ordering markers with abottom-up approach. This algorithm seeks a maximum-likelihood order while obeyingcertain local constraints. We compare this algorithm to a number of experiments withstandard combinatorial techniques and show that our software consistently �nds betterorderings on large data sets (all algorithms do Both our ordering schemes take advantageof local ordering information in addition to maximum-likelihood constraints and aremuch more e�ective than maximum-likelihood searching alone. Thus we conclude thatwhile our theoretical model of the noisy data guides our search for good maps, it isinsu�cient by itself.Finally, we use these methods to build the �rst radiation hybrid map of the entirehuman genome. Our work demonstrates that an approach combining theoretical modelsand practical search heuristics can yield excellent results in a real application of learningfrom imperfect data.





C h a p t e r 2Learning With ImperfectTeachers
2.1 IntroductionImagine a student learning, for the �rst time, to recognize which animals are dogs andwhich are not. Suppose that to accomplish this task, the learner sits on a bench onthe Boston Common with her teacher. As animals pass by, the teacher points to eachone and tells the student whether or not it is a dog. If she sat there long enough, thelearner would eventually learn to recognize most dogs and to distinguish them from otheranimals such as squirrels, horses, and birds. She could learn the concept \dog" quitewell without ever seeing all of the dogs or all of the \non-dogs" in the world. However,her knowledge of dogs might not be perfect. It would be very unlikely for the student tosee a wolf or a Chinook (a rare breed of sled dog) pass by. If she encountered one later,she might not realize that a Chinook is a dog or that a wolf is not. Nonetheless, shewould be able to classify correctly most animals that are likely to appear in downtownBoston.Learning by observing in this fashion is known as \passive learning," since the learnerhas no control over the examples seen. Sometimes, however, it is hard to learn quickly19



20 Learning With Imperfect Teachersfrom passive observation alone. In an \active learning" model, the learner may ask theteacher questions as well as observe correctly-classi�ed examples. For example, a studenttrying to learn about dogs might point to a police horse and ask the teacher whether itis a dog. Or she might generate the hypothesis \a dog is any animal with four legs,"and ask the teacher if her hypothesis is correct.In 1984, Valiant introduced a formal learning model intended to capture these no-tions [108]. The model is known as distribution-free or PAC-learning, where PAC standsfor \probably approximately correct." Formally, a concept f : X �! f0; 1g is a booleanfunction over an instance space X . In the example above, the concept \dog" is such afunction on the instance space of all animals. In the rest of this chapter we consider twoinstance spaces: the boolean domain f0; 1gn and the continuous domain Rn. A pointx 2 X is an example, and it is called a positive example of f if f(x) = 1 and a negativeexample of f if f(x) = 0. A concept class C is a set of such functions f , along with anassociated representation language for describing them. For instance, C might be theclass of all boolean formulas over n variables, represented in disjunctive normal form(DNF).In the PAC learning model, to obtain information about an unknown target functionf 2 C the learner is shown labeled positive and negative examples of f , drawn randomlyaccording to some unknown distribution D over X . The learner is also given errorparameters �; � > 0 as input. Its goal is to output the description of a function hthat, with probability at least 1 � �, has probability at most � of disagreeing with fon a randomly drawn example from D. Thus, one can say that h is probably (withprobability � 1� �) approximately correct (has error � �). An algorithm A PAC-learnsC if for any f 2 C, any distribution D, and any �; � > 0, A meets this goal and runsin time polynomial in n (the size of an example), 1=�, 1=�, and jf j (the descriptionlength of the target function). A class C for which such an algorithm exists is said to bePAC-learnable.In de�ning the learner's goal, we have not speci�ed what a \description of a function



2.1 Introduction 21h" is. An algorithm is said to be a proper learning algorithm if the hypothesis h is alwayschosen from the description language associated with the concept class. On the otherhand, we may allow a learning algorithm to output any polynomial-time algorithm as ahypothesis. This less constrained model is sometimes called \PAC-predictability" [58,57].Active learning is also known as \query learning," since the learner is allowed to askqueries of an omniscient oracle. Many types of queries are possible, but the two mostcommonly-studied questions are membership queries and equivalence queries. Member-ship queries ask if some example x 2 X is in the target concept; the answer to a queryMQ(x) is f(x). Equivalence queries ask if the learner's current hypothesis h is corrector not. The answer to an equivalence query EQ(h) is a counterexample x such thath(x) 6= f(x), if such a counterexample exists, and the empty set otherwise.Sometimes it is di�cult to specify the hypothesis h exactly and succinctly. However,one can use the PAC model to approximate an equivalence query without formallyspecifying the hypothesis h. Blumer, Ehrenfeucht, Haussler and Warmuth [27] provedthat any hypothesis consistent with a labeled random sample of size
 log 1=�� + log jCj� !is a PAC-hypothesis; i.e., with probability at least 1 � �, the hypothesis is �-good.Therefore, to ask a probabilistic equivalence query, we simply draw a large enoughsample and look for an object in the sample that is classi�ed di�erently by the teacherand the learner. If such an object exists, it is a counterexample to h; otherwise, his probably approximately correct. Thus, any class C that is learnable by equivalencequeries alone is also PAC-learnable [5], though the converse is not true [22].We use PAC-memb to refer to the variation of the PAC model in which the learnercan make membership queries. Likewise we say that a concept class is exactly learnableif it is learnable with membership and equivalence queries. Many concept classes, suchas read-once formulas, monotone DNF formulas, and deterministic �nite automata, are



22 Learning With Imperfect Teachersknown to be e�ciently learnable in active learning models but are not PAC learnable.Thus, membership queries provide some additional power to a learning algorithm.Chapter OverviewAll of the standard learning models de�ned above assume that the learner has the help ofa teacher who is omniscient and well-intentioned. In most machine-learning tasks, thereis little incentive for the teacher to knowingly corrupt data for the sake of confusingthe learner. (There are, of course, exceptions to this rule. For example, a computerprogram might learn to play chess by studying its opponents. However, it is useful tostudy learning applications that are not adversarial.) Thus it is reasonable to assumethat the teacher is well-meaning.The assumption that the teacher is always correct, however, is a less reasonable one.Teachers in machine-learning projects are often human experts or computer databasesthat ultimately rely on human knowledge. All of these sources are fallible. A humanteacher may not know the answer to a question or may simply be wrong. Even if aquestion is answered correctly, there may be noise corrupting the response that thelearner receives. Thus, for computational learning theory results to be applicable in anyrealistic setting, we must explore the problem of learning from fallible teachers.The work in this chapter explores several new learning models in which the teachermay not know all the answers. Section 2.2 brie
y describes work frommyMasters Thesison learning with a randomly-fallible teacher. This section also introduces the reader tomany key ideas in Boolean concept learning. In Section 2.3, I describe recent work onlearning with the help of a teacher who may make mistakes on borderline examples.In both cases, we validate the new learning models by describing algorithms that learndespite their teachers' shortcomings.



2.2 Randomly Fallible Teachers 232.2 Randomly Fallible Teachers2.2.1 IntroductionConsider the problem of teaching a computer to recognize verbs in English sentences.One approach for the teacher is to present sample sentences, pointing out some verbsas positive examples of the target concept and some other words as negative examples.From this, the learner might develop a general idea of the target concept. But in somesentences, other words may deceptively appear in verb form. A natural extension allowsthe learner to ask speci�c questions of the type, \is this word a verb?" In most cases,the teacher will know the answer from context. For example, in the sample sentence\The department stores open at nine," the learner might consider the possibility that\department" is the subject and \stores" is used as a verb, but would be corrected bythe teacher. However, there may be instances in which even the teacher is unsure. Thesentence \Tom is running back for his school football team" has at least two legitimateinterpretations; the word \running" is a verb in one case but not in another. Withoutmore information, the teacher cannot answer the learner's question, \is `running' averb?" Can the learner still learn, even when the teacher is sometimes unsure?This section answers that question in the a�rmative for the class of monotone DNFformulas. We introduce a new fault-tolerant model of algorithmic learning using anequivalence oracle and an incomplete membership oracle, in which the answers to someof the learner's membership queries may be unavailable. The advantage of this model isthat it imitates the natural fallibility of teachers in most learning systems. Previous workon query models has generally assumed an omniscient teacher that answers all querieswith perfect accuracy. Such assumptions are impractical; even well-intentioned teachersare seldom all-knowing. It is important to consider the degree of teacher fallibility thatthese models can tolerate. This section demonstrates that e�cient learning is possibleeven when the teacher is unable to answer a constant fraction (less than one) of thequestions asked. By de�ning a measurable tradeo� between membership and equivalence



24 Learning With Imperfect Teachersqueries, our model yields some insight into the degree of additional information thatmembership queries provide a learning algorithm.Previous WorkThere has been a good deal of work done on errors in the distribution-free model oflearning introduced by Valiant [108]. Results are encouraging for the case of randommisclassi�cation errors. In this benign error model, the teacher produces labeled positiveor negative examples, where the label for any example is incorrect independently withprobability �. Angluin and Laird [11] show that information-theoretically, as long as� is less than 12, a sequence of labeled examples of length polynomial in (1� ; 1� ; 11�2�) issu�cient for PAC-learning. In particular, they show that k-CNF formulas are PAC-learnable in polynomial time with a random noise rate of less than 12 .Other work has focused on the case of malicious misclassi�cation errors in exam-ples. Valiant [109] poses the question of learning k-CNF formulas despite an adversarialteacher that draws random positive or negative examples, but with error probability �returns an arbitrary response instead of the correctly labeled example. Valiant showsthat a small rate of error can be tolerated in this model. Kearns and Li [64] show thatValiant's error bound is tight; they use an information-theoretic argument to prove thata malicious error rate of at most O(�) is tolerable when PAC-learning any distinct con-cept class C. A number of other papers further explore various models in which theexamples themselves or their classi�cations are corrupted (see Laird [70]; Shackelfordand Volper [99]; Sloan [101, 102]; among others).Less is known about errors in query models. Sakakibara [97] proposes a model of noisein queries, which assumes that every time a query is asked there is some independentprobability of getting the wrong answer. Sakakibara gives a general technique to repeata query su�ciently often to increase the con�dence in the answer to a very high level,which allows existing algorithms to be used with appropriate modi�cations.However, in some practical situations the problems of missing or incorrect informa-



2.2 Randomly Fallible Teachers 25tion may not be so easy to remedy. For example, when we ask a teacher to classify agiven element of the universe as a positive or negative example of the target concept, itmay happen that the teacher simply does not know, and will not know no matter howmany times we ask the same question. To address this problem, Goldman, Kearns, andSchapire [53] consider a model of persistent noise in membership queries that is relatedto the model we adopt here.Overview of the ModelOur model relies on the de�nition of a minimally adequate teacher [5], in which a learnertries to learn a target concept f from a known concept class C. In this (error-free) model,the learner is assisted by a teacher that answers two types of queries. A membershipquery on a given point tells whether or not that point is a positive example of f ; such aquery is answered \yes" or \no". An equivalence query tests a hypothesis h, returning; if h is equivalent to f , and a counterexample x such that h(x) 6= f(x) otherwise. Inthis model, the choice of the counterexample is arbitrary.We consider a randomly fallible minimally adequate teacher. In particular, we de�nean incomplete membership oracle that, for each point in the instance space, performsone 
ip of a biased coin that lands \heads" with probability p. On any example inthe instance space whose coin landed \heads", membership queries are always answeredwith \I don't know". On all other points in the instance space the membership oraclealways answers correctly. In other words, with probability p, the teacher may be unsureabout a given example and will never gain any more information about it. Note thatthis situation is \benign" in the sense that the algorithm has only to deal with missinginformation { the information it gets is guaranteed to be correct.For equivalence queries we assume that the answers remain correct; that is, theanswer \;" is returned if and only if the queried element h is equivalent to the targetconcept f and otherwise the answer is a counterexample x such that h(x) 6= f(x). Thisassumption means that exact identi�cation of the target concept is still possible (since an



26 Learning With Imperfect Teachersalgorithm could simply perform identi�cation by enumeration using equivalence queries.)In this new model we must specify the type of adversary selecting the counterexam-ples. (This is also an issue in the standard model when randomized learning algorithmsare considered, as Maass [77] has shown.) We assume that the adversary is \on-line."That is, the choice of a counterexample may depend on the target hypothesis and thehistory of the computation to the point at which the query is asked, including the hy-pothesis queried, all previous queries and their answers, and any previous coin-
ips ofthe learning algorithm. However, the choice of counterexample may not depend on theanswers to membership queries not yet made. This adversary is strong enough to gen-erate the \worst-case" counterexamples used to provide lower bounds for equivalencequeries [7], but it cannot predict the blind spots of the incomplete membership oracle.Discussion of the ModelIt may at �rst seem odd to assume that membership queries are 
awed while equivalencequeries remain correct. However, consider the situation in which a learning algorithmis attempting to predict the classi�cation of a sequence of examples (produced andclassi�ed by Nature) with the assistance of a teacher who can correctly classify somebut not all of the possible examples (modeled by an incomplete membership oracle.)If we have an e�cient learning algorithm using equivalence queries and an incompletemembership oracle, then by a general transformation [74] we can obtain an e�cientalgorithm for the prediction task in the mistake bounded model that uses an incompletemembership oracle.It may also seem unrealistic to consider a teacher whose failures occur uniformly atrandom. Despite the weight of precedent, it is natural to look for a more reasonableway of modeling a teacher's limitations. One possibility is for the teacher to be lesscertain about data points that are \close to the border" of the target concept. Thismodel is particularly appealing for certain graphic concepts such as handwriting recog-nition or intersections of half-planes. We present preliminary results for such a model in



2.2 Randomly Fallible Teachers 27Section 2.3. However, reasoning about randomly 
awed teachers has proven informativeand somewhat more tractable.The Importance of Membership QueriesCertain classes of concepts, such as deterministic �nite state acceptors and monotoneDNF formulas, have been shown to be learnable in polynomial time using equivalence andmembership queries, but not using equivalence queries alone ([108, 5, 6, 7]). A naturalquestion is to investigate which of these concept classes remain learnable in polynomialtime in the appropriate sense in this new model, with an incomplete membership oracle.We may then derive some measure of the \importance" of membership queries to thelearning algorithm as we vary the failure probability p from 0 (complete informationfrom membership queries) to 1 (no information from membership queries.)Angluin and Kharitonov [9] explore a number of cryptographic limitations on thepower of membership queries. They show that, assuming the intractability of eithertesting quadratic residues modulo a composite, inverting RSA encryption, or factor-ing Blum integers, there is no polynomial time prediction algorithm using membershipqueries for several important concept classes, including the classes of Boolean formu-las, 3�-formulas, NFA's, and CFG's. They also show that if one-way functions exist,then membership queries provide no additional power in learning general CNF or DNF.That is, either these classes are learnable without membership queries, or they are notlearnable even with membership queries. Their work is especially relevant in light of theresults of this section, showing that membership queries do provide additional powerto some learning algorithms, even when only a fraction of the queries are answered. Itwould be interesting to �nd a general characterization of the concept classes for whichthis is the case.Monotone concept classes are particularly promising for this new model, since thereis the hope of reconstructing missing information from responses to additional queries.In this section we examine the learnability of monotone DNF formulas over n variables.



28 Learning With Imperfect TeachersThere is a known algorithm for exactly learning these formulas from a minimally ade-quate teacher in time polynomial in n and m, where m is the number of terms in thetarget formula ([108],[6]). We present an algorithm for the new model that, for anyfailure probability p < 1, produces with probability at least 1� e�s a hypothesis equiv-alent to the target concept in time polynomial in n, m and s. The running time of thisalgorithm is not dominated by the failure probability for moderate p; when p � 12 , theexpected total number of queries is O(mn2).We observe that when p is nonzero, there is a nonzero probability that the algorithmwill obtain no information from any of its membership queries. However, there is noalgorithm that runs in time polynomial in n and m and exactly identi�es any monotoneDNF formula using equivalence queries only [7]. Thus, the quanti�cation of \with highprobability" is necessary in the statement of our main result.2.2.2 PreliminariesThe target concepts are monotone formulas in disjunctive normal form (DNF) over thevariables x1; : : : ; xn for some positive integer n. For example, for n = 20,x1x4 + x2x17x3 + x9x5x12x3 + x8is a possible target concept. The number of terms in the target formula will be denotedby m; in this example m = 4. Note that there is an e�cient algorithm to minimize thenumber of terms of a monotone DNF formula. We shall assume that the target formulaf has been minimized.The instance space of examples is the set of all possible vectors of n 0's and 1's;that is, the set f0;1gn. A monotone DNF formula h is interpreted as denoting theset of vectors from the instance space that satisfy h. If vector v satis�es formula hwe write h(v) = 1; otherwise h(v) = 0. We view the instance space as a lattice, withcomponentwise \or" and \and" as the lattice operations. The top element is the vector



2.2 Randomly Fallible Teachers 29of all 1's, and the bottom element is the vector of all 0's. The elements are partiallyordered by �, where v � w if and only if v[i] � w[i] for all 1 � i � n.For convenience, we introduce an alternative representation of monotone DNF for-mulas in which each term is represented by the minimum vector in the ordering � thatsatis�es the term. Thus, the vector 10011 denotes the term x1x4x5. In this representa-tion, if h is a monotone DNF formula and v is a vector in the instance space, v satis�esh if and only if for some term w of h, w � v. Figure 2.1 shows the four-variable lattice,with the enclosed area containing all vectors satisfying the formula x1x4 + x1x2 + x3.
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0111                1011                1101                1110

0001                0010                 0100               1000

0011                0101                 0110                1001                 1010                 1100

0000Figure 2.1: The target concept x1x4 + x1x2 + x3.In this representation, since we have assumed that the target concept f is minimized,the terms of f are precisely the minimal positive examples of f , also called minterms.Similarly, we de�ne a maxterm tm of the formula to be a maximal negative example off . That is, f(tm) = 0, but if any variable not in tm is added, the resulting vector willforce the target formula to 1.The descendants of a vector v are all the vectors w in the instance space such that



30 Learning With Imperfect Teachersw � v. For any nonnegative constant d, the d-descendants of v are all the descendantsw of v that can be obtained from v by replacing at most d 1's by 0's. For example,consider the term x2x3x4, represented as 0111. Its set of 1-descendants, f0111, 0011,0101, 0110g, contains the term itself and its three children. The set of 2-descendantsis the union of the set of 1-descendants with 0111's grandchildren: 0001, 0010, and0100. Figure 2.2 shows the set of 2-descendants of the vector 0111.
1111
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0011                0101                 0110                1001                 1010                 1100

0000Figure 2.2: The 2-descendants of x2x3x4.2.2.3 Using Incomplete Membership QueriesA key subprocedure in the monotone DNF algorithm of Angluin [6] takes a positiveexample v of the target concept f and uses membership queries to reduce v to a minimumpositive example of f . The algorithm starts with the empty formula and uses equivalencequeries to generate new positive counterexamples to reduce. The result of each reductionis a new term of f , which is added to the current hypothesis. After m iterations of thisprocess the current hypothesis is equivalent to f .



2.2 Randomly Fallible Teachers 31Our new algorithm is based on the same idea, but must use an incomplete member-ship oracle. The di�culty that arises is as follows. The reduction process has a currentpositive example v of f and makes membership queries for each of the children of v. Aslong as at least one of these membership queries is answered \yes," say for the vector y,then v can be replaced by y and the process repeated. However, eventually the processarrives at a positive example v of f such that membership queries for all of the childrenof v are answered either \no" or \I don't know." If there is at least one child of vanswered \I don't know," then v may or may not be a minimum positive example of f .We therefore modify the reduction process so it may be used with an incompletemembership oracle. The goal is to take an initial positive example v of f and reduceit to a positive example that is \likely" to be \not too far above" a minimum positiveexample of f . By adding all su�ciently close descendants of this vector as terms to thecurrent hypothesis, we will be \likely" to add a new term of f , and therefore, to makeprogress towards exact identi�cation of f . In so doing, we may add terms to the currenthypothesis that do not imply f , but these will eventually be removed in response tonegative counterexamples.The idea of the new reduction process is to use membership queries to search notonly the children of v but also all the \close enough" descendants of v, looking for avector y � v that is answered \yes." If such a y is found, then the search continues withy in place of v. If no such y is found after querying all the \close enough" descendantsof v, then v is returned. Note that the descendants are searched in breadth-�rst order{ �rst the children of v, then the grandchildren, etc. The parameter d � 1 speci�es thedepth of search from v.Suppose Reduce is called with an incomplete membership oracle for f , and inputsv (a positive example of f) and d � 1. It is clear that Reduce must eventually return avector v0 such that v0 � v, v0 is a positive example of f , and membership queries for allthe proper d-descendants of v0 were answered either \no" or \I don't know." In Angluinand Slonim [13], we determine the values of d for which the probability that there is NO



32 Learning With Imperfect TeachersReduce(v; d):1 D := fdjd is a proper d-descendant of v g2 for each y 2 D in breadth-�rst order3 do if membership-query(y) = \yes"4 then return Reduce(y; d)5 return vminimum positive example of f among the d-descendants of v0 is at most 1=2. We provethat this property holds for anyd � log(2 + 1 + log(1=(1 � p))log(1=p) )� 1:In particular, for p � 1=2; d = 1 is su�cient; as p = (1 � �) approaches 1, it su�ces tochoose d � dlog(1=�) + log log(1=�)e:2.2.4 Learning Monotone DNF FormulasNow we are in a position to describe the learning algorithm. The algorithm begins withthe empty hypothesis (false on all vectors) and makes equivalence queries and processescounterexamples one at a time until the hypothesis is equivalent to the target function.Because it tries to \guess" some of the terms in the target concept, the algorithm mayintroduce terms that do not actually imply the target concept. Thus a counterexamplev may be a negative example of f , in which case f(v) = 0 and h(v) = 1. The algorithmprocesses such a v by removing all the terms from the current hypothesis that are satis�edby the vector v.Otherwise, a counterexample v is a positive example of f . Intuitively, what we'd liketo do is to call Reduce on v to obtain a vector y that with probability at least 1=2 hasa minimum positive example of f among its d-descendants for some moderate value ofd. Then we would add all the d-descendants of y as terms to the current hypothesis h



2.2 Randomly Fallible Teachers 33
111

110                    101                    011

100                    010                   001 

000

?+

−

−Figure 2.3: The +;�; and ? symbols respectively indicate positive, negative, and \Idon't know" answers to membership queries. The �rst positive counterexample is 110;vectors 010, 100, and 000 are queried. If the second counterexample is 011, vector 010would be queried again.and continue. If this worked for each positive example, we'd expect to add a new termof f to h for every two positive counterexamples, which would be su�cient progress.The di�culty is that in order to apply our probabilistic bounds, we must guaranteethat at each call to Reduce with argument v, all the descendants of v that are positiveexamples of f have not been previously queried. This is certainly true the �rst timeReduce is called, but may not be true on subsequent calls. For example, consider thetarget concept f = x1+x2 over three variables, as shown in Figure 2.3, and assume thatthe initial (positive) counterexample is 110. When called with (110; 1) as its arguments,Reduce performs membership queries for the children 010 and 100. Suppose the �rstquery is answered with \I don't know" and the second with \yes." Then the processis iterated with 100, and the child 000 is queried. Suppose the answer in this case is\no." The hypothesis is then set to x1 and an equivalence query is made. Assume nowthe counterexample is 011. Then Reduce is called with arguments (011,1) and makes



34 Learning With Imperfect Teachersmembership queries for the children 001 and 010. However, 010 is a descendant of theargument that is a positive example f , and it has already been queried and answeredwith \I don't know." Thus we can no longer claim that the probability a membershipquery on 010 returns \I don't know" is exactly p.Our solution for this di�culty is to add to the current hypothesis as terms ALLthe vectors queried by Reduce that result in an answer of either \yes" or \I don'tknow." This guarantees that when a positive counterexample v to the current hypothesisis generated, none of the descendants of v that are positive examples of f has beenpreviously queried. (Otherwise they would still be present as terms in the currenthypothesis, contradicting the fact that v is a counterexample to the current hypothesis.)In fact, a vector u (u 6= y) queried by Reduce that receives the answer \yes" mustbe a direct ancestor of the returned vector y, which is the last vector whose query byReduce answers \yes". A positive counterexample to a hypothesis containing y wouldbe a counterexample to any such vector u as well. So it is su�cient to add to thehypothesis just the vector y and all those vectors queried by Reduce that result in \Idon't know" answers.Thus we assume that Reduce has been modi�ed to return two results: the vector ypreviously returned, and the set Q of all the vectors queried by the top-level and all therecursive calls to Reduce that resulted in answers of \I don't know." Note that Q mustinclude all the proper d-descendants of y that are positive examples of f , since they mustall have been queried when Reduce returns, and they must all have been answered \Idon't know." The modi�ed version of Reduce will be called mod-Reduce, and willhave an additional parameter Q, which should initially be the empty set.We can now specify Learn-mDNF, our learning algorithm for monotone DNF for-mulas that uses an equivalence oracle and an incomplete membership oracle. The choiceof constant d depends on p as described above. Recall that we denote a term by theminimum vector satisfying it, so that the current hypothesis h may be thought of as aset of vectors.



2.2 Randomly Fallible Teachers 35mod-Reduce(v; d; Q):1 D := fdjd is a proper d-descendant of v g2 for each y 2 D in breadth-�rst order3 do if membership-query(y) = \I don't know"4 then Q = Q [ fyg5 do if membership-query(y) = \yes"6 then return mod-Reduce(y; d; Q)7 return v;QLearn-mDNF:1 h := the empty formula2 while (v = equivalence-query(h)) 6= ;3 do if (h(v) = 1)4 then remove from h all w j w � v5 else y;Q :=mod-Reduce(v; d; ;)6 h := h [ fyg [Q7 Output h and haltThe analysis in Angluin and Slonim [13] shows that this algorithm exactly identi�esf and with high probability runs in time polynomial in n;m; and d. For p � 1=2, thealgorithm requires an expected O(mn2) queries.2.2.5 Handling Some ErrorsOne important question is what happens when membership queries may be answeredincorrectly. In the case of missing information, at least the learner can rely on thecorrectness of the information that is obtained. With possibly incorrect answers, thelearning problem seems to become harder. One natural extension of the current modelis to permit the membership oracle to give one of a variety of \corrupted" answers forthose strings whose coin 
ip results in \heads," while requiring correct answers on theremaining strings.For one variant, namely 1 ! 0 one-sided errors, a minor modi�cation to Learn-mDNF permits it to cope with such errors. In this model, for each string in the



36 Learning With Imperfect Teachersinstance space whose coin 
ip results in \heads," the answer of the membership oracleis always \no." The modi�cation to Learn-mDNF is to add a term to h for EVERYvector queried with membership queries, since now an answer of \no" may be given fora positive example. The analysis of positive examples answered \no" is then the same asthe previous analysis of positive examples answered \I don't know." The key observationis that queries answered \yes" are answered correctly; in fact, this modi�cation copeswith a model in which corrupted examples may be answered either \no" or \I don'tknow" arbitrarily.The dual problem, that of 0 ! 1 one-sided errors, is more di�cult. A trivial modi-�cation of Learn-mDNF is no longer su�cient, because the reduction procedure willnot terminate until queries on all descendants of some vector return \no". One mightassume that if 1 ! 0 errors are easily handled by an algorithm that �nds mintermsof the target formula, then a similar bottom-up approach could be applied to handle0! 1 errors and �nd all maxterms of the target formula. However, for a monotone DNFformula with m minterms over n variables, there may be up to nm maxterms! Thus,this approach is impractical as well.2.2.6 Future DirectionsThere are a number of additional questions in this area that could be investigated.Kharitonov suggests the problem of combining our model with errors in equivalencequeries. Persistent errors in deterministic equivalence queries are too strong an adver-sary; clearly, if an equivalence oracle ever claims the hypothesis is correct when it is not,the algorithm will fail. It is more interesting to ask what happens when the equivalenceoracle is approximated by a su�ciently large number of labeled random examples, drawnaccording to some natural probability distribution. What happens if there is randommisclassi�cation noise in the sampling used by the equivalence oracle, in addition to \Idon't know" or erroneous answers to membership queries?It would be interesting to determine if anything can be done in the case of amalicious



2.2 Randomly Fallible Teachers 37incomplete membership oracle, where an adversary is given some control over whichmembership queries the teacher cannot answer. In one such model, given failure boundp, the adversary is allowed to specify up to p� 2n vectors for which the teacher cannotanswer membership queries. Certainly, if p is a constant fraction, any algorithm can beforced to make an exponential number of queries to learn monotone DNF. For example,let p = 1=4; the adversary refuses to answer all queries on vectors whose �rst two bitsare set to 1. Then the problem of learning any target concept where every term containsboth x1 and x2 is e�ectively reduced to learning with just equivalence queries, which isknown to require exponential time. Exactly how much power does an adversary need toprevent learning in a malicious model?Another question is whether we can �nd polynomial time algorithms in this modelfor other learning problems known to have polynomial time algorithms using equivalenceand membership oracles. Goldman and Mathias [54] show how to exactly identify k-term DNF formulas in this model, proving that the model can be successfully applied tonon-monotone concept classes. It would be interesting to determine what other typesof concept classes (geometric concepts?) can be learned in this model.A �nal important goal is to explore methods of coping with persistent errors inmembership queries beyond the 1 ! 0 one-sided errors considered above. Since PAC-learning can tolerate a large degree of randommisclassi�cation errors, general (two-sided)random errors in membership queries might seem approachable. Indeed, the results ofGoldman, Kearns, and Schapire [53] show that the classes of logarithmic-depth read-once majority formulas and logarithmic-depth positive NAND formulas can be learnedwith high probability using only membership queries, even if the membership queriesare subject to persistent two-sided errors.The analysis of our algorithm relies on the assumption that all the \I don't know"sare distributed independently at random. It would be informative to �nd useful resultsfor a more natural model, as discussed in Section 2.2.1. Preliminary but promisingresults in such a model are described in the next section.



38 Learning With Imperfect Teachers2.3 Unreliable Boundary Queries2.3.1 IntroductionIn most of the theoretical work on concept learning, the environment is modeled as anomniscient oracle that classi�es all objects as positive or negative instances of the conceptto be learned. Thus, it is assumed that there is a well-de�ned boundary separatingpositive from negative examples. In many cases, however, classi�cation may be muchless clear. For example, consider a membership query algorithm for learning to recognizethe number 3 from pixel images. A typical strategy would involve taking a 3 and a non-3(maybe a picture of a 2) and asking for classi�cations of examples halfway between themuntil two nearby examples with di�erent classi�cation are found. A problem with thistype of approach1, as noticed by Lang and Baum [72], is that questions of this sort thatare near the concept boundary may result in unreliable answers. Merging an image ofa 2 and a 3 tends to produce something that looks a bit like both, and that we don'treally care about anyway since we don't expect to see one in practice.More generally, one unrealistic aspect of the PAC-with-membership-query model isthat it relies much more heavily on its assumptions than the passive PAC model. Inboth models, one typically assumes there is a target function belonging to some class Cthat is labeling the data, and one then tries to prove that one's algorithm will succeedunder that assumption. In the passive model, however, all that is really needed is thatthe target function and the distribution on examples conspire in such a way that thedata actually seen is consistent with a function in C. In contrast, with membershipqueries one needs the function on the entire space to be consistent with some function inC. For instance, suppose a learning algorithm is using a simple hypothesis class (say asimple neural network) to learn images of 3's. For a passive algorithm, one would wantthe data observed to be consistent with some hypothesis in the class. For a membershipquery algorithm, however, one needs the stronger condition that the target concept over1Particularly when a human \expert" serves as the membership query oracle.



2.3 Unreliable Boundary Queries 39the entire input space can actually be represented in such a simple form. The di�erenceis that typical images of 3's may be distinct enough from images of other charactersthat many simple consistent hypotheses exist. However, if one were to probe the exactboundary of the \3" concept, one would likely �nd it has a complicated structure thateven depends on which \expert" you ask.In this section we propose and study a model for learning with membership queriesthat addresses the above issues. The basic idea of our model is that queries near theboundary of a target class may receive either incorrect or \don't care" responses. But,in partial compensation, we assume the distribution of examples has zero probabilitymass on the boundary region. (The motivation is that the oracle responds incorrectly ordoesn't know the answers because these examples do not actually appear in the world,and thus it does not matter how the learner classi�es them.) We do not require the oracleto answer incorrectly or state \I don't care" in the boundary region, since that wouldjust make the learning problem that of learning a di�erent (perhaps ternary) targetconcept in the standard model. In that case, one could then simply perform binarysearch between the boundary and non-boundary examples, defeating the purpose ofthe model. One way of viewing our model (although our model is actually a bit moregeneral) is that the true target concept is in fact some horribly complicated function,but di�ers from a simple function only in a boundary region that has zero probabilitymeasure. See Figure 2.4 for an example.The contributions of this work are: (1) the introduction of the model of learning withunreliable boundary queries, (2) an e�cient algorithm that PAC-learns the intersectionof two halfspaces with membership queries when the boundary queries are noisy, and(3) e�cient algorithms to exactly learn (with membership queries) several subclasses ofmonotone DNF formulas when there are one-sided false positive errors in the boundaryqueries for a small boundary size.
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+Figure 2.4: The thick curve is the actual concept boundary. However, because thedistribution has zero probability mass in the shaded region, we can view the concept asan intersection of two halfspaces in our model.2.3.2 De�nitionsGiven a concept f over an instance space X that has a distance metric, we say thatthe distance to the boundary of an example x is the distance to the nearest example ysuch that f(x) 6= f(y). For continuous input spaces we use the in�mum over distancesto y's such that f(x) 6= f(y). In the boolean domain we use the Hamming distance asour metric. Thus an example is at distance 2 from the boundary if it is possible to 
iptwo bit positions and change its classi�cation. In continuous domains, the L2 metric isoften most natural. We de�ne the boundary region of radius r to be the set of exampleswhose distance to the boundary is at most r. We de�ne the negative boundary region ofradius r to be the set of all examples x in the boundary region such that f(x) = 0.We now de�ne the unreliable boundary query (UBQ) model. This model is the sameas the standard PAC-memb model except for the following di�erence: there is a valuer (the boundary radius) such that any query to an example in a boundary region of



2.3 Unreliable Boundary Queries 41radius r may receive an incorrect response, and the example distribution D has zeroprobability measure in that boundary region. In the incomplete boundary query (IBQ)model, the learner never receives an incorrect response to a query, but in the boundaryregion might receive the answer \don't care". We also consider a one-sided false-positive-only UBQ model in which the learner may receive false positive answers to any queriesin the negative boundary region, but receives correct answers in the positive boundaryregion. In this case, the distribution D is only required to have zero probability onthe negative boundary region. (Note that an algorithm for this model can learn in theIBQ setting by simply treating each \don't care" response as positive.) Finally, weextend these de�nitions to the exact learning model by requiring that counterexamplesto equivalence queries not be chosen from the boundary region.2.3.3 Related WorkThere has been a great deal of theoretical work on PAC or mistake-bound learning incases where the training examples may be mislabeled [6, 70, 101, 64] and additionalwork in models that allow attribute noise [99, 52, 75]. The p-concepts model of Kearnsand Schapire [65] also falls somewhat into this category.There have also been a number of results on learning with randomly generated noisyresponses to membership queries. Sakakibara [97] considers the case where each mem-bership query is incorrectly answered with a �xed probability, but where one can increasereliability by asking the same membership query several times. In models of persistentmembership query noise, repeated queries to the same example receive the same answeras in the �rst call. Goldman, Kearns and Schapire [53] give a positive result for learningcertain classes of read-once formulas under this noise model. Their work uses mem-bership queries to simulate a particular distribution. Frazier and Pitt [49] show thatCLASSIC sentences are learnable in this noise model, using the fact that many distinctmembership queries can be formulated that redundantly yield the same information.Angluin and Slonim [13] introduce a model of incomplete membership queries (de-



42 Learning With Imperfect Teachersscribed in Section 2.2), in which a membership query on a given instance may persistentlygenerate a \don't know" response. The \don't know" instances are chosen uniformly atrandom from the entire domain and may account for up to a constant fraction of theinstances. Additional positive results in this model are obtained by Goldman and Math-ias [54]. This model allows for a large number of \don't know" instances, but positiveresults in this model are typically highly dependent on the precisely uniform nature ofthe noise.Sloan and Turan [103] introduce the limited membership query model . In this model,an adversary may arbitrarily select some number ` of examples on which it refuses toanswer membership queries (or answers \don't know"), but the learner is now allowedto ask a number of queries polynomial in `. Sloan and Turan present algorithms inthis model for learning the class of monotone k-term DNF formulas with membershipqueries alone and the class of monotone DNF formulas with membership and equivalencequeries. Angluin and Kri�kis [10] introduce a similar model of malicious membershipqueries in which the adversary may respond with incorrect answers instead of \don'tknow". Their paper proves that the class of monotone DNF formulas is learnable inthis model. Angluin [8] has shown that read-once DNF formulas are also learnable withmalicious membership queries.The main di�erence in motivation between our model and those above is that mostprevious work supposes that there is a clear boundary between the positive and negativeexamples with some noise included. Our goal is to model the very di�erent situation inwhich the classi�cation of examples in the boundary region is just not well de�ned (forexample, a \2" merged with a \3"). Our model is more di�cult than those above in thesense that the membership query errors or omissions are chosen by an adversary (unlikethe random noise models [13]), and algorithms must run in time that is polynomial inthe usual parameters regardless of the number of queries that might receive incorrectanswers (unlike [103, 10]). For example, in the case of a 1-term monotone DNF formulawith the boundary radius r = 1, there may be exponentially many (in n) instances in the



2.3 Unreliable Boundary Queries 43boundary region. (Example: let x4x7x9 be the target term. Then all positive instances,and all negative instances with exactly one of fx4; x7; x9g turned o�, are in the boundaryregion of radius 1.) On the other hand, to partially compensate for this di�culty, werestrict membership query errors or omissions to the boundary region and we requirethat counterexamples to equivalence queries be chosen from outside the boundary region.In other related work, Frazier, Goldman, Mishra and Pitt [48] introduce a learningmodel in which there is incomplete information about the target function due to an ill-de�ned boundary. While the omissions in their model may be adversarially placed, allexamples labeled with \?" (indicating unknown classi�cation) must be consistent withknowledge about the concept class. They require the learner to construct a ternary func-tion with values f0,1,?g that, with high probability, correctly classi�es most randomlydrawn instances, and give positive results for the classes of monotone DNF formulas andd-dimensional boxes. One of the key di�erences between their model and ours is thatthey allow time polynomial in the complexity of that ternary function: thus if the \?"region has a complicated shape, then their learner is allowed a correspondingly longertime. In our model, a learner is required to learn quickly regardless of the complexity ofthe \?" region.2.3.4 Learning an Intersection of Two HalfspacesWe now describe one of our main positive results: an algorithm for learning an inter-section of two halfspaces in n dimensions in the UBQ model, for any boundary radiusr (see Figure 2.5). Our algorithm is an extension of an algorithm of Baum [16, 17] forlearning the simpler class of intersections of two homogeneous halfspaces in the standardPAC-with-queries model2.The idea of Baum's algorithm is to reduce the problem of learning an intersectionof two homogeneous halfspaces to the problem of learning an XOR of halfspaces, forwhich a PAC algorithm exists [24]. (That algorithm produces a hypothesis that is2A halfspace is homogeneous if its bounding hyperplane passes through the origin.



44 Learning With Imperfect Teachersthe threshold of a degree-2 polynomial.) The idea of the reduction is to notice thatnegative examples in the quadrant opposite from the positive quadrant|the troublesomeexamples keeping the data set from being consistent with an XOR of halfspaces|areexactly those examples ~x such that �~x is positive. His algorithm is as follows:Draw a su�ciently large set S of examples.3 Mark all of the negative exam-ples ~x 2 S which have the property that a membership query to �~x returns\positive". Then �nd a linear function P such that P (~x) < 0 for all themarked (negative) examples and P (~x) � 0 for all the positives. Finally, runthe XOR-of-halfspaces learning algorithm of [24] to �nd a hypothesis H 0 thatcorrectly classi�es f~x 2 S : P (~x) � 0g. The �nal hypothesis is:\If P (~x) < 0 then predict negative, else predict H 0(~x)."Baum's algorithm seems appropriate for our model because it does not explicitly tryto query examples near the boundary. In fact, it is almost the case that if a negativeexample has distance at least r from the boundary, then the example �~x has distanceat least r from the boundary as well. This fails only on the negative examples in the\A-shaped" region shown in Figure 2.5.Our algorithm for learning an intersection of (not necessarily homogeneous) half-spaces in the UBQ model is a small extension of Baum's algorithm, though the analysisrequires a bit more care. In our algorithm, instead of re
ecting through the origin, were
ect through a positive example. We use a potential function to prove that some\good" positive example for re
ection must exist. (The algorithm tries all of them.)Speci�cally, our algorithm is the following:Draw a su�ciently large set S of examples.For each positive example ~xpos 2 S do the following. For each negativeexample ~xneg 2 S, query the example 2~xpos � ~xneg, and if the response to3The VC-dimension [110] of the hypothesis class is O(n2). Blumer, Ehrenfeucht, Haussler andWarmuth [28] have shown that a sample of size polynomial in the VC-dimension of the hypothesisclass is su�cient for PAC-learning, so the number of examples needed is polynomial in n.



2.3 Unreliable Boundary Queries 45that query is \positive", then mark ~xneg. Now, attempt to �nd a linearfunction P such that P (~x) < 0 for all the marked (negative) examples andP (~x) � 0 for all the positives. If no such function exists, then repeat thisstep using a di�erent positive example ~xpos 2 S (we prove below that thisstep must succeed for some positive example ~xpos).Finally (assume we have found a legal linear function P ), let S 0 be the set of~x 2 S such that P (~x) � 0, and use the XOR-of-halfspaces learning algorithmto �nd a hypothesis H 0 that correctly classi�es the examples in S 0. The �nalhypothesis is:\If P (~x) < 0 then predict negative, else predict H 0(~x)."
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rFigure 2.5: An intersection of 2 halfspaces. The boundary region is shaded. Noticethat its apex is curved, which complicates the proof somewhat.Theorem 1 For any radius r of the boundary region, our algorithm succeeds in theUBQ model.
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All negative examples that flip to positives lie above this hyperplane.

region of points that flip to positive or boundary (all points
      that flip to positive must lie in here)

Figure 2.6: For clarity, ~xpos is the only positive example shown. All marked negativeexamples lie within the dark-shaded region, which is the re
ection of the positive andboundary regions through ~xpos. Lemma 2 states that the intersection of this region withthe non-boundary negative region is linearly separable from the set of positive examplesin S. The hyperplane pictured is the linear equality P (x) = 2 from that lemma.Before giving a proof of correctness, we point out the simplifying observation thatour algorithm is invariant under translation. If we add some vector ~v to each ~x 2 S, thisresults in adding ~v to each point of the form 2~xpos�~xneg as well. In particular, this meansthat if we can prove that our algorithm succeeds when the hyperplanes are homogeneous,then this implies that our algorithm also succeeds in the general (non-homogeneous) case.Therefore, we can assume in our proof for simplicity that the hyperplanes are, in fact,homogeneous.We now �x some notation. Let r be the radius of the boundary region (which, notice,is not used by the algorithm). We de�ne the distance between a point x and a set S asthe in�mum over all y 2 S of d(x; y). The target concept is de�ned by two unit vectors



2.3 Unreliable Boundary Queries 47~p1 and ~p2, and the positive region POS = f~x : ~p1 � ~x � 0 and ~p2 � ~x � 0g. We de�ne the\opposite quadrant" to be f~x : ~p1 � ~x < 0 and ~p2 � ~x < 0g. We say a point (or example)is \non-boundary" if it is not within the boundary region.The negative non-boundary region NEGnb is the set of negative points not in theboundary region. Formally,NEGnb = f~x : (~p1 � ~x < 0 or ~p2 � ~x < 0) and d(~x; POS) > rg:Notice that if either ~p1 � ~x < �r or ~p2 � ~x < �r then ~x is in NEGnb, though these arenot necessary conditions (see Figure 2.5). In fact, let us de�neNEGfar = f~x : ~p1 � ~x < �r or ~p2 � ~x < �rg;so NEGfar � NEGnb. To get necessary conditions for lying in the region NEGnb, noticethat if �r � ~p1 � ~x < 0 and ~x 2 NEGnbthen it must be the case that (~x+ r~p1) � ~p2 < 0 (otherwise the point ~y = ~x+ r~p1 wouldbe in the positive region implying that x is in the boundary). Similarly, if�r � ~p2 � ~x < 0 and ~x 2 NEGnbthen (~x+ r~p2) � ~p1 < 0. Thus,NEGnb � NEGfar[f~x : (~p1�~x <0 and ~p2�~x < �r~p1�~p2) or (~p2�~x <0 and ~p1�~x < �r~p1�~p2)g:(2.1)We begin by showing that the negative examples in the opposite quadrant do in fact getmarked by our algorithm.Lemma 1 For any non-boundary positive example ~xpos and any negative example ~xnegin the opposite quadrant, the point 2~xpos � ~xneg is a non-boundary positive example.



48 Learning With Imperfect TeachersProof: Since ~xneg lies in the opposite quadrant, we have ~p1 � ~xneg < 0 and ~p2 � ~xneg < 0.Since ~xpos is a non-boundary positive example, we know that ~p1�~xpos > r and ~p2 �~xpos > r.Therefore, ~p1 � (2~xpos � ~xneg) � ~p1 � 2~xpos > rand ~p2 � (2~xpos � ~xneg) � ~p2 � 2~xpos > r: 2What remains to be shown is that there exists a positive example ~xpos such thatthe set of negative examples marked when using ~xpos for re
ection is linearly separablefrom the positives. In particular, we show the positive example ~x 2 S that minimizes(~p1 � ~x+ r)(~p2 � ~x+ r) will succeed. Letting ~xpos be that example and a1 = ~p1 � ~xpos anda2 = ~p2 � ~xpos, we show that a legal separator is the linear inequality ~p1�~x+ra1+r + ~p2�~x+ra2+r � 2.(Intuitively, what we want is for ~xpos to be the \closest" positive example to the originaccording to some measure, and the correct notion of \closest" is that of being on thehyperbola (~p1 � ~x+ r)(~p2 � ~x+ r) = c for minimum c.)Lemma 2 Let ~xpos be the example ~x 2 S minimizing (~p1 � ~x + r)(~p2 � ~x + r) and leta1 = ~p1 � ~xpos and a2 = ~p2 � ~xpos. Then the linear functionP (~x) = ~p1 � ~x+ ra1 + r + ~p2 � ~x+ ra2 + ris at least 2 for each positive example ~x and at most 2 for each negative example ~x thatis marked when using ~xpos for re
ection.Proof: First we consider the positive examples. Let ~x0 be some positive example in S.De�ne � and � so that (~x0 �~p1+r) = �(a1+r) and (~x0 �~p2+r) = �(a2+r). By de�nitionof ~xpos we have �� � 1, and by de�nition of the positive region we know both � and �are at least 0. These inequalities imply that �+ � � 2, which implies P (~x0) � 2.Now consider the negative examples. The set of examples ~x with the property that



2.3 Unreliable Boundary Queries 492~xpos�~x might be classi�ed as positive by a membership query is pictured in Figure 2.6.Any such example must belong to the setMAYFLIP = f~x : ~p1 � ~x � 2a1 + r and ~p2 � ~x � 2a2 + rg:We now consider the possible cases for marked negative examples ~x 2 S, using thecharacterization of the negative non-boundary region given by Equation (2.1) (cases 1and 2 below handle the possibility that ~x 2 NEGfar).Case 1. Suppose ~x 2 MAYFLIP \ f~x : ~p1 � ~x < �rg. Then P (~x) < 0 + 2a2+2ra2+r = 2.Case 2. Suppose ~x 2 MAYFLIP \ f~x : ~p2 � ~x < �rg. Then P (~x) < 2a1+2ra1+r + 0 = 2.Case 3. Suppose ~x 2 f~x : ~p1 � ~x < 0 and ~p2 � ~x < �r~p1 � ~p2g.Then P (~x) < ra1+r + r(�~p1�~p2+1)a2+r < 1 + 2ra2+r , which is at most 2 since a2 � r.Case 4. Suppose ~x 2 f~x : ~p2 � ~x < 0 and ~p1 � ~x < �r~p1 � ~p2g. Same reasoning as Case 3.2Proof of Theorem 1: Follows from Lemmas 1 and 2. 22.3.5 Learning Subclasses of Monotone DNF FormulasIn this section we describe algorithms to learn two subclasses of monotone DNF formulasin the UBQ model with one-sided false-positive error, for small values of the boundaryradius r. (Learnability in the one-sided UBQ model implies learnability in the IBQmodel by simply treating each \don't care" response as positive.)Speci�cally, we give an algorithm to learn the class of \read-once monotone DNFformulas in which each term has size at least 4" in the UBQ model with boundary radiusr = 1. While this is clearly a highly-restrictive class, it is not di�cult to show, usingstandard prediction preserving reductions [86], that it is as hard to learn as general DNFformulas in the passive PAC model. Thus our algorithm demonstrates that unreliable



50 Learning With Imperfect Teachersqueries provide some power over the passive model in a boolean setting. We also give analgorithm to properly learn a subclass of constant-term DNF formulas for any constantr. While the class of k-termDNF formulas is learnable in the passive model, membershipqueries are required for proper learnability.One reason for studying the one-sided, false-positive error model is that the mono-tonicity of the target class provides some inherent ability to handle false-negative errors.In a related model, Angluin and Slonim [13] show how to learn monotone DNF withrandom false-negative answers to membership queries allowed anywhere in the domain(not just in the boundary region). However, it is not known how to extend their resultsto handle false positive errors. We hope that the results presented here may be com-bined with these previous results to produce general techniques for learning monotoneconcepts with two-sided noise.Let y1; : : : ; yn denote the n boolean variables, and x = (x1; : : : ; xn) denote an ex-ample. As is commonly done, we view the sample space, f0; 1gn, as a lattice with topelement f1gn and bottom element f0gn. The elements are partially ordered by the rela-tion �, where v � w if and only if each bit in v is less than or equal to the correspondingbit in w. The descendants (respectively, ancestors) of a vector v are all vectors w inthe sample space such that w � v (respectively, w � v). For a monotone term, bymoving down in the lattice (i.e. changing a 1 to 0), the term can only be \turned o�".Thus every monotone term can be represented uniquely by the minimum vector in theordering � for which it is true.Let A(i; v) be the set of examples obtained by 
ipping exactly i zeros to ones invector v. The parents of v are the elements of A(1; v), and the grandparents of v are theelements of A(2; v). Likewise,D(i; v) is the set of examples obtained by 
ipping exactlyi ones to zeros in v, and for a set V of examples we let D(i; V ) = [v2VD(i; v). We de�nethe children of v as all elements in D(1; v), and the siblings of v are all elements inD(1; A(1; v)).We often think of examples as terms and vice-versa, associating with a monotone



2.3 Unreliable Boundary Queries 51term the minimal positive example that satis�es it. For example v let term(v) denotethe most speci�c monotone term that v satis�es. Thus, we say an example is a sibling ofa term, meaning that it is a sibling of that term's associated example. Given an examplex we de�ne vars(x) to be the set of variables set to 1 by x. We also treat a term t asthe set of variables it contains.We now describe the high-level algorithm that is used to obtain both of our results.Our hypothesis h contains candidates for terms of the target function f , and possiblysome additional terms used to ensure that provided counterexamples are not in theboundary region of any known terms. We begin with h = ;. We then enter a loopin which we make an equivalence query with our current hypothesis, and then ask acollection of membership queries to update our hypothesis in light of the counterexamplereceived, until a successful equivalence query is made. We maintain the invariant thatafter i positive counterexamples have been received, h contains i distinct terms t1; : : : ; tiof the target concept (and possibly other terms that may or may not be in the targetconcept).Following our de�nitions in Section 2.3.2, we say an example x is in the boundaryregion of term t if t(x) = 0, but there exists an x0 > x such that t(x0) = 1 and dist(x; x0) �r. We de�ne the set of boundary/positive examples B = fv j v is in the positive orboundary region of some term in h \ fg, where \h \ f" denotes the set of terms thatappear in both formulas. Note that B depends not only on f , but on the currenthypothesis h as well. Thus, there may be some example u 2 B such that u is in theboundary region of some term t in h, but is a truly positive example of the targetfunction f . Such a u might be returned as a positive counterexample to an equivalencequery made on h. Thus to maintain the invariant, we need to show that we can alwaysuse counterexample u to �nd a new term of f not already in h.We now describe how a counterexample x is processed so that we can maintain thisinvariant. When it receives a negative counterexample, our algorithm simply removesfrom h all terms that classify x as positive. Clearly no term from f will be removed. No



52 Learning With Imperfect Teachersterms in the boundary of f will be removed either, since no counterexamples are chosenfrom the boundary region.If x is a positive counterexample we �rst run the procedure Exit-Boundary(x), whichreturns an example v 62 B such that MQ(v) is positive (this could be a false positive).We then run the following process to \reduce" v so it is \near" a new target term. Toensure that we do not rediscover a known term, the procedure Move-Further must returnan example that is not in B. Below is our procedure, which is guaranteed to add a newterm from f to h.1. Let v be the example returned from Exit-Boundary. (So v is positive or in theboundary region of a new term of f .)2. So long as v has some child to which a membership query reports \positive", replacev by that child and repeat. This is the standard Reduce procedure common tomany monotone-DNF learning algorithms. (Note that since v 62 B and the targetformula is monotone, it follows that no child of v could be in B.)3. We now call a procedure Move-Further(v) for which one of two cases will occur:Case 1: Move-Further(v) returns an example v0 62 B such that v0 has strictly fewerones than v and MQ(v0) is positive. In this case we return to step 2 using v0as the current example.Case 2: Move-Further(v) reports failure. Here we are guaranteed that v is \near"a new term ti+1 of f . Example v is \near" ti+1 if the number of irrelevantvariables in vars(v) is at most the number of relevant variables from ti+1missing from vars(v), which in turn is at most r. Formally, we require thatjvars(v)� ti+1j � jti+1 � vars(v)j � r:In this case we call the procedure Generate-Candidates(v), which returns apolynomial-sized set T of terms with the guarantee that ti+1 2 T . We then



2.3 Unreliable Boundary Queries 53add all terms in T to h.At this point our algorithm is ready to make its next equivalence query.Lemma 3 Given that Exit-Boundary, Move-Further, and Generate-Candidates satisfy thestated conditions and run in polynomial time for some subclass C of monotone DNFformulas, the above procedure learns C in the false-positive-only UBQ model (or the IBQmodel) in polynomial time.Proof: If there are no counterexamples to h, we are done. The number of positivecounterexamples received is at most the number of terms in the target DNF. OnceExit-Boundary is completed, all examples that the Reduce process recurses on have theproperty that they are positive examples (possibly false positive) outside the positive orboundary region of any term of h \ f . Thus from the correctness of Move-Further andGenerate-Candidates, we are guaranteed that a new term is added to h after at most ncalls to Move-Further. Furthermore, each negative counterexample removes at least one\extra" term placed in h by Generate-Candidates, and we are guaranteed that there areat most a polynomial number of such terms. Thus, there are only a polynomial numberof negative counterexamples, so our algorithm runs in polynomial time as long as all ofthe provided procedures do. 2Learning A Subclass of Read-Once Monotone DNF FormulasWe now describe how to complete the generic procedure above to obtain an algorithmthat learns the class C of \read-once monotone DNF formulas in which each term hassize at least 4" in the UBQ model where r = 1.We begin by describing a utility routine, Study-Example, used in the algorithm. Thisroutine takes an example returned by Move-Further (which is guaranteed to be \near to"some term of the target) and produces a more useful approximation to that term. Thedesired behavior of the routine Study-Example is speci�ed in Property 1.



54 Learning With Imperfect TeachersProperty 1 Let f be a function in C, and let v be an example such that there exists aterm ti+1 of f such that v is either equal to, a sibling of, or a child of ti+1. Then Study-Example produces an approximation t̂i+1 of ti+1 along with one of these two guarantees:(1) t̂i+1 is equal to ti+1 or a parent of ti+1 (so it is a superset of ti+1), or(2) t̂i+1 is equal to ti+1 or a child of ti+1 (so it is a subset of ti+1).The Study-Example routine asks a membership query on all siblings of v. Let P bethe set of siblings for which the membership oracle replied \yes." Then Study-Exampleoutputs based on the following cases:1. If P = ;, let t̂i+1 = term(v) and report \subset".2. Otherwise, let u be the term containing exactly the variables in [p2Pvars(p).(a) If juj = jterm(v)j+ 1, let t̂i+1 = u and report \superset".(b) Otherwise (juj > jterm(v)j+ 1), if some variable yi 2 vars(v) is \responsiblefor" at least two of the variables in u�vars(v) in the sense that two variablesin u�vars(v) are set to 1 in examples setting yi to 0, then let t̂i+1 = v�fyigand report \subset". (If there are several such variables yi, just pick one.)For example, let v = 0011 and P = f1001; 1010; 0101g. Then u = x1x2x3x4and u� vars(v) = fx3; x4g. Here x3 is responsible for x1 and x2, since x3 is0 in 1001 and 0101. However, x4 is only responsible for x2. Thus in this casewe would let yi be x3.(c) Else let t̂i+1 = u and report \superset". (Note: we separate this case fromcase (a) just for convenience in the proof.)Lemma 4 The routine Study-Example as described above correctly satis�es Property 1.Proof: Note that no siblings of v are in the boundary region of any of the other termsin the target function. That is because a sibling of v may have at most two variables



2.3 Unreliable Boundary Queries 55set to 1 that are not in ti+1, and every other term must have at least four variables notin ti+1 (since they all have size at least 4 and the target function is read-once). Thus,we may analyze the routine as if ti+1 were the only term in the target function.We can see that Study-Example behaves correctly in case (1) by noting that if v ispositive but none of v's siblings are positive (or false positive), then term(v) is eitherti+1 or a child of ti+1. The correctness of case (2a) is similarly easy to see because if vis a child of ti+1 then u equals ti+1 and otherwise u is a parent of ti+1. Notice that if vis a child of ti+1 then either case (1) or (2a) occurs.The reasoning for case (2b) is as follows. If v = ti+1 then t̂i+1 is a child of ti+1. Onthe other hand, if v is a sibling of ti+1, then the only variable yi in v that can possiblybe \responsible for" more than one other variable in u � vars(v) is the variable not interm ti+1. In fact, if we are not in cases (1) or (2a) and v is a sibling of ti+1, then case(2b) must occur because yi will be responsible for the variable in ti+1 missing from v(several variables may be responsible for this one) as well as any other variables addedto u. Thus, case (2c) is correct because it can only be reached if v = ti+1. 2We now prove our main result of this subsection.Theorem 2 The class of read-once monotone DNF formulas where each term in thetarget formula has at least four variables is exactly learnable in the false-positive-onlyUBQ model (or the IBQ model) for boundary radius r = 1 using polynomial queries andtime.Proof: By Lemma 3, we need only de�ne subroutines Exit-Boundary, Move-Further, andGenerate-Candidates, and show that they satisfy the conditions outlined in the previoussection.We �rst describe Generate-Candidates. The procedure Generate-Candidates(v) callsStudy-Example(v). Study-Example(v) returns a term t̂i+1 and a label � (either \subset"or \superset"). Next, add the pair (t̂i+1; �) to the set L, which stores all the t̂is andtheir labels. If label � = \subset" then place t̂i+1 and its children into T . Otherwise, iflabel � = \superset" then place t̂i+1 and its parents into T .



56 Learning With Imperfect TeachersFrom Lemma 4 it follows that if Study-Example is called on example v such that v isequal to, a sibling of, or a child of a new term ti+1, then ti+1 is placed in T . Thus the setD(1; T ) must include all children of ti+1. We therefore have Generate-Candidates returnT [D(1; T ), so all terms in T [D(1; T ) are added to h. It is clear that this procedureruns in time polynomial in n and adds only a polynomial-sized set of terms to h.Next, we claim that the identity function satis�es all the requirements for the proce-dure Exit-Boundary. For positive counterexample x, we want Exit-Boundary(x) to returnsome example v 62 B such that MQ(v) is positive. If x is a positive counterexample,then certainly MQ(x) is positive.We now argue that x cannot be in B. Initially, whenever we add a new term ti+1to h, we also add its children, as described above. (Note that it is not possible forGenerate-Candidates to accidently add an additional term ti+2 to h without its children.If it did so, ti+2 would have to be in D(1; T ) but not in T . But since f is read-once andeach term has size at least 4, it is not possible to have two terms of f , ti+1 and ti+2, suchthat ti+1 2 T and ti+2 2 D(1; T ). ) Once a term of f or any of its children is placed inh, it cannot be removed by any negative counterexample (since any child of a term inf is in the boundary region of f). So no positive counterexample can be in B. Thus,Exit-Boundary(x) simply returns x.We now describe the procedure Move-Further(v). Note that the input v has theproperties that v is not in B and that MQ(v)=1. Furthermore, since v must have failedthe standard Reduce procedure, MQ(v0) is negative for all v0 2 D(1; v).1. For each t̂j in L (for j = 1; 2; : : : ; i) that is labeled \subset", set every variable invars(t̂j) to 0 in v. (This new example is still in the positive or boundary region ofa new term since f is read-once. And since f is monotone, this example is not inB.) We �x these variables at 0 for the remainder of this procedure.2. Let V be the set of variables set to 0 by v and not �xed to 0 in Step 1. Foreach variable y` 2 V , consider the example v0 obtained from v by 
ipping to 0 all



2.3 Unreliable Boundary Queries 57variables in the terms t̂j that contain y`, and then 
ipping y` to 1. Let P be theset of all such examples for which a membership query reports \positive".3. (a) If there is an example in P that has fewer 1's than v, then return this example.(b) If not, then query all children and grandchildren of examples in P and if oneof them has fewer 1's than v and is reported as positive, then return thisexample.(c) Otherwise report failure.Lemma 5 The procedure Move-Further(v) as described above either returns an examplev0 62 B such that v0 has strictly fewer ones than v and MQ(v0) is positive, or it returnsfailure, in which case jvars(v)� ti+1j � jti+1 � vars(v)j � 1.Proof: Move-Further maintains the invariant that v 62 B and v is in the positive orboundary region of a new term of f . We have already argued that this holds after Step1. Thus, at this point, there exists some term ti+1 2 f , distinct from t1; : : : ; ti, such thatv sets to 0 at most one variable in ti+1.We now argue that each example in P has at most one variable in common withterm tj for 1 � j � i. If v0 2 P was obtained by 
ipping to 1 some variable y appearingin, say, term tj (j � i) then one of two cases holds. If t̂j is a \subset" of tj, then y is theonly variable that vars(v0) has in common with tj, since all others in tj have been �xedto 0. Otherwise, t̂j is a \superset" of tj. In this case, y is also in t̂j, so to obtain v0 we
ipped all the rest of the variables in t̂j to 0. Thus, since each term of f has at least 4literals, no example in P is in B. So if an example v0 is returned in step (3a) or (3b) thenit has the desired properties: v0 62 B, MQ(v0) is positive, and jvars(v0)j < jvars(v)j.We now argue that if step (3c) reports failure then v satis�es jvars(v) � ti+1j �jti+1 � vars(v)j � 1. We have already argued that v is the the positive or boundaryregion of a new target term, ti+1, and thus at most one relevant variable from ti+1 ismissing from vars(v) (i.e., jti+1�vars(v)j � 1). Furthermore, if vars(v) contains all thevariables in ti+1 then ti+1 = vars(v), because all irrelevant variables would have been



58 Learning With Imperfect Teachersremoved by the standard Reduce procedure. (Recall that one input condition on v is thatno children of v are positive.) Therefore, if jti+1�vars(v)j = 0, then jvars(v)� ti+1j = 0as well.Otherwise, suppose that jti+1 � vars(v)j = 1, so v is missing one relevant variable,y`, from ti+1. Then when y` is added in step (2), the membership query would bepositive and thus this example would be added to P . Now suppose there were two ormore variables in vars(v) that were not in ti+1. Then an example in which two of thosevariables were set to 0 would have been returned in either step (3a) or (3b). Thus if wereach step (3c) we know that jvars(v)� ti+1j � jti+1 � vars(v)j � 1 holds. 2Finally, we claim that since the example v returned by Move-Further satis�es theproperty jvars(v)� ti+1j � jti+1 � vars(v)j � 1, v must either be equal to ti+1, or be asibling or a child of ti+1. Thus, Study-Example is called on a vector satisfying the con-ditions of Property 1, proving the correctness of Generate-Candidates and of Theorem 2.2Learning (r + 1)-Separable k-Term Monotone DNF FormulasWe now show that a subclass of monotone k-term DNF formulas is properly learnablein the false-positive-only UBQ model for any constant boundary radius. We say thattwo terms ti and tj are `-separable if there are ` variables in tj that are not in ti, andthere are ` variables in ti that are not in tj. A monotone DNF formula f is `-separableif all pairs (ti; tj) of terms of f are `-separable.Theorem 3 The class of (r + 1)-separable k-term monotone DNF formulas is exactlylearnable in the false-positive-only UBQ model (or the IBQ model) using polynomialqueries and time (for r and k constant). Furthermore, all equivalence queries made byour algorithm are (r + 1)-separable k-term monotone DNF formulas.Proof: We �rst prove this result under the assumption that Generate-Candidates notonly �nds a set of candidates that contains some new term of the target formula, but



2.3 Unreliable Boundary Queries 59has the power to \guess" which one is right. Thus h always contains a subset of theterms of the target. Then we argue that our algorithm can be modi�ed to remove thisassumption.We �rst de�ne the procedure Exit-Boundary. For each term ti of f already in h,choose a set si of (r+1) variables in ti. Let S = [isi. Then let v0 = v with all variablesin S set to 0. The procedure Exit-Boundary(v) performs a membership query on eachpossible v0 obtained in this fashion, and returns the �rst such example for which themembership oracle replies \yes." Thus, each query sets up to (r+1)(k � 1) variables invars(v) to 0. We now prove that Exit-Boundary is correct.Lemma 6 The procedure Exit-Boundary(v) successfully returns an example v0 62 B forwhich MQ(v0) = \positive."Proof: Since v was a positive counterexample, it must be in the non-boundary positiveregion of some term tnew in f � h. Suppose it is also in the boundary region of someterms in h. Consider one such term tknown. Since f is (r + 1)-separable, if we set tozero r + 1 variables in vars(v) 2 tknown � tnew then v will no longer be in the boundaryof tknown. However, we still know that all variables in tnew are in vars(v) since we donot change any variables in tnew. (In fact, if all r + 1 variables in tknown � tnew are 1 inv, then it su�ces to pick any r of them to set to 0, since we know that v is already inthe boundary region of tknown.) We can repeat this for the at most (k � 1) other termsin h. Thus after setting at most (r + 1)(k � 1) variables in vars(v) to 0, we obtain anexample that is not in B and is in the truly positive region of tnew. Since this is oneof the examples queried by Exit-Boundary we know that at least one membership querywill respond \yes".Of course, it is possible that some other membership query responds \yes". However,note that Exit-Boundary never queries any example in B, since all examples queried areobtained by setting r+1 variables from each known term to 0. Thus, in this case we arestill guaranteed that the example v0 returned is not in B and that MQ(v0) is positive. 2



60 Learning With Imperfect TeachersThe procedure Move-Further works as follows. For each i such that r+1 � i � rk, itperforms a membership query on all examples v0 in D(i; A(r; v)) that are not in B andreturns the �rst v0 for which MQ(v0) = 1. If no such examples are found after all valuesof i have been tried, then it returns \failure." If Move-Further returns v0, then v0 musthave strictly fewer ones than v, since v0 2 D(i; A(r; v)) for some i > r.We now argue that when Move-Further(v) reports failure the following two propertieshold:1. Example v sets to 0 at most r variables from term ti+1 of the target formula (i.e.jti+1 � vars(v)j � r).2. The number of variables not in ti+1 that are one in v is at most the number ofvariables in ti+1 that are zero in v (i.e. jvars(v)� ti+1j � jti+1 � vars(v)j).Since v 62 B and MQ(v) = 1, v must be in the positive or boundary region of somenew term from f . Since the adversary can reply \positive" only on an example that setsto 0 at most r variables from a term in f , the �rst property follows.We now prove that the second property holds. Let ti+1 be any new term of f forwhich v has ` � r variables set to 0. Suppose that the second property fails. Thus thereare at least ` + 1 variables not in ti+1 that are one in v. Since the target is (r + 1)-separable we know that ti+1 is not in B. Since ti+1 has at most r variables set to 0 in v,at least one example x in A(r; v) has all variables in ti+1 set to 1. When adding theser 1's, we have at worst just set to 1 r variables in each of the known terms. For eachterm ti 2 h, let si be the set of all variables in ti but not in ti+1, and let S = [isi. Let x0be example x with all variables in S set to zero. Since the target concept is monotoneand (r+1)-separable, we know that x0 is still in the positive region of term ti+1 and thatx0 62 B. Move-Further queries examples in D(i; A(r; v)) for all i such that r+1 � i � kr,so x0 must be one of the examples queried by the procedure. Finally, since there are atleast ` + 1 variables not in ti+1 that are 1 in v, and since x0 2 D(i; A(r; v)) for somei > r � `, x0 must have strictly fewer ones than v. But this contradicts the assumption



2.4 Concluding Remarks 61that Move-Further(v) reported failure. Thus the second property holds. Also note thatonly a polynomial number of examples were queried (since r and k are constant). Thusthis procedure runs in polynomial time.Generate-Candidates(v) lets T = [ri=0D(i; A(r; v)) and non-deterministically guesseswhich one is in f . It follows from the correctness of Generate-Candidates that ti+1 isplaced in T .To remove the need to non-deterministically select the right term from T we justtry all guesses. We halt when failure is detected because a negative counterexample isreceived or a (k + 1)st positive counterexample is received. Since r and k are constant,only a polynomial number of runs occur and thus the overall queries and time complexityare still polynomial. 2The proof of Theorem 3 can be extended to obtain the following result.Corollary 4 The class of 2-term monotone DNF formulas is exactly learnable by theclass of 2-term monotone DNF formulas in polynomial time in the false-positive-onlyUBQ model (or the IBQ model) with a boundary region of radius r (for constant r).Proof: Let f = t1 + t2. If t1 and t2 are (r + 1)-separable then the result immediatelyfollows. Thus, without loss of generality, assume that t2 has all variables from t1 exceptat most r of them, as well as any number of additional variables. If t1 is placed in h�rst then no counterexample is created by t2 since it is entirely contained within theboundary region of t1. If t2 is placed in h �rst, then we receive a positive counterexamplefor t1 (unless it is contained within t2's boundary in which case we are done). Thiscounterexample is processed to add t1 to h. 22.4 Concluding RemarksIn this chapter, we have begun an investigation of modeling learning with the helpof imperfect teachers. We have seen how to learn monotone boolean concepts despite



62 Learning With Imperfect Teachersthe failures of a randomly-ignorant teacher. We have introduced two related modelsof learning with noise near the boundary of the target concept, and we have presentedpositive results in these models in both continuous and discrete domains.However, there is much more work to be done. The algorithms described here learnfairly simple concept classes. While Goldman and Mathias [54] have shown that it ispossible to learn non-monotonic concepts with an incomplete membership oracle, it hasproven di�cult to learn more complex concept classes in this model. We do not yetknow how to extend our results in the unreliable boundary query model to learn generalmonotone DNF formulas or the intersection of more than two halfspaces. One excitingfuture project would be to �nd a general method for transforming classes of PAC-membor exact-learning algorithms to work in the IBQ or UBQ model. The lack of such generalpositive results suggests that we need additional power to accurately model the practicalproblem of learning from imperfect teachers.Why is it so di�cult to generate strong, general positive results? One possibility isthat our current models of fallible teachers are too strong. However, it is unlikely thatthis is the cause of the problem. A randomly-fallible teacher is actually a fairly benignmodel; there is only a low chance that a large set of critical answers is completely cor-rupted. Though the unreliable boundary model potentially allows adversarial behavior,these errors are con�ned to a restricted part of the instance space. Thus, well-designedlearning algorithms can avoid being mislead by adversarial noise, as evidenced by ourpositive results. Perhaps our learning techniques are not powerful enough. However, Ibelieve it is the de�nition of learning itself which is the problem.In the �eld of computational learning theory, the vast majority of work on exactlearning is evaluated in a worst-case scenario. Particularly in the study of learning withnoisy or incomplete data, we tend to consider malicious adversaries in order to obtainworst-case bounds. The standard alternative is to postulate a uniform, random sourceof noise, a model that is well-understood but is not always realistic.I suspect the answer lies somewhere in-between. In practice, most noise processes



2.4 Concluding Remarks 63are neither malicious nor totally random, but are simply de�ned by processes that wedo not completely understand. Perhaps, as in the PAC learning model where examplesare chosen according to a speci�c (but not necessarily known) distribution D, we need anoise model where the noise varies over the instance space in some speci�c (but perhapsunknown) way. The challenge then would be to �nd a meaningful de�nition of learning inwhich it is possible to learn complicated concepts (perhaps in an approximate, PAC-likeway) given any non-pathological source of noise. Kearns and Schapire's work on learningP-concepts [65] is a good preliminary description of such a model; a probabilistic conceptmay simply be the learner's representation of a noise process that is not well understood.I believe that more work along these lines is needed to suggest practical approaches tolearning from imperfect data.





C h a p t e r 3The Power of TeamExploration: Two Robots CanLearn Directed Graphs withIndistinguishable Nodes
3.1 IntroductionConsider a robot trying to construct a street map of an unfamiliar city by driving alongthe city's roads. Since many streets are one-way, the robot may be unable to retraceits steps. However, it can learn by using street signs to distinguish intersections. Nowsuppose that it is nighttime and that there are no street signs. The task becomessigni�cantly more challenging.In this chapter we present a probabilistic polynomial-time algorithm to solve anabstraction of the above problem by using two cooperating learners. Instead of learninga city, we learn a strongly-connected directed graph G with n nodes. Every node has doutgoing edges labeled from 0 to d � 1. Nodes in the graph are indistinguishable, so arobot cannot recognize if it is placed on a node that it has previously seen. Moreover,since the graph is directed, a robot is unable to retrace its steps while exploring.One might imagine that a straightforward learning algorithm in this model would65



66 The Power of Team Explorationrun in time polynomial in some property of the graph's structure such as cover timeor mixing time. Any such algorithm could require an exponential number of steps,however, since the cover time and mixing time of directed graphs can be exponential inthe number of nodes. In this chapter, we present a probabilistic algorithm for two robotsto learn any strongly-connected directed graph in O(d2n5) steps with high probability.The two robots in our model can recognize when they are at the same node andcan communicate freely by radio. Radio communication is used only to synchronizeactions. In fact, if we assume that the two robots move synchronously and share apolynomial-length random string, then no communication is necessary. Thus with onlyminor modi�cations, our algorithms may be used in a distributed setting.Our main algorithm runs without prior knowledge of the number of nodes in thegraph, n, in time polynomial in n. We show that no probabilistic polynomial-timealgorithm for a single robot with a constant number of pebbles can learn all unlabeleddirected graphs when n is unknown. Thus, our algorithms demonstrate that two robotsare strictly more powerful than one.3.1.1 Motivation for the ModelOur work explores a worst-case scenario in which the robots cannot recognize anypreviously-seen location. While this model may appear extreme, it provides upperbounds for practical cases in which robots fail to recognize familiar locations.An example of this problem is found in Horswill's thesis [59]. Horswill describesPolly, a robot that wanders the seventh 
oor of the MIT AI Laboratory and gives toursto visitors. Polly has a built-in map of her environment. Her navigation system relies onrecognizing landmarks, such as the kitchen or the elevators, by matching sensor input(from an on-board vision system) to stored images of the landmarks. Polly resides in afairly benign environment; the lighting and most obstacles remain fairly constant overtime.However, even with a correct map, Polly can get lost. Sometimes she fails to recognize



3.1 Introduction 67landmarks due to the inadequacies of her sensors. At other times, Polly is concerned withother tasks (such as obstacle avoidance) while passing a landmark and simply missesit. In either case, Polly can reach a familiar spot on her map without recognizing herlocation. As in our model, she can take several distinct actions at each node (i.e., \gostraight," \turn left") without knowing where she is. If a robot with a complete mapcan get lost, it is reasonable to imagine that a robot learning a map might often fail torecognize places it has seen before.Our work shows that enough information is available for a team of two robots tolearn graphs even if the nodes are completely indistinguishable. We show later how ourgeneral algorithm can use partial distinguishing information to expedite the learningprocess. Thus, if the robots can recognize landmarks some of the time, the learningalgorithm runs more quickly.3.1.2 Related WorkTheoretical Results on Graph Exploration and Team LearningPrevious results showing the power of team learning are plentiful, particularly in the �eldof inductive inference (see Smith [105] for an excellent survey). Several team learningpapers explore the problems of combining the abilities of a number of di�erent learners.Cesa-Bianchi et al. [36] consider the task of learning a probabilistic binary sequence giventhe predictions of a set of experts on the same sequence. They show how to combinethe prediction strategies of several experts to predict nearly as well as the best of theexperts. In a related paper, Kearns and Seung [66] explore the statistical problemsof combining several independent hypotheses to learn a target concept from a known,restricted concept class. In their model, each hypothesis is learned from a di�erent,independently-drawn set of random examples, so the learner can combine the results toperform signi�cantly better than any of the hypotheses alone.There are also many results on learning unknown graphs, but most previous work hasconcentrated on learning undirected graphs or graphs with distinguishable nodes. For



68 The Power of Team Explorationexample, Deng and Papadimitriou consider the problem of learning strongly-connected,directed graphs with labeled nodes, so that the learner can recognize previously-seennodes. They provide a learning algorithm whose competitive ratio (versus the optimaltime to traverse all edges in the graph) is exponential in the de�ciency of the graph [45,20]. Betke, Rivest, and Singh introduce the notion of piecemeal learning of undirectedgraphs with labeled nodes. In piecemeal learning, the learner must return to a �xedstarting point from time to time during the learning process. Betke, Rivest, and Singhprovide linear algorithms for learning grid graphs with rectangular obstacles [21], andwith Awerbuch [15] extend this work to show nearly-linear algorithms for general graphs.Rivest and Schapire [92, 93] explore the problem of learning deterministic �niteautomata whose nodes are not distinguishable except by the observed output. We relyheavily on their results in this chapter. Their work has been extended by Freund etal. [50], and by Dean et al. [44]. Freund et al. analyze the problem of learning �niteautomata with average-case labelings by the observed output on a random string, whileDean et al. explore the problem of learning DFAs with a robot whose observations ofthe environment are not always reliable. Ron and Rubinfeld [95] present algorithmsfor learning \fallible" DFAs, in which the data is subject to persistent random errors.Recently, Ron and Rubinfeld [94] have shown that a teacher is unnecessary for learning�nite automata with small cover time.Teamwork and Learning in RoboticsTeam research in robotics tends to address issues of control. Parker[85] divides theresults in this �eld into two camps: \swarm" cooperation and \intentional" cooperation.\Swarms" are teams of homogeneous robots that all independently perform the sametask. For example, swarms of robots might be used for harvesting crops or for mine-sweeping �elds in a war zone. A key property of a swarm is that no individual robot isessential for the completion of the task.There have been many projects studying the learning and behavior of robot swarms.



3.1 Introduction 69Mataric [80] uses reinforcement learning [107] to teach \foraging" behavior to a team oftwenty independently-controlled robots. Brooks, et al., [34] describe parallel algorithmsfor swarms of robots to select and clear a site for construction of a lunar research station.The robots in this system form a \herd;" each acts independently, following some simplerules that may involve the location and behavior of other nearby robots.In contrast, intentional cooperation refers to cases in which several (perhaps hetero-geneous) robots work together to achieve tasks that no one robot could complete alone.Often there is a single global controller and planner for the entire system. Rus, Donaldand Jennings [96] explore team cooperation strategies for moving heavy furniture. Theypresent several strategies, both with and without a global planner. Parker [85] describesfault-tolerant distributed cooperation methods for heterogeneous robot teams to solvecomplex tasks such as cleaning up a toxic spill. However, most cooperative projects re-quire the robots to achieve a goal in an already-known environment, rather than askingthe robots to learn a map of their world.Some robotics projects do focus on environment learning. Mataric [79] shows how asingle robot might learn a map of an unknown o�ce environment. For her robot, whosenavigation relies on sonar sensors and a compass, the ability to distinguish similarly-shaped landmarks is a key issue. Mataric solves this problem using the robot's estimatedposition, based on compass readings and approximate distances traveled.Yanco and Stein [112] describe a project in which teams of two or three robotsactually learn how to communicate with one another to work together. The robot teamsdevelop their own communication language through reinforcement learning. The teamssuccessfully learn small languages of up to 10 words. However, it is not clear how thetraining time scales as the desired language grows more complex.Our model follows the intentional cooperation paradigm; neither learner can succeedalone. Our robots are homogeneous in the sense that they have the same capabilities,but they may perform di�erent actions at di�erent times. Finally, there is a sort ofglobal control in our system; the two robots execute a single algorithm. However, if the



70 The Power of Team Explorationrobots have a shared clock or a reliable method of communication, no additional controlsource is needed.A Single Robot: Searching Graphs with PebblesIn our model a single robot is powerless because it is completely unable to distinguishone node from any other. However, when equipped with a number of pebbles that canbe used to mark nodes, the single robot's plight improves. Rabin �rst proposed the ideaof dropping pebbles to mark nodes [89]. This suggestion led to a body of work exploringthe searching capabilities of a �nite automaton supplied with pebbles.Blum and Sakoda [25] consider the question of whether a �nite set of �nite automatacan search a 2 or 3-dimensional obstructed grid. They prove that a single automatonwith just four pebbles can completely search any 2-dimensional �nite maze, and that asingle automaton with seven pebbles can completely search any 2-dimensional in�nitemaze. They also prove, however, that no collection of �nite automata can search every3-dimensional maze. Blum and Kozen [26] improve this result to show that a singleautomaton with 2 pebbles can search a �nite, 2-dimensional maze. Their results implythat mazes are strictly easier to search than planar graphs, since they also show that nosingle automaton with pebbles can search all planar graphs.Savitch [98] introduces the notion of a maze-recognizing automaton (MRA), which isa DFA with a �nite number of distinguishable pebbles. The mazes in Savitch's paper aren-node 2-regular graphs, and the MRAs have the added ability to jump to the node withthe next higher or lower number in some ordering. Savitch shows that maze-recognizingautomata and log n space-bounded Turing machines are equivalent for the problem ofrecognizing threadable mazes (i.e., mazes in which there is a path between a given pairof nodes).Most of these papers use pebbles to model memory constraints. For example, supposethat the nodes in a graph are labeled with log n-bit names and that a �nite automatonwith k log n bits of memory is used to search the graph. This situation is modeled by a



3.1 Introduction 71single robot with k distinguishable pebbles. A robot dropping a pebble at a node corre-sponds to a �nite automaton storing the name of that node. In our work, by contrast,we investigate time rather than space constraints. Since memory is now relatively cheapbut time is often critical, it makes sense to ask whether a robot with any reasonableamount of memory can use a constant number of pebbles to learn graphs in polynomialtime.Cook and Racko� generalized the idea of pebbles to jumping automata for graphs(JAGs) [39]. A jumping automaton is equipped with pebbles that can be dropped tomark nodes and that can \jump" to the locations of other pebbles. Thus, this modelis similar to our two-robot model in that the second robot may wait at a node for awhile (to mark it) and then catch up to the other robot later. However, the JAG modelis somewhat broader than the two-robot model. Cook and Racko� show upper andlower bounds of log n and log n= log log n on the amount of space required to determinewhether there is a directed path between two designated nodes in any n-node graph.JAGs have been used primarily to prove space e�ciency for st-connectivity algorithms,and they have recently resurfaced as a tool for analyzing time and space tradeo�s forgraph traversal and connectivity problems (e.g. [18, 87, 46]).Universal traversal sequences have been used to provide upper and lower bounds forthe exploration of undirected graphs. Certainly, a universal traversal sequence for theclass of directed graphs could be used to learn individual graphs. However, for arbitrarydirected graphs with n nodes, a universal traversal sequence must have size exponentialin n. Thus, such sequences will not provide e�cient solutions to our problem.3.1.3 Strategy of Our Learning AlgorithmThe power behind the two-robot model lies in the robots' abilities to recognize each otherand to move independently. Nonetheless, it is not obvious how to harness this power. Ifthe robots separate in unknown territory, they could search for each other for an amountof time exponential in the size of the graph. Therefore, in any successful strategy for



72 The Power of Team Explorationour model the two robots must always know how to �nd each other. One strategy thatsatis�es this requirement has both robots following the same path whenever they arein unmapped territory. They may travel at di�erent speeds, however, with one robotscouting ahead and the other lagging behind. We call this a lead-lag strategy. In alead-lag strategy the lagging robot must repeatedly make a di�cult choice. The robotcan wait at a particular node, thus marking it, but the leading robot may not �nd thismarked node again in polynomial time. Alternatively, the lagging robot can abandonits current node to catch up with the leader, but then it may not know how to returnto that node. In spite of these di�culties, our algorithms successfully employ a lead-lagstrategy.Our work also builds on techniques of Rivest and Schapire [93]. They present analgorithm for a single robot to learn minimal deterministic �nite automata. With thehelp of an equivalence oracle, their algorithm learns a homing sequence, which it usesin place of a reset function. It then runs several copies of Angluin's algorithm [5] forlearning DFAs given a reset. Angluin has shown that any algorithm for actively learningDFAs requires an equivalence oracle [4].In this chapter, we introduce a new type of homing sequence for two robots. Becauseof the strength of the homing sequence, our algorithm does not require an equivalenceoracle. For any graph, the expected running time of our algorithm is O(d2n5). Inpractice, our algorithm can use additional information such as indegree, outdegree, orcolor of nodes to �nd better homing sequences and to run faster.Note that throughout the chapter, the analyses of the algorithms account for only thenumber of steps that the robots take across edges in the graph. Additional calculationsperformed between moves are not considered, so long as they are known to take timepolynomial in n. In practice, such calculations would not be a noticeable factor in therunning time of our algorithms.Two robots can learn speci�c classes of directed graphs more quickly, such as theclass of graphs with high conductance. Conductance, a measure of the expansion prop-



3.2 Preliminaries 73erties of a graph, was introduced by Sinclair and Jerrum [100]. The class of directedgraphs with high conductance includes graphs with exponentially-large cover time. Wepresent a randomized algorithm that learns graphs with conductance greater than n� 12in O(dn4 log n) steps with high probability.3.2 PreliminariesLet G = (V;E) represent the unknown graph, where G has n nodes, each with outdegreed. An edge from node u to node v with label i is denoted hu; i; vi. We say that analgorithm learns graph G if it outputs a graph isomorphic to G. Our algorithms maintaina graph map which represents the subgraph of G learned so far. Included in map is animplicit start node u0. It is worth emphasizing the di�erence between the target graphG and the graph map that the learner constructs. The graph map is meant to be a mapof the underlying environment, G. However, since the robots do not always know theirexact location in G, in some cases map may contain errors and therefore may not beisomorphic to any subgraph of G. Much of the notation in this section is needed tospecify clearly whether we are referring to a robot's location in the graph G or to itsputative location in map.A node u in map is called un�nished if it has any unexplored outgoing edges. Nodeu is map-reachable from node v if there is a path from v to u containing only edges inmap. For robot k, the node in map corresponding to k's location in G if map is correctis denoted LocM(k). Robot k's location in G is denoted LocG(k).Let f be an automorphism on the nodes of G such that8a; b 2 G; ha; i; bi 2 G () hf(a); i; f(b)i 2 G:We say nodes c and d are equivalent (written c � d) i� there exists such an f wheref(c) = d.We now present notation to describe the movements of k robots in a graph. Anaction Ai of the ith robot is either a label of an outgoing edge to explore, or the symbol



74 The Power of Team Explorationr for \rest." A k-robot sequence of actions is a sequence of steps denoting the actionsof the k robots; each step is a k-tuple hA0; : : : ; Ak�1i. For sequences s and t of actions,s � t denotes the sequence of actions obtained by concatenating s and t.A path is a sequence of edge labels. Let jpathj represent the length of path. A robotfollows a path by traversing the edges in the path in order beginning at a particular startnode in map. The node in map reached by starting at u0 and following path is denoted�nalM (path, u0). Let s be a two-robot sequence of actions such that if both robots starttogether at any node in any graph and execute s, they follow exactly the same path,although perhaps at di�erent speeds. We call such a sequence a lead-lag sequence. Notethat if two robots start together and execute a lead-lag sequence, they end together.The node in G reached if both robots start at node a in G and follow lead-lag sequences is denoted �nalG(s, a).For convenience, we name our robots Lewis and Clark. Whenever Lewis and Clarkexecute a lead-lag sequence of actions, Lewis leads while Clark lags behind.3.3 Using a Reset to LearnLearning a directed graph with indistinguishable nodes is di�cult because once bothrobots have left a known portion of the graph, they do not know how to return. Thisproblem would vanish if there were a reset function that could transport both robots toa particular start node u0. We describe an algorithm for two robots to learn directedgraphs given a reset. Having a reset is not a realistic model, but this algorithm formsthe core of later algorithms, which learn without a reset.Algorithm Learn-with-Reset maintains the invariant that if a robot starts at u0,there is a directed path it can follow that visits every node inmap at least once. To learna new edge (one not yet in map) using algorithm Learn-with-Reset, Lewis crosses theedge and then Clark tours the entire known portion of the map. If they encounter eachother, Lewis's position is identi�ed; otherwise Lewis is at a new node. The depth-�rst



3.3 Using a Reset to Learn 75strategy employed by Learn-Edge is essential in later algorithms. In Learn-with-Reset, as in all the procedures in this chapter, variables are passed by reference and aremodi�ed destructively.Lemma 7 The variable path in Learn-with-Reset denotes a tour of length � dn2that starts at u0 and traverses all edges in map.Learn-with-Reset( ):1 map := (fu0g; ;) f map is the graph consisting of node u0 and no edges g2 path := empty path f path is the null sequence of edge labels g3 k := 1 f k counts the number of nodes in map g4 while there are un�nished nodes in map5 do Learn-Edge(map,path,k)6 Reset7 return mapLearn-Edge(map,path,k): fpath = tour through all edges in map g1 Lewis follows path to �nalM(path,u0)2 ui := some un�nished node in map map-reachable from LocM(Lewis)3 Lewis moves to node ui; append the path taken to path4 pick an unexplored edge l out of node ui5 Lewis moves along edge l; append edge l to path f Lewis crosses a new edge g6 Clark follows path to �nalM(path,u0) f Clark looks for Lewis g7 if 9j < k such that Clark �rst encountered Lewis at node uj8 then add edge hui; l; uji to map9 else add new node uk and edge hui; l; uki to map10 k := k + 1Proof: Every time Lewis crosses an edge, that edge is appended to path. Since noedge is added to map until Lewis has crossed it, path must traverse all edges in map. Ineach call to Learn-Edge, at most n edges are added to path. The body of the whileloop is executed dn times, so jpathj � dn2. 2Lemma 8 Map is always a subgraph of G.Proof: Initially map contains a single node u0 and no edges. Assume inductively thatmap is a subgraph of G after the cth call to Learn-Edge (when map has c edges). To



76 The Power of Team Explorationlearn the next edge, the algorithm chooses a node ui in map and explores a new edgee = hui; l; vi. By Lemma 7 and the inductive hypothesis, if Clark encounters Lewis atuj then v is identi�ed as uj. Otherwise v is recognized to be a new node and named uk.Therefore the updated map is a subgraph of G. 2Lemma 9 If map contains any un�nished nodes, then there is always some un�nishednode in map map-reachable from �nalM(path,u0).Proof: Suppose this assumption were false. Then there is some un�nished node inmap, but all nodes of map in the strongly-connected component of �nalM (path,u0) are�nished. Thus by Lemma 8, there are no additional edges of G leaving that component,so graph G is not strongly connected. 2Theorem 5 After O(d2n3) moves and dn calls to Reset, Learn-with-Reset halts andoutputs a graph isomorphic to G.Proof: The correctness of the output follows from Lemmas 7 { 9. For each call toLearn-Edge, each robot takes length(path)� dn2 steps. The algorithm Learn-Edge isexecuted at most dn times, so the algorithm halts within O(d2n3) steps. 23.4 Homing SequencesIn practice, robots learning a graph do not have access to a reset function. In this sectionwe suggest an alternative technique: we introduce a new type of homing sequence fortwo robots.Intuitively, a homing sequence is a sequence of actions whose observed output uniquelydetermines the �nal node reached in G. Rivest and Schapire [93] show how a single robotwith a teacher can use homing sequences to learn strongly-connected minimalDFAs. Theoutput at each node indicates whether that node is an accepting or rejecting state ofthe automaton. If the target DFA is not minimal, their algorithm learns the minimal



3.4 Homing Sequences 77encoding of the DFA. In other words, their algorithm learns the function that the graphcomputes rather than the structure of the graph.In unlabeled graphs the nodes do not produce output. However, two robots cangenerate output indicating when they meet.De�nitions: Each step of a two-robot sequence of actions produces an output symbolT if the robots are together and S if they are separate. An output sequence is a stringin fT; Sg� denoting the observed output of a sequence of actions. Let s be a lead-lagsequence of actions and let a be a node in G. Then output(s,a) denotes the outputproduced by executing the sequence s, given that both robots start at a. A lead-lagsequence s of actions is a two-robot homing sequence i� 8 nodes u; v 2 G;output(s; u) = output(s; v)) �nalG(s; u) � �nalG(s; v):Because the output of a sequence depends on the positions of both robots, it providesinformation about the underlying structure of the graph. Figure 3.1 illustrates the de�-nition of a two-robot homing sequence. This new type of homing sequence is powerful.Unlike most previous learning results using homing sequences, our algorithms do notrequire a teacher to provide counterexamples.In fact, two robots on a graph de�ne a DFA whose states are pairs of nodes in Gand whose edges correspond to pairs of actions. Since the automata de�ned in this wayform a restricted class of DFAs, our results are not inconsistent with Angluin's work [4]showing that a teacher is necessary for learning general DFAs.Theorem 6 Every strongly-connected directed graph has a two-robot homing sequence.Proof: The following algorithm (based on that of Kohavi [69, 93]) constructs a homingsequence: Initially, let h be empty. As long as there are two nodes u and v in G suchthat output(h,u) = output(h,v) but �nal(h,u) 6� �nal(h,v), let x be a lead-lag sequencewhose output distinguishes �nal(h,u) from �nal(h,v). Since �nal(h,u) 6� �nal(h,v) and
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output = 8>>>>><>>>>>: T if Lewis and Clark aretogether at a nodeS if Lewis and Clark areat separate nodes.homing sequence h = 8<: Lewis: 0r1rClark: r0r1 sequence s = 8<: Lewis: 0rClark: r0start node output end nodea TTST bb STST bc STST bd STTT c start node output end nodea TT ab ST ac ST ad ST cFigure 3.1: Illustration of a two-robot homing sequence and a lead-lag sequence. Notethat both h and s are lead-lag sequences. However, sequence h is a two-robot homingsequence, because for each output sequence there is a unique end node. (Note that theconverse is not true.) Sequence s is not a two-robot homing sequence, because the robotsmay end at nodes a or c and yet see the same output sequence ST .



3.4 Homing Sequences 79G is strongly connected, such an x always exists. Append x to h.Each time a sequence is appended to h, the number of di�erent outputs of h increasesby at least 1. Since G has n nodes, there are at most n possible output sequences.Therefore, after n� 1 iterations, h is a homing sequence. 2In Section 3.5 we show that it is possible to �nd a counterexample x e�ciently. Givena strongly-connected graph G and a node a in G, a pair of robots can verify whetherthey are together at a node equivalent to a on some graph isomorphic to G. We describea veri�cation algorithm Verify(a, G) in Section 3.5. The sequence of actions returnedby a call of Verify(u;G) is always a suitable counterexample x. Using the bound fromCorollary 8, we claim that this algorithm produces a homing sequence of length O(n4)for all graphs. Note that shorter homing sequences exist; the homing sequence producedby algorithm Learn-Graph in Section 3.5 has length O(dn3).3.4.1 Using a Homing Sequence to LearnGiven a homing sequence h, an algorithm can learn G by maintaining several runningcopies of Learn-with-Reset. Instead of a single start node, there are as many as npossible start nodes, each corresponding to a di�erent output sequence of h. Note thatmany distinct output sequences may be associated with the same �nal node in G.The new algorithm Learn-with-HS maintains several copies of map and path, onefor each output sequence of h. Thus, graph mapc denotes the copy of the map associatedwith output sequence c. Initially, Lewis and Clark are at the same node. Wheneveralgorithm Learn-with-Reset would use a reset, Learn-with-HS executes the homingsequence h. If the output of h is c, the algorithm learns a new edge in mapc as if ithad been reset to u0 in mapc (see Figure 3.2). After each execution of h, the algorithmlearns a new edge in some mapc. Since there are at most n copies, each with dn edges tolearn, eventually one map will be completed. Recall that a homing sequence is a lead-lagsequence. Therefore, at the beginning and end of every homing sequence the two robotsare together.



80 The Power of Team ExplorationLearn-with-HS(h):1 done := FALSE2 while not done3 do execute h; c := the output sequence produced f instead of a reset g4 if mapc is unde�ned5 then mapc := (fu0g; ;) f mapc = graph consisting of node u0 and no edges g6 pathc := empty path f pathc is the null sequence of edge labels g7 kc := 1 f kc counts the number of nodes in map g8 Learn-Edge(mapc,pathc,kc)9 if mapc has no un�nished nodes10 then done := TRUE11 return mapcTheorem 7 If Learn-with-HS is called with a homing sequence h as input, it haltswithin O(d2n4 + dn2jhj) steps and outputs a graph isomorphic to G.Proof: The algorithm Learn-with-HS maintains at most n running versions ofLearn-with-Reset, one for each output of the homing sequence. In particular, when-ever the two robots execute a homing sequence and obtain an output c, they haveidenti�ed their position as the start node u0 in mapc, and can learn one new edge inmapc before executing another homing sequence.Eventually, one of the versions halts and outputs a complete mapc. Therefore, thecorrectness of Learn-with-HS follows directly from Theorem 5 and the de�nition of atwo-robot homing sequence.Let r = O(d2n3) be the number of steps taken by Learn-with-Reset. Since thereare at most n start nodes, Learn-with-HS takes at most nr + dn2jhj steps. 23.5 Learning a Homing SequenceUnlike a reset function, a two-robot homing sequence can be learned. The algorithmLearn-Graph maintains a candidate homing sequence h and improves h as it learns G.De�nition: Candidate homing sequence h is called a bad homing sequence if there existnodes u; v, u 6= v, such that output(h; u) = output(h; v), but �nalG(h; u) 6� �nalG(h; v).



3.5 Learning a Homing Sequence 81output of starting node maphoming sequence of mapTTST b 1

d cb 1 0STST b
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bSTTT c
a bc 0 1Figure 3.2: A possible \snapshot" of the learners' knowledge during an execution ofLearn-with-HS. The robots are learning the graph G from Figure 3-1 using the two-robot homing sequence h from Figure 3-1. (Node names in maps are not known tothe learner, but are added for clarity.) The following example demonstrates how therobots learn a new edge using Learn-with-HS. Suppose that the robots execute h andsee output TTST . Then the robots are together at node b. Lewis follows path 1; 0 toun�nished node c and then crosses the edge labeled 1. Now Clark follows path 1; 0; 1.Since Clark sees Lewis after 2 steps, the dotted edge is added to mapTTST . Next, therobots execute h again and see output STST . Thus, they go on to learn some edge inmapSTST .De�nition: Let a be a node in G. We say that mapc with start node u0 is a goodrepresentation of ha;Gi i� there exists an isomorphism f from the nodes in mapc =(V c; Ec) to the nodes in a subgraph G0 = (V 0; E 0) of G, such that f(u0) = a, and8ui; uj 2 V c; hui; `; uji 2 Ec () hf(ui); `; f(uj)i 2 E 0:In algorithms Learn-with-Reset and Learn-with-HS, the graphs map and mapcare always good representations of G. In Learn-Graph if the candidate homing se-quence h is bad, a particular mapc may not be a good representation of G. However,the algorithm can test for such maps. Whenever a mapc is shown to be in error, h isimproved and all maps are discarded. By the proof of Theorem 6, we know that a candi-



82 The Power of Team Explorationdate homing sequence must be improved at most n�1 times. In Section 3.5.1 we explainhow to use adaptive homing sequences to discard only one map per improvement.We now de�ne a test that with probability at least 1=n detects an error in mapc ifone exists.De�nition: Let pathc be a path such that a robot starting at u0 and followingpathc traverses every edge inmapc = (V c; Ec). Let u0 : : : um be the nodes in V c numberedin order of their �rst appearance in pathc. If both robots are at u0 then testc(ui) denotesthe following lead-lag sequence of actions: (1) Lewis follows pathc to the �rst occurrenceof ui; (2) Clark follows pathc to the �rst occurrence of ui; (3) Lewis follows pathc to theend; (4) Clark follows pathc to the end.De�nition: Given mapc and any lead-lag sequence t of actions, de�ne expected(t,mapc) to be the expected output if mapc is correct and if both robots start at node u0and execute sequence t. We abbreviate expected(testc(ui),mapc) by expected(testc(ui)).Lemma 10 Suppose Lewis and Clark are both at some node a in G. Let pathc bea path such that a robot starting at u0 and following pathc traverses every edge inmapc. Then mapc is a good representation of ha;Gi i� 8ui 2 V c; output(testc(ui))= expected(testc(ui)).Proof:(=)): By de�nition of good representation and expected(testc(ui)).((=): Suppose that all tests produce the expected output. We de�ne a function f asfollows: Let f(u0) = a. Let p(ui) be the pre�x of pathc up to the �rst occurrence of ui.De�ne f(ui) to be the node in G that a robot reaches if it starts at a and follows p(ui).Let G0 = (V 0; E 0) be the image of f(mapc) on (V;E).We �rst show that f is an isomorphism from V c to V 0. By de�nition of G0, f mustbe surjective. To see that f is injective, assume the contrary. Then there exist twonodes ui; uj 2 V c such that i 6= j but f(ui) = f(uj). But then output(testc(ui)) 6=expected(testc(ui)), which contradicts our assumption that all tests succeed. Next,



Learn-Graph():1 done := FALSE2 h := � (empty sequence)3 while not done4 do execute h; c := the output sequence produced f instead of a reset g5 if mapc is unde�ned6 then mapc := (fu0g; ;) f mapc is the graph consisting of node u0 and no edges g7 pathc := empty path f pathc is the null sequence of edge labels g8 kc := 1 f kc counts the number of nodes in map g9 if mapc has no un�nished node map-reachable from �nalM (pathc)10 then Lewis and Clark move to �nalM (pathc)11 comp := maximal strongly-connected component in mapc containing �nalM (pathc)12 h-improve := Verify(�nalM(pathc),comp)13 if h-improve = �14 then done := TRUE f mapc is complete g15 else f h-improve 6= �. error detected g16 append h-improve to end of h f improve homing sequence : : :g17 discard all maps and paths f : : :and start learning maps from scratch g18 else v := value of a fair 0/1 coin 
ip f learn edges or test for errors? g19 if v = 0 f test for errors g20 then ui := a random node in mapc f randomly pick node to test g21 h-improve := Test(mapc, pathc, i)22 if h-improve 6= � f error detected g23 then append h-improve to end of h f improve homing sequence : : :g24 discard all maps and paths f : : : start learning maps from scratch g25 else Learn-Edge(mapc,pathc,kc)26 return mapcTest(mapc, pathc, i): fu0; u1; : : : ; uk = the nodes in mapc indexed by �rst appearance in pathc g1 h-improve := the following sequence of actions:2 Lewis follows pathc to the �rst occurrence of ui in pathc3 Clark follows pathc to the �rst occurrence of ui in pathc4 Lewis follows pathc to the end5 Clark follows pathc to the end6 if output(h-improve) 6= expected-output(h-improve) f if error detected g7 then return h-improve f return testc(ui) g8 else return � f return empty sequence gVerify(v0, map): f v0; v1; : : : ; vk are the nodes in map ordered by �rst appearance in pg1 path := path such that a robot starting at v0 in map and following path visits all nodesin map and returns to v02 for each i; 0 � i < k3 do h-improve := Test(map, path, i)4 if h-improve 6= �5 then return h-improve6 return �



84 The Power of Team Explorationwe show that hui; `; uji 2 V c () hf(ui); `; f(uj)i 2 V 0; proving that mapc is a goodrepresentation of ha;Gi.((=): By de�nition of G0, the image of mapc.(=)): Inductively assume that hui; `; uji 2 V c () hf(ui); `; f(uj)i 2 V 0 for the �rstm edges in pathc, and suppose that this pre�x of the path visits only nodes u0 : : : ui.Now consider the (m+ 1)st edge e = ha; `; bi. There are two possibilities. In one case,edge e leads to some new node ui+1. Then by de�nition f(ui+1) is b's image in G, sohf(a); `; f(b)i 2 G0. Otherwise e leads to some previously-seen node ui�k. Suppose thatf(ui�k) is not the node reached in G by starting at u0 and following the �rst m + 1edges in pathc. Then output(testc(ui�k)) 6= expected(testc(ui�k)), so testc(ui�k) fails, andwe arrive at a contradiction. Therefore f(b) = f(ui�k) and hf(a); `; f(b)i 2 G0. 2Corollary 8 Suppose Lewis and Clark are together at u0 in mapc. Let mapc be stronglyconnected and have n nodes, u0; : : : un�1. Then the two robots can verify whethermapc is a good representation of hLocG(Lewis);Gi in O(n3) steps.Proof: Since mapc is strongly connected, there exists a path pathc with the followingproperty: a robot starting at u0 and following pathc visits all nodes in mapc and returnsto u0. Index the remaining nodes in order of their �rst appearance in pathc. The tworobots verify whether, for all ui in order, output(testc(ui)) = expected(testc(ui)). Notethat Lewis and Clark are together at u0 after each test. By Lemma 10, this procedureveri�es mapc. Since pathc has length O(n2), each test has length O(n2), so veri�cationrequires O(n3) steps. 2In Learn-Graph after the robots execute a homing sequence, they randomly decideeither to learn a new edge or to test a random node in mapc. The following lemma showsthat a test that failed can be used to improve the homing sequence.Lemma 11 Let h be a candidate homing sequence in Learn-Graph, and let uk be anode such that output(testc(uk)) 6= expected(testc(uk)). Then there are two nodes a; bin G that h does not distinguish but that h � testc(uk) does.



3.5 Learning a Homing Sequence 85Proof: Let a be a node in G such that when both robots start at a, output(testc(uk))6= expected(testc(uk)). Suppose that at step i in testc(uk), the expected output is T(respectively S), but the actual output is S (resp. T ). Each edge in pathc and mapc waslearned using Learn-Edge. Ifmapc indicates that the ith node in pathc is uk, there mustbe a start node b in G where uk really is the ith node in pathc. Since output(testc(uk))6= expected(testc(uk)), the sequence h � testc(uk) distinguishes a from b. 2The algorithm Learn-Graph runs until there are no more map-reachable unexplorednodes in some mapc. If mapc is not strongly connected, then it is not a good representa-tion of G. In this case, the representation of the last strongly-connected component onpath must be incorrect. Thus, calling Verify on this component from the last node onpath returns a sequence that improves h. If mapc is strongly connected, then eitherVer-ify returns an improvement to the homing sequence, or mapc is a good representationof G.Before we can prove the correctness of our algorithm, we need one more set of tools.Consider the following statement of Cherno� bounds from Raghavan [91].Lemma 12 Let X1; : : : ;Xm be independent Bernoulli trials with E[Xj] = pj . Let therandom variable X = Pmj=1Xj , where � = E[X] � 0. Then for � > 0,Pr[X > (1 + �)�] < " e�(1 + �)1+�#� ;and Pr[X < (1� �)�] < e���2=2:In our analysis in this section and in Section 3.6, the random variables may not beindependent. However, the following corollary bounds the conditional probabilities.The proof of this corollary is exactly analogous to that of a similar corollary by Aumannand Rabin [14, Corollary 1].Corollary 9 Let X1; : : : ;Xm be 0/1 random variables (not necessarily independent),and let bj 2 f0; 1g for 1 � j � m. Let the random variable X = Pmj=1Xj. For any



86 The Power of Team Explorationb1; : : : ; bj�1 and � > 0, if Pr[Xj = 1jX1 = b1;X2 = b2; : : : ;Xj�1 = bj�1] � pj and� = Pmj=1 pj > 0; then Pr[X > (1 + �)�] < " e�(1 + �)1+�#� ;and for any b1; : : : ; bj�1 and � > 0, if Pr[Xj = 1jX1 = b1;X2 = b2; : : : ;Xj�1 = bj�1] � pjand � = Pmj=1 pj > 0; then Pr[X < (1� �)�] < e���2=2:Theorem 10 The algorithm Learn-Graph always outputs a map isomorphic to G andhalts in O(d2n6) steps with overwhelming probability ( 1 � e�cn, where constant c > 0can be chosen as needed).Proof: Since Learn-Graph veri�es mapc before �nishing, if the algorithm terminatesthen by Corollary 8 it outputs a map isomorphic to G. It is therefore only necessary toshow that the algorithm runs in O(d2n6) steps with overwhelming probability.In each iteration of the while loop in Learn-Graph, if there are no map-reachableun�nished nodes, then the algorithm attempts to verify the map. Otherwise, the algo-rithm decides randomly whether to learn a new edge or to test a random node in thegraph. It follows from Lemma 12 that a constant fraction of the random decisions arefor learning and a constant fraction are for testing.By Theorem 5 the total number of steps spent learning edges in each version ofmap is O(d2n3). For each candidate homing sequence, there are n versions of map, andthe candidate homing sequence is improved at most n times. Thus, O(d2n5) steps arespent learning nodes and edges.We consider the number of steps taken testing nodes. Each test requires jpathj =O(dn2) steps. Once a map contains an error, the probability that the robots choose totest a node that is in error is at least 1=n. A map with more than dn edges must befaulty. Note that the candidate homing sequence is improved at most n�1 times. Thus



3.5 Learning a Homing Sequence 87by Corollary 9, with overwhelming probability after O(n2) tests of maps with at leastdn nodes, the candidate sequence h is a homing sequence. Overall, the algorithm hasto learn O(dn3) edges, and therefore it executes O(dn3) tests. Thus the total number ofsteps spent testing is O(d2n5).After each test or veri�cation, the algorithm executes a candidate homing sequence.Since there are O(dn) edges in each map, candidate homing sequences are executedO(dn3) times. Each improvement of the candidate homing sequence extends its lengthby jpathj, so the time spent executing homing sequences is O(d2n6). Thus, the totalrunning time of the algorithm is O(d2n6). 23.5.1 Improvements to the AlgorithmThe running time for Learn-Graph can be decreased signi�cantly by using two-robotadaptive homing sequences. As in Rivest and Schapire [93], an adaptive homing sequenceis a decision tree, so the actions in later steps of the sequence depend on the output ofearlier steps. With an adaptive homing sequence, only one mapc needs to be discardedeach time the homing sequence is improved. Thus the running time of Learn-Graphdecreases by a factor of n to O(d2n5).Any additional information that distinguishes nodes can be included in the output,so homing sequences can be shortened even more. For example, a robot learning an un-familiar city could easily count the number of roads leading into and out of intersections.It might also recognize stop signs, tra�c lights, railroad tracks, or other common land-marks. Therefore, in any practical application of this algorithm we expect a signi�cantlylower running time than the O(d2n5) bound suggests.Graphs with high conductance can be learned even faster using the algorithm pre-sented in Section 3.6.



88 The Power of Team Exploration3.5.2 Limitations of a Single Robot with PebblesWe now compare the computational power of two robots to that of one robot with aconstant number of pebbles. Note that although Learn-Graph runs in time polynomialin n, the algorithm requires no prior knowledge of n. We argue here that a single robotwith a constant number of pebbles cannot e�ciently learn strongly-connected directedgraphs without prior knowledge of n.As a tool we introduce a family C = [nCn of graphs called combination locks. 1 For agraph C = (V;E) in Cn (the class of n-node combination locks), V = fu0; u1; : : : ; un�1gand either hui; 0; ui+1modni and hui; 1; u0i 2 E; or hui; 1; ui+1modni and hui; 0; u0i 2 E;for all i � n (see Figure 3.3a). In order for a robot to \pick a lock" in Cn | that is, toreach node un�1 | it must follow the unique n-node simple path from u0 to un�1. Thusany algorithm for a single robot with no pebbles can expect to take �(2n) steps to picka random combination lock in Cn.We construct a restricted family R of graphs and consider algorithms for a singlerobot with a single pebble. For all positive integers n, the class Rn contains allgraphs consisting of a directed ring of n=2 nodes with an n=2-node combination lockinserted into the ring (as in Figure 3.3b). Let R = [1n=1Rn. We claim that there is noprobabilistic algorithm for one robot and one pebble that learns arbitrary graphs in Rin polynomial time with high probability.To see the claim, consider a single robot in node u0 of a random graph in R. Untilthe robot drops its pebble for the �rst time it has no information about the graph.Furthermore, with high probability the robot needs to take �(2n) steps to emerge froma randomly-chosen n-node combination lock unless it drops a pebble in the lock. Butsince the size of the graph is unknown, the robot always risks dropping the pebble beforeentering the lock. If the pebble is dropped outside the lock, the robot will not see thepebble again until it has passed through the lock. A robot that cannot �nd its pebble1Graphs of this sort have been used in theoretical computer science for many years (see [82], forexample). More recently they have reemerged as tools to prove the hardness of learning problems. Weare not sure who �rst coined the term \combination lock."
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0 0 1 01Figure 3.3: (a) A combination-lock, whose combination is 0; 1; 0; 1; 1. (b) A graph inR11. Graphs in R = [1n=1Rn cannot be learned by one robot with a constant numberof pebbles.has no way of marking nodes and cannot learn.More formally, suppose that there were some probabilistic algorithm for one robotand a pebble to learn random graphs in R in polynomial time with probability greaterthan 1/2. Then there must be some constant c such that the probability that the robotdrops its pebble in its �rst c steps is greater than 1/2. (Otherwise, the probability thatthe algorithm fails to learn in time polynomial in n is greater than 1/2.) Therefore,the probability that the robot loses its pebble and fails to learn a random graph in R2ce�ciently is at least 1/2.A similar argument holds for a robot with a constant number of pebbles. We con-jecture that even if the algorithm is given n as input, a single robot with a constantnumber of pebbles cannot learn strongly-connected directed graphs. However, usingtechniques similar to those in Section 3.6, one robot with a constant number of pebblesand prior knowledge of n can learn high-conductance graphs in polynomial time with



90 The Power of Team Explorationhigh probability.3.6 Learning High Conductance GraphsFor graphs with good expansion, learning by walking randomly is more e�cient thanlearning by using homing sequences. In this section we de�ne conductance and presentan algorithm that runs more quickly than Learn-Graph for graphs with conductancegreater than qlog n=dn2.3.6.1 ConductanceThe conductance [100] of a graph characterizes the rate at which a random walk on thegraph converges to the stationary distribution �. For a given directed graph G = (V;E),consider a weighted graph G0 = (V;E;W ) with the same vertices and edges as G, butwith edge weights de�ned as follows. Let M = fmi;jg be the transition matrix of arandom walk that leaves i by each outgoing edge with probability 1=(2 � degree(i)) andremains at node i with probability 1=2. Let P 0 be an initial distribution on the n nodesin G, and let P t = P 0M t be the distribution after t steps of the walk de�ned by M .(Note that � is a steady state distribution if for every node i; P ti = �i �! P t+1i = �i. Forirreducible and aperiodic Markov chains, � exists and is unique.) Then the edge weightwi;j = �imi;j is proportional to the steady state probability of traversing the edge fromi to j. Note that the total weight entering a node is equal to the total weight leaving it;that is, Pj wi;j = Pj wj;i.Consider a set S � V which de�nes a cut (S; S). For sets of nodes S and T , letWS;T = Ps2S;t2T ws;t. We denote WS;V by WS, so WV represents the total weight ofall edges in the graph. Then the conductance of S is de�ned as �S = WS;S=Pi2S �i =WS;S=WS:The conductance of a graph is the least conductance over all cuts whose total weightis at most WV =2: �(G) = minS fmax(�S; �S)g : The conductance of a directed graph



3.6 Learning High Conductance Graphs 91can be exponentially small.Mihail [81] shows that after a walk of length ��2 log(2n=�2), the L1 norm of thedistance between the current distribution P and the stationary distribution � is at most� (i.e. Pi jPi��ij � �). In the rest of this section, a choice of � = 1=n2 is su�cient, so arandom walk of length ��2 log (2n5) is used to approximate the stationary distribution.We call T = ��2 log (2n5) the approximate mixing time of a random walk on an n-nodegraph with conductance �.3.6.2 An Algorithm for High Conductance GraphsIf a graph has high conductance it can be learned more quickly. In a high-conductancegraph, we can estimate the steady state probability of node i by leaving Clark at nodei while Lewis takes w random walks of ��2 log (2n5) steps each. Let x be the numberof times that Lewis sees Clark at the last step of a walk. If w is large enough, x=w is agood approximation to �i.De�nitions: Call a node i a likely node if �i � 1=2n + 1=n2. Note that every graphmust have at least one such node. (The 1=n2 term appears because of the distance� = 1=n2 from the stationary distribution. Its inclusion here simpli�es the analysislater.) A node that is not likely is called unlikely.Algorithm Learn-Graph2 uses this estimation technique to �nd a likely node u0and then calls the procedure Build-Map to construct a map of G starting from u0.The procedure Build-Map learns at least one new edge each iteration by sending Lewisacross an unexplored edge hu; `; vi of some un�nished node u in map. Clark waits atstart node u0 while Lewis walks randomly until he meets Clark. (If u0 is a likely node,this walk is expected to take O(Tn) steps.) Lewis stores this random walk in the variablepath. Thus, pathi is the label of the edge traversed at the ith step of the random walk,path[i : : : j] represents edges pathi to pathj, and jpathj represents the length of path. Wesay that path-step(Lewis) = i if Lewis has just crossed the ith edge on path.



92 The Power of Team ExplorationLearn-Graph2(w;B;M; T ):1 done := FALSE2 T := ��2 log (2n5) f the mixing time g3 while (not (done))4 do map := (fu0g; ;) f map is the graph consisting of node u0 and no edges g5 lost := FALSE6 Lewis and Clark together take a random walk of length T7 Lewis takes w random walks of length T f approx. stationary prob. of LocG(Clark) g8 x := number of walks where Lewis and Clark are together at the last step9 path := the path Lewis followed since leaving Clark10 if x=w � B f bound B < 1=n chosen for ease of proofg11 then Clark follows path to catch up to Lewis f not at a frequently-visited node g12 else Lewis moves randomly until he sees Clark f call node where they meet u0 g13 done := Build-Map(map,M;T )14 return mapBuild-Map(map,M;T ):1 while there are un�nished nodes in map and not lost f Lewis and Clark both at u0 g2 do ui := an un�nished node in map3 restart := a minimal path in map from u0 to ui4 m := largest index of the nodes in map5 path := empty path6 Lewis follows restart and traverses unexplored edge ` f Lewis crosses a new edge g7 while length(path) < MT and robots are not together f Lewis walks randomly : : :g8 do Lewis traverses a random edge `0 and adds `0 to end of path9 if robots are together f : : :until he sees Clark at u0 g10 then both robots follow restart to ui and cross edge `11 path := Compress-Path(path, restart) f removes loops from path g12 path, uj := Truncate-Path-At-Map(path, map) f shortest path back to map g13 if jpathj = 014 then add edge hui; `; uji to map15 else add nodes um+1; : : : ; um+jpathj to map16 add edges hui; `; um+1i and hum+jpathj; pathjpathj; uji to map17 8k; 1 � k < jpathj add edges hum+k; pathk; um+k+1i18 both robots move to u019 else f if Lewis walks MT steps without seeing Clark g20 Clark follows restart, `, path to catch up to Lewis21 lost := TRUE22 if lost23 then return FALSE24 else return TRUE



3.6 Learning High Conductance Graphs 93Compress-Path (path,restart):1 while Clark not at end of path f Lewis and Clark both at u0 g2 do while Lewis not at end of path3 do Lewis traverses the next edge of path4 if Lewis and Clark are together f found a loop in path | remove it g5 then path :=path[1 : : :path-step(Clark) � path[path-step(Lewis) + 1 : : : jpathj]6 Lewis follows restart and edge `7 Lewis traverses edges path[1 : : :path-step(Clark) ]8 both robots are now together and traverse one edge of path9 return path f Lewis and Clark both at u0 gTruncate-Path-At-Map(path,map ):1 earliest := jpathj f �rst position on path that is a node already in map g2 earliest-node := u0 f the name of this node g3 for each node uk in map4 Clark moves to uk5 Lewis follows restart and edge `6 while Lewis not at end of path7 do if Lewis and Clark are together and path-step(Lewis) < earliest8 then earliest := path-step(Lewis)9 earliest-node := uk10 Lewis traverses next edge on path11 both robots move to u012 return path [1 : : :earliest ], earliest-nodeThe procedure Compress-Path returns the shortest subpath of path that connectsv to u0. Finally, Truncate-Path-at-Map compares nodes on the path with all nodesin map and returns the shortest subpath connecting v to some node in map. By addingthe �nal path to the map, Build-Map connects the new node v to map, so map alwaysrepresents a strongly connected subgraph of G. Figure 3.4 illustrates a single iterationof the main loop in Build-Map.Algorithm Learn-Graph2 takes as input parameters the number of random walksw, a bound B to separate the probability of likely and unlikely nodes (we choose B tobe approximately 3=4n), the mixing time T , and a quantity M . This quantity is chosenso that the probability of a robot's starting at a likely node and walking randomly forMT steps without returning to its start node is very small.
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Figure 3.4: Procedure Build Map during one execution of the while loop. Theovals represent map, the portion of graph G learned so far. Note that map is stronglyconnected. Node u0, the �rst node added to map, is with high probability a node witha large stationary probability (a likely node). The robots �nd u0 in procedure Learn-Graph2 using random walks in line 2 of Build Map. The robots agree on a nodeui with unexplored outgoing edges (an un�nished node). Then Lewis moves to ui andfollows the unexplored edge `, while Clark stays at u0. Since ` is unexplored, Lewisis now at an unknown node. Lewis walks randomly until, visiting u0, he �nds Clark.The dotted line of Figure 4 [a] depicts this random walk, denoted path. Random walkpath may pass through the same node many times. In procedure Compress-Path, therobots collectively remove all of the loops from the path (reducing the path to the solidline in [a] and [b]). In procedure Truncate-Path-at-Map, the robots �nd uj, the �rstnode in path already in map. All the nodes and edges of path until uj (the bold line in[b]) are added to map.



3.6 Learning High Conductance Graphs 95In sections 3.6.3 and 3.6.4 we prove the following theorems.Theorem 11 When Learn-Graph2 halts, it outputs a graph isomorphic to G.Theorem 12 Suppose Learn-Graph2 is run on a graph G with w = q(4 + � )dn3 andM = (4 + � )dn2 for some constant � > 0, and B = 34n �1 + 2n�. Then for su�cientlylarge n, with probability at least 1�� Learn-Graph2 halts within O((4+� )dn3T ) steps,where � = e� 120p(4+�)nd + e� 12p(4+�)nd + e� dn�4 .3.6.3 Correctness of Learn-Graph2In this section, we prove the correctness of each procedure in Learn-Graph2.Lemma 13 The procedure Compress-Path halts in O(n jpathj) steps and returns apath in which no node occurs more than once.Proof: We prove the following invariant by induction: in Compress-Path, wheneverLewis reaches the end of path, each node in path[1 : : : path-step(Clark)] appears at mostonce in the entire path.Assume that this claim holds after Clark has crossed the �rst k edges in path. Bythe inductive hypothesis, we know that when Clark crosses the (k+1)st edge, he arrivesat some new node not previously encountered along path. Now Lewis follows the entirepath. Whenever the path loops back to LocG(Clark), the loop is removed from the path.Thus, all repeated occurrences of the new node are removed from the path, proving theinductive step.Since there are n nodes in the graph, Clark can only make n moves before he returnsto u0. Lewis can move at most jpathj steps for every move of Clark's, so the total runningtime is O(n jpathj). 2Lemma 14 The procedure Truncate-Path-At-Map �nds the index of the �rst pathstep leading to a node already in map. The algorithm runs in O(n2) steps.



96 The Power of Team ExplorationProof: For each node uk in map, Lewis traverses the path once while Clark waitsat uk. The procedure keeps track of the earliest node found that is already in map, sothe procedure's correctness follows. Clark takes at most n steps to reach each node uk.Lewis needs at most n steps to follow the compressed path and n more to return to thestart of the path. Thus the algorithm requires no more than 3n2 steps. 2The algorithm Learn-Graph2 halts only when Build-Map returns TRUE. Thefollowing lemma shows that wheneverBuild-Map returns TRUE, map is isomorphic toG.Lemma 15 In Build-Map, whenever Clark is at u0, map is a good representation ofhLocG(Clark);Gi.Proof: We inductively build a subgraph G0 = (V 0; E 0) of G = (V;E) and con-struct an isomorphism f from map to G0. Initially, Lewis and Clark are both at u0and map consists of the single node u0 and no edges. Let V 0 = LocG(Clark); E 0 = ;;and f(u0) = LocG(Clark). Then map is a good representation of hLocG(Clark);Gi.Consider the robots starting an iteration of the �rst while loop in Build-Map.Both robots are together at u0. Inductively assume that map is a good representation ofhLocG(Clark);Gi and that map is strongly-connected. Thus, Lewis can always reach anun�nished node inmap if one exists. Lewis walks to an un�nished node ui, crosses a newedge ` to an unknown node v, and then walks randomly until he returns to u0, whereClark is waiting. From Lemmas 13 and 14, after the algorithm executes subroutinesCompress-Path and Truncate-Path, `�path is a path that begins at ui, crosses edge`, ends at uj, and whose intermediate nodes are not represented in map.If path is empty after Truncate-Path-At-Map, then v is node uj already in map.Adding edge hf(ui); `; f(uj)i to E 0 and hui; `; uji to map and therefore maintains theinvariant that G0 is a subgraph of G and preserves the isomorphism between map andG0. If path is not empty, then by lemmas 13 and 14 all nodes reached by starting at uiand following path to the end are distinct, and only the last node reached is already



3.6 Learning High Conductance Graphs 97in map. Let m be the highest index so far of any node in map. The algorithm addsnew nodes um+1; : : : ; um+jpathj and new edges hum+k ; pathk; um+k+1i 8k; 1 � k < jpathj,hui; `; um+1i, and hum+jpathj; pathjpathj; uji to map. Let f(um+k) be the location of Lewisin G after Lewis has crossed the kth edge of the path. Add the jpathj � 1 new nodes toV 0, and edges hf(um+k); pathk; f(um+k+1)i to E 0. Then f is an isomorphism frommap toG0 � G, so map is a good representation of hLocG(Clark);Gi. Since path connects anun�nished node to another node in map, map remains strongly-connected. 2When Build-Map halts and returns TRUE, there are no un�nished nodes in map .Since map is isomorphic to G0 � G and has no un�nished nodes, map must have thesame number of nodes and edges as G. Therefore, map is isomorphic to G whenBuild-Map returns TRUE, proving Theorem 11. 23.6.4 Running Time and Failure Probability of Learn-Graph2We proved that when the algorithm terminates it is correct. In this section, we proveTheorem 12 by analyzing the probability that the algorithm terminates in a reasonableamount of time. We say the algorithm fails if any of the following cases holds:1. Algorithm Learn-Graph2 �nds an unlikely node but estimates that it is a likelynode.2. Algorithm Learn-Graph2 fails to �nd a likely node in the allotted time. We alloww = q(4 + � )dn3 iterations, each consisting of w random walks.3. Algorithm Learn-Graph2 calls Build-Map from a likely node, but Build-Mapreturns FALSE.In fact, these conditions overestimate the probability that the algorithm fails to runin O((4 + � )dn3T ) steps. The next three lemmas bound the probabilities of each ofthe three failure conditions. At the end of the section, we analyze the running time ofLearn-Graph2 when no failure condition occurs.



98 The Power of Team ExplorationLemma 16 (Failure Condition 1) Suppose that Learn-Graph2 is run with w =q(4 + � )dn3 and M = (4+� )dn2. Assume that the algorithm estimates node u's steady-state probability to be greater than B = 34n(1 + 2n). Then the probability that u is not alikely node is at most e� 120p(4+�)nd.Proof: Call each random walk in Learn-Graph2 a phase. Let Xi be the randomvariable whereXi = 8>><>>: 1 if Lewis and Clark are together at the end of phase i0 otherwise.Then X = Pwi=1Xi is the number of phases where Lewis and Clark end together. If u isan unlikely node, then E[X] � (w=2n)(1 + (2=n)), because the estimation of �u couldbe inaccurate by at most � = 1=n2. We therefore bound the quantityPr �X > 3w4n �1 + 2n� ��� E[X] � w2n �1 + 2n�� :Using the Cherno� bound from Lemma 9 with � = 1=2, we get:Pr �X � 3w4n �1 + 2n�� � 24 e 12(32) 32 35 w2n(1+ 2n )� 0@s8e271A w2n � eln�p 8e27�p(4+�)dn2 � e�p(4+�)dn2 ln�p278e� � e�p(4+�)dn20 : 2Lemma 17 (Failure Condition 2) The probability that Learn-Graph2 fails to �ndand recognize a likely node after q(4 + � )dn3 iterations is at most e� 12p(4+�)dn for suf-�ciently large n.



3.6 Learning High Conductance Graphs 99Proof: De�ne a good node to be a node with steady state probability at least 1=n.(Note that every graph has at least one good node.) We can bound the probability thatwe fail to �nd and recognize a likely node by the probability that we fail to identify agood node within w iterations.First, we bound the probability that the algorithm fails to recognize a good nodewhen testing one. Random variables Xi and X are de�ned as in Lemma 16. Then, sincethe stationary probability of a good node is greater than 1=n,E(X) � w�1n � 1n2� :To simplify the math, note that for su�ciently large n,w�1n � 1n2� � 15w16n �1 + 2n� :Then by the Cherno� corollary in Lemma 9, for � = 1=5,Pr �X < (1 � �)15w16n � = Pr �X < 3w4n � � e� 12 1516 125 wn � e� 3160p(4+�)dn:De�ne 
 to be the quantity �1 � 1n��1 � e� 3160p(4+�)dn3� :The probability that the node reached at the end of a random walk of both robots is agood node and is identi�ed as such is at least�1n � 1n2��1 � e� 3160p(4+�)dn3� = 
n:Therefore the probability that after w trials, no likely node is found and recognized isat most



100 The Power of Team Exploration�1 � 
n�p(4+�)dn3 = �1� 
n��n
 ��
p(4+�)dn� = e�
p(4+�)dn:Note that 
 approaches 1 as n increases. For su�ciently large n; 
 > 1=2, so theprobability that the robots fail to �nd a likely node after w trials is at most e� 12p(4+�)dn.2 Now we analyze the running time of Build-Map. The procedure Build-Map ex-ecutes the main while loop at most once for each of the dn edges in the graph. Letki be the length of the random walk in the ith iteration of the while loop. Then letK = Pdni=1 ki be the total length of all the random walks in the algorithm. Since byLemmas 13 and 14 Compress-Path runs in O(nki) steps and Truncate-Path-At-Map runs in O(n2) steps, the ith iteration takes O(n + ki + nki + n2) steps. Thereforethe total running time of the algorithm is O(dn3 + nK):Lemma 18 (Failure Condition 3) If u0 is a likely node, then with probability at least1� e� �dn4 , K � (4 + � )dn2T .Proof: We use an amortized analysis to prove the bound on K. First we subdivideall of Lewis' random walks during Build-Map into periods of T = ��2 log 2n=�2 stepseach, where T is the approximate mixing time. Recall that if Lewis starts from any node,after T steps Lewis is at node uk with probability between �k � 1=n2 and �k + 1=n2.Thus, Lewis' position after the kth period is almost independent of Lewis' position afterthe (k + 1)st period.We associate a 0=1-valued random variable,Xk, with the kth period of Lewis' randomwalk. Xk = 8>><>>: 1 if Lewis is at node u0 at the end of the kth period0 otherwise.Since u0 is a likely node, Xk = 1 with probability at least 1=2n. Let X = P(4+�)dn2k=1 Xkbe the number of times Lewis returns to u0 in (4 + � )dn2 periods. Note that E(X) is at



3.6 Learning High Conductance Graphs 101least (4 + � )dn=2.Using Cherno� bounds with � = 1 � (2=(4 + � )) we �nd:Pr[X < (1 � �)E[X]] < Pr[X < dn] < e�(4+�)dn4 (1� 24+� )2< e�(4+�)dn4 �1� 44+� + 4(4+�)2 � < e�(4+�)dn4 +dn < e�dn�4 : 2Thus, with high probability Build-Map runs in O(dn3 + dn3(4 + � )T ) steps. Sup-pose none of the failure conditions occurs in a run of Learn-Graph2. Then the ex-ecution never calls Build-Map on an unlikely node, does call Build-Map on a likelynode, and when it does, Build-Map returns TRUE. Therefore Learn-Graph2 makesat most w steady-state probability estimates, each taking O(wT ) steps, before callingBuild-Map once. Therefore, the running time is O((4+ � )dn3T ), proving Theorem 12.23.6.5 Exploring Without Prior KnowledgePrior knowledge of n is used in two ways in Learn-Graph2: to estimate the stationaryprobability of a node and to compute the mixing time T . If T is known but n is not,the algorithm can forego estimating �i entirely and simply run Build-Map after step 6.The removal of lines 7 { 12 from Learn-Graph2 yields a new algorithm whose expectedrunning time is polynomially slower than the original. If we know neither n nor T , wecan run this new algorithm using standard doubling to estimate the quantityMT . Thisquantity can be used in line 6 of Learn-Graph2 and also in line 7 of Build-Map as anupper bound on the length of the random walks. Thus no prior knowledge of the graphis necessary.



102 The Power of Team Exploration3.7 Conclusions and Open ProblemsNote that with high probability, a single robot with a pebble can simulate algorithmLearn-Graph2 with a substantial but polynomial slowdown. However,Learn-Graph2does not run in polynomial expected time on graphs with exponentially-small conduc-tance. An open problem is to establish tight bounds on the running time of an algorithmthat uses one robot and a constant number of pebbles to learn an n-node graph G. Weconjecture that the lower bound will be a function of �(G), but there may be other graphcharacteristics (e.g., cover time) which yield better bounds. It would also be interestingto establish tight bounds on the number of pebbles a single robot needs to learn graphsin polynomial time.Another direction for future work is to �nd other special classes of graphs that tworobots can learn substantially more quickly than general directed graphs, and to �nde�cient algorithms for these cases.Several additional questions concern the practical application of our results in thearea of robot navigation. Suppose that a robot can recognize a node correctly x% ofthe time and that it uses this information to augment its candidate homing sequence.How does our learning algorithm speed up as x increases? What happens if one robotrecognizes the node but the other does not? If landmark recognition may actually beincorrect some fraction of the time, how can the techniques described in this chapterhelp to correct these mistakes? Clearly, the robots could ignore all distinguishing infor-mation and use our algorithm for completely indistinguishable nodes. However, if mostlandmarks are recognized correctly, there may be hybrid schemes that allow a team ofrobots to learn accurately and quickly.



C h a p t e r 4Building Human GenomeMaps with Radiation Hybrids
4.1 IntroductionIn this chapter we investigate the computational problem of constructing accurate phys-ical maps of the human genome. This case study illustrates the practical challenges ofdrawing accurate conclusions from noisy data. We introduce a theoretical model of thenoise that helps us solve the problem, and we explore the point at which the modelbreaks down. We are able to compensate for the limits of our model by incorporatingadditional information into our search techniques. This integrated strategy yields excel-lent results: our team has assembled the �rst radiation hybrid map of the entire humangenome. Our work illustrates that even when it is di�cult to model a noise sourceexactly, we can learn from imperfect data in practice.This chapter is self-contained; no genetics background is assumed. However, thereader unfamiliar with biology may �nd it helpful to refer to the glossary at the end ofthe chapter. 103



104 Building Human Genome Maps with Radiation Hybrids4.1.1 Mapping the Genome: What and Why?The human genome refers to the entire complement of human genetic material (DNA); acopy of the genome is present in each cell in the body. One can think of a DNA moleculeas a long string over the four-letter alphabet fA;C;G; Tg. Each of these letters is calleda nucleotide or a base. A gene is a substring of a DNA strand; genes range from a fewhundred to many thousand bases in length. The human genome is about 3 billion baseslong and is divided into 23 pairs of chromosomes. These include the autosomes, 22 pairsof homologous chromosomes (numbered 1..22) that are present in all cells, and the sexchromosomes X and Y: females have two copies of the X chromosome; males have oneX and one Y chromosome.Each gene encodes a protein that has a speci�c function in the body. In addition togenes controlling physical traits such as eye color or more complex behavioral traits, thereare genes governing almost all cell functions: they regulate cell growth and reproduction,control the transport of materials across cell membranes, and catalyze chemical reactions.Thus, a malfunctioning gene may have a noticeable e�ect in the body and may even causedisease.For example, consider a gene whose normal function tells cells when to stop repro-duction. If that gene is deleted or fails to function normally in some cell, the cell mightdivide continually. All of the cell's o�spring would also replicate themselves withoutcheck. One can imagine how such a malfunction could lead to tumor growth and cancer.This does not imply that all cancers are caused by an inherited genetic 
aw. However,the treatment of all cancers may bene�t from genetics research. By �nding the genesresponsible for certain cancers and studying how those genes function in the body, wegain understanding of the mechanism of the disease. This information may be used todevelop new treatments and therapies. Thus, the �eld of genetics plays an essential rolein modern medical research.An intense e�ort by many teams of scientists worldwide is currently underway todetermine the location, DNA sequence and function of human genes [38, 55]. Physical



4.1 Introduction 105maps are an important part of this process. A physical map of a chromosome showsthe relative locations and estimated distances between known markers along the chro-mosome. The markers may be genes or simply arbitrary DNA substrings that appearonly once in the genome. (A sample map is shown in Figure 4.12.) While our mapsindicate the location of each marker as a point on a line representing the chromosome,in fact each marker may be several thousand bases long. The U.S. Human GenomeProject's current goal is to construct a physical map of 30,000 markers spanning theentire genome, with an average spacing of 100 kilobases (kb) between markers, by theend of 1998.There are two main reasons for building physical maps. The �rst is that genome mapsare essential tools for �nding new genes. For a researcher to clone a novel gene causing acertain disease, the gene must �rst be localized to a speci�c region of a chromosome. Forexample, the researcher might notice that several patients with the disease are missing asmall piece of Chromosome 14, suggesting that some gene in that region of Chromosome14 is related to the disease. However, there may be a thousand genes in that part of thechromosome. The process of �nding all genes in the region and examining each of themwould take many years. Using a physical map, the researcher can locate the target genewith respect to the map markers. This process can narrow down the search to a regioncontaining only 10 or 20 genes, each of which can then be tested individually.In the past, if the chromosomal region of interest had not already been mapped,researchers looking for genes had to build a map of the region before continuing theirsearch. Having a map of the entire genome will eliminate this time-consuming workfrom future gene-�nding projects.The other reason for building physical maps is that they form a sca�old for sequenc-ing. The task of \sequencing the genome," reading the sequence of all 3 billion basesof human DNA, is the next phase of the Human Genome Project. While the DNA se-quences of di�erent people are not all identical, the di�erences between two individualsgenerally account for less than 0.1% of the genome. Thus one can propose to sequence



106 Building Human Genome Maps with Radiation Hybridsthe 99.9% of the DNA that all individuals share and to determine which of the remainingdi�erences between individuals are critical and in what ways.Current technology allows us to sequence only a few hundred bases at a time. Fromthese short reads we can assemble the sequence of regions about 100 kb in length.1 Ifwe could build a map with markers spaced 100 kb apart, we could then use the map tohelp assemble the �nal sequence. Thus timely completion of a physical map is a crucialpart of the Genome Project. The project's ultimate goal is to analyze the sequencedgenome, �nd genes, and study their function in the body. This work is expected to yielda wealth of information that will revolutionize medical and biological research.Physical mapping is also an excellent case study in handling noisy or imperfect data.Physical map data can be derived from a variety of experimental methods; radiationhybrid mapping is one such mapping technique [43]. The project described in this chapterinvolves a great deal of data developed in di�erent labs and with di�erent experimentalmethods. Each type of data is subject to di�erent sorts of noise and corruption. Failuresin the lab, unclear test results, and human error all contribute to the noise problem.Furthermore, while this noise is not malicious, it is also not uniformly random, butsimply follows some unknown pattern. Thus any theoretical model of this noise is boundto be incorrect in some cases.At �rst, one might think that �nding order in a large data set subject to unknownpatterns of error is an impossible task. However, we have developed a suite of programsthat allows us to construct good radiation hybrid maps e�ciently. While there is no\correct map" against which to test our results, we have evidence that our maps areboth well-supported by the data and very close to the truth.1The problem of assembling the correct sequence from a number of short, overlapping subsequencescontaining various sorts of errors is not a trivial one. It has been the subject of a great deal of researchthat is beyond the scope of this thesis; see [67] for a summary of current sequence assembly methods.



4.1 Introduction 107Chapter OverviewThis chapter describes the practical problems of building genome-wide radiation hybridmaps from noisy data. The work is part of a collaborative e�ort with the physicalmapping group at the Whitehead Institute Center for Genome Research. We have con-structed a radiation hybrid map containing over 11,000 unique markers with estimatedcoverage of about 99% of the human genome. We have also released a software packageincorporating the algorithms used to build and debug our map.Section 4.2 introduces the technique of radiation hybrid mapping. It places the prob-lem in the context of previous mapping work, describes the experimental method andthe computational issues of mapping, and outlines our approach to map construction.Section 4.3 de�nes a hidden Markov model with which we represent our data and showshow we use the model to detect and correct errors.The subsequent three sections are concerned with algorithms for �nding good mapsfrom an exponentially-large space of possible maps. Section 4.4 describes some early ex-periments with basic combinatorial algorithms. In the past, such algorithms have beenused to solve many small mapping problems. However, we have had di�culty �ndinge�cient implementations suitable for our large-scale genome-wide mapping project. Un-derstanding why our preliminary experiments failed yields some insight into the complex-ities of the problem. Section 4.5 de�nes an e�ective greedy approach to map constructionand presents the results of experiments testing this method. Section 4.6 introduces thenotions of framework and placement maps, maps that indicate a degree of con�dence inthe position of each marker. Such information is of great value to the research commu-nity using our maps. This section includes the algorithms that we ultimately used toproduce our published maps.Finally, in Section 4.7 we present our results. We �rst introduce RHMAPPER, asoftware package that incorporates our methods of map construction. Next we discussthe practical problems encountered in building genome-wide maps, describe the mapsproduced, show a sample map, and discuss some of the interesting biological implications



108 Building Human Genome Maps with Radiation Hybridsof our work. We then describe how a preliminary version of our radiation hybrid mapswas combined with other types of mapping data to produce an integrated genome-widemap of over 15,000 markers. This map is about half the density of the map speci�ed asthe Human Genome Project's 1998 goal. We expect that this goal of a 30,000-markermap will be reached well ahead of schedule, in part due to the work described in thischapter.4.2 Radiation Hybrid MappingRadiation hybrid mapping [43] is a technique that has been used for small-scale mappingsince 1990 [61, 1, 62]. The experimentalmethod involves exposing human cells to gammaradiation, which breaks each chromosome into random fragments. The DNA fragmentsare then \rescued" by fusion with healthy hamster cells that incorporate or retain arandom subset of the human DNA fragments. Each resulting hybrid cell, which includesboth hamster and human DNA, can be cloned to form a hybrid cell line of cells allcontaining the same random subset of the human genome. A radiation hybrid panelconsists of a number of di�erent hybrid cell lines (sometimes just called \hybrids").To understand the computational problems of map construction, we consider a singlechromosome with four markers, A, B, C, and D, as shown in Figure 4.1. Our goal is todetermine the correct order of the markers along the chromosome and the approximatedistances between adjacent markers. We assume that breaks occur uniformly at randomacross the chromosome. The crucial observation is that for a pair of markers such as Aand B that are near each other on the chromosome, the probability that the radiationinduces a break between the two markers is quite small. If there is no break betweenthe two markers, they are co-retained; that is, the hybrid contains either both or neitherof the markers. In contrast, for markers that are far apart like B and C, there is ahigh probability that at least one break occurs between the two. Thus, the fragmentscontaining markers B and C are retained independently by most hybrid cell lines.
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−Figure 4.1: A DNA strand with markers A through D in a radiation hybrid panel(made from many cells containing copies of the DNA). Gamma irradiation breaks theDNA in each cell in a random fashion. The fragmented DNA is cloned into severalhybrid cells, each of which retains a random subset of the fragments. Each hybrid canthen be screened against each marker. In the resulting matrix, a \+" indicates thatthe marker in question is retained by the hybrid, while a \{" indicates that it is not.The computational problem is to use this matrix to reconstruct the correct order of anddistances between the markers.To test for co-retention, we screen the DNA in each hybrid in the panel against eachmarker. In the absence of errors, a positive result (represented by a \+") indicates thatthe hybrid in question retained the marker, while a negative result (represented by a \{")indicates that the marker was not retained. Thus, the data form a matrix of pluses andminuses, one bit for each marker/hybrid pair. Our task is to reconstruct the markers'positions on the original chromosome given only their retention patterns in this matrix.This reconstruction process is complicated by several factors. The �rst problem isthat the screening is subject to several types of noise. Thus there is some probability



110 Building Human Genome Maps with Radiation Hybrids(generally less than 2%) of seeing a false-positive or false-negative result. To decreasethe error rate, we perform each experiment twice. If the two results are discrepant, werecord a \?" instead of a \{" or a \+" in the input matrix, representing the fact thatwe do not know whether or not the marker was retained by the hybrid.Another issue to consider in determining co-retention is that humans are diploidorganisms, meaning that each cell contains two copies of each chromosome. (In contrast,each cell in a haploid organism contains only a single copy of each chromosome.) Allthat we can determine by our screening methods, however, is whether or not at leastone copy of a marker is retained by a hybrid. We cannot distinguish the exact numberof copies retained. We must account for this limitation when we attempt to determineaccurate distances between adjacent markers in our maps.The unit of distance in radiation hybrid maps is the Ray [31, 43]. The distance iscalculated with the Haldane [56] formula: � log (1� �), where � is the probability of abreak between two markers. One centiRay (cR) corresponds roughly to a 1% chance of abreak. Each centiRay also corresponds to a rough physical distance (in Mb) based on theradiation dosage used in creating the hybrid panel. Since there is a direct correspondencebetween distances and break probabilities, we sometimes refer to break probabilities asif they were distances.There are two key computational issues in radiation hybrid mapping. The �rst isthat of determining how accurate a map is. We need a way to evaluate each mapquantitatively to assess how well it is supported by the observed data. To determine thecorrect order and spacing of markers we may need to compare maps repeatedly, so theevaluation function must be easily and e�ciently computable.The second issue is that of e�ciently searching the space of all possible maps to �ndthe best maps. For a set of n markers, there are n! possible marker orders. With just20 markers there are several quadrillion possible orders; we want to manage data sets ofhundreds or even thousands of markers on each chromosome. Thus, we need an e�cientmethod of choosing candidate maps so that with high probability we �nd the true order



4.2 Radiation Hybrid Mapping 111of markers along the chromosome (or something very close to it) in a reasonable amountof time.Previous Work on Radiation Hybrid MappingAnalytical methods for constructing radiation hybrid maps have been published byBoehnke, et al. [30, 31, 73, 76]. Their software, RHMAP, was originally designed forbuilding maps of small chromosomal regions near disease genes. The hybrid panels usedfor this purpose are derived from somatic cell hybrids containing only a single copy ofthe human chromosome of interest. Thus, while software for handling the haploid casehas been widely available for a number of years [32], software that handles the diploidpanels used in genome-wide mapping has only recently become available [30, 73].Boehnke solves the �rst computational problem, that of determining what makesa good map, by representing the data with a Markov model. Under this probabilisticmodel one can compute the likelihood of each map. The likelihood is the probability ofseeing the observed data given the map; this criterion measures how well the map �tsthe observed data.The second problem, that of �nding the right map e�ciently, is more di�cult.Boehnke's group has tried several approaches to this problem. One of their searchmethods is a greedy algorithm similar to those we describe in Section 4.5. We favorablycompare the e�ciency of our greedy approach to theirs. Another option in Boehnke'ssoftware performs a branch-and-bound exhaustive search that �nds the best overallorder. This method, however, is extremely slow; although it prunes the search tree sub-stantially, its running time is exponential in the number of markers. A third RHMAPoption uses simulated annealing to �nd a maximum-likelihood solution. In Section 4.4we describe our preliminary attempts to apply similar techniques to large-scale mapping.Radiation hybrid mapping has been used successfully to create maps of human chro-mosomes 14 [111], 11 [63], 4 and 12 [42]. However, building maps of entire chromosomesusing RHMAP is a slow and painful process. Since the software takes several hours to



112 Building Human Genome Maps with Radiation Hybridsorder a group of just 20 markers using the fastest method (see Table 4.1), mapping sev-eral hundred markers requires breaking the markers up into groups of about 20 markers,�nding the best maps of each, and then merging the results. The process demands agood deal of human intervention at every step. Thus we determined that these methodswere not suitable for whole-genome mapping.Another key challenge in genome-wide mapping projects is dealing with the inevitableexperimental errors. Laboratory errors in the characterization of markers on radiationhybrid panels lead to false breakage events, creating regions of map expansion andinterfering with the correct ordering of markers. While errors create di�culties in mono-chromosomal mapping as well, the problem is even more pervasive in large-scale mappinge�orts. RHMAP does not account for errors in the data at all. Lunetta, et al. [76]analyze the impact of such errors on map construction and conclude that even lowerror rates can signi�cantly confound mapping e�orts. To be practical, map softwareshould accommodate noisy data and 
ag suspected laboratory errors for experimentalveri�cation.Our ApproachWe use a hidden Markov model to represent our data. While our approach is an ex-tension of Boehnke's maximum-likelihood method, the di�erences are signi�cant. The\hidden" states of the model allow us to represent uncertainty in the data. Thus, themodel accounts for missing data, errors, and either diploid or haploid cell lines. Us-ing experimentally-determined error rates, our software predicts which marker/hybridassays are likely to be errors. These data are then 
agged for laboratory veri�cationand the corrected data are incorporated into new maps. The hidden Markov model isdescribed in detail in Section 4.3.We experimentedwith several algorithms for �nding maximum-likelihoodmaps underour model. While basic optimization techniques such as simulated annealing are e�ectivefor smaller problems, our preliminary e�orts in applying these techniques to large-scale



4.2 Radiation Hybrid Mapping 113mapping have been disappointing. However, we describe a number of greedy strategiesthat are fast and successful at �nding good maps.Our software thus has several advantages over RHMAP: it handles both haploid anddiploid data, it performs error-detection and 
ags putative errors for veri�cation, and itruns much more quickly while delivering good results. We have validated our approachby using it to construct genome-wide radiation hybrid maps.Other Physical Mapping StrategiesWe also experimented brie
y with algorithmic methods that have been applied suc-cessfully to other physical mapping problems. The earliest physical maps consistedof overlapping clone coverage of a region [84, 41, 68]. The clones most suitable forlarge-scale mapping are yeast arti�cial chromosomes (YACs). Each YAC incorporatesan approximately 1 megabase (Mb) DNA fragment from a random part of the humangenome. Recently, a collaboration between CEPH, Genethon, and the Whitehead hasproduced a clone-based map that is estimated to cover 75% of the genome with YACclones [37].Clone-based maps rely heavily on the accuracy of the cloning technology. However,most cloning techniques are prone to a variety of errors. There are many types of errorscommon to YACs: a piece of the human DNA may be deleted in the clone, or theDNA may contain inversions or other rearrangements. Repeated DNA regions acrossthe genome can also cause di�culty in map construction. Perhaps the most problematicand most common errors are chimeric clones. A clone is said to be chimeric if it picksup two pieces of DNA from di�erent parts of the genome. The danger of chimeric clonesis that the two di�erent DNA pieces appear as though they were adjacent in the cell.Thus, chimeric clones can cause substantial trouble in map construction. As many as50% of the YAC clones used in mapping may be chimeric, so any mapping software mustbe able to handle chimeras.Another approach to physical mapping is to build a marker-based map by STS-



114 Building Human Genome Maps with Radiation Hybridscontent mapping on YACs. An STS, or sequence-tagged site, is a DNA marker withknown 
anking sequences that can be used for cloning. Given a set of STSs and anumber of YACs, we can test to see which YAC clones contain each STS. If two YACshit several of the same markers, they are probably derived from overlapping regions ofDNA.The computational problem of STS-content mapping looks a bit like that of radiationhybrid mapping. The data consist of a matrix of \{"s and \+"s, where each YAC clonerepresents a column and each STS represents a row. If the rows are arranged in theorder in which the STSs appear along the chromosome, and if there are no errors in thedata, then the matrix would have the consecutive ones property: all the positive results(sometimes represented as ones in a zero/one matrix) in each column would appear inconsecutive rows, as in Figure 4.2b. Thus the goal is to �nd a permutation of the rowsof the input matrix with the consecutive ones property.This problem has a polynomial-time solution in the error-free case, due to Booth andLueker[33]. However, as in any mapping problem, there are several types of errors inthe data: deletions, insertions, false-positive or false-negative experimental results, andchimeras. Thus, the real matrix might look more like that in Figure 4.2c. Solving the\almost-consecutive-ones" problem that arises in the error-prone case is much harder.In fact, Alizadeh, Karp, Newberg and Weisser prove that a formalization of thealmost-consecutive-ones problem is NP-complete [2]. They reduce the problem to avariant of the traveling salesman problem. The key concept behind their approach isthe notion of gap minimization. A gap in a column of the data matrix is de�ned tobe a consecutive run of some number of \{"s 
anked by a \+" on either side. Eachfalse-positive, false-negative, or chimeric clone adds a gap to the matrix (as can be seenin Figure 4.2c). Thus, it seems reasonable that the correct permutation is one thatminimizes the number of gaps in the matrix.Karp's group has implemented a traveling salesman approximation algorithm as amethod of approximate gap-minimization [113]. Their methods are extremely sensitive
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116 Building Human Genome Maps with Radiation Hybridsto false-positive errors but can tolerate a 20-30% false-negative error rate and a 25%chimerism rate. They obtain fairly accurate maps for simulated data with a false-negative rate of 0.1% [3]. However, building large-scale maps by STS-content mappingalone has proven to be di�cult in practice because of the high rate of false positives andthe frequency of repeated DNA.One key di�erence between the computational problems of STS-content mapping andradiation hybrid mapping is that even in the error-free case, the correct permutation ofthe input matrix for radiation hybrid mapping would not have the consecutive onesproperty. Since many di�erent human DNA fragments are retained by each hybrid cellline, the columns of the matrix would contain many groups of consecutive ones. Despitethis di�erence, we attempted to build radiation hybrid maps using the gap-minimizationcode that Karp's group wrote for STS-content mapping [113]; we describe the results inSection 4.4.4.3 The Hidden Markov ModelIn this section we present an answer to the �rst fundamental question in mapping, \howgood is a map?" Our approach compares di�erent maps by constructing a probabilisticmodel of the data. Given any map consisting of an ordered list of markers and thedistances between them, one can compute the probability under the model that the mapproduced the observed data. This probability is known as the likelihood of the map.The ratio of the likelihoods of two di�erent maps containing the same markers pro-vides a quantitative method of comparison between the two. Since the likelihood of anyparticular map is extremely small, we measure the di�erence between the (base 10) log-arithms of the likelihoods instead of the direct likelihood ratio. Borrowing terminologyfrom genetic linkage mapping, we refer to the di�erence of the log likelihoods of twospeci�c maps as the lod score.The pairwise lod score of two markers compares the log likelihoods of two maps: the



4.3 The Hidden Markov Model 117most-likely map of the two markers, and the map placing the two markers in�nitely farapart (� = 1). This comparison e�ectively measures the likelihood that the two markersare linked.One advantage of the hidden Markov model is that it allows us to account for errorsand diploid data in a straightforward manner. The model also o�ers an e�cient methodfor �nding the best map distances associated with a given marker order; these distancesare an important feature of our maps. To determine the likelihood of a particularorder we use the estimation-maximization (EM) algorithm, which e�ciently estimatesthe most-likely distances between adjacent markers in the given order. (Lander andGreen [71] describe a similar process for building maps from genetic linkage data.)Our hidden Markov model relies on several assumptions. (For a basic tutorial onhidden Markov models, see Rabiner [90].) We assume that the radiation-induced breaksoccur randomly along a chromosome as a Poisson process, and that di�erent fragmentsare retained independently in a given hybrid. The retention rate is taken to be a constantfor each hybrid, but di�erent hybrids may have di�erent retention rates. The Markovianassumption is that the retention of a marker depends only on the retention of the previousmarker in the order and the chance of a break between the two markers.4.3.1 Likelihood CalculationsThe likelihood of a map is simply Pr(DatajMap), the probability of seeing the observeddata given the map order and break probabilities. To describe the likelihood computationwe �rst need a few de�nitions.Let N be the number of markers in the map. A separate hidden Markov model isde�ned for each hybrid in the following way. For each marker i, the hidden Markovmodel has a set Si of states. The state the model is in at a given marker correspondsto the number of copies of that marker actually retained by the given hybrid. Thus inthe haploid case, Si = f0; 1g, while in the diploid case, Si = f0; 1; 2g, for all i between1 and N .



118 Building Human Genome Maps with Radiation HybridsThe observed data Oi for the ith marker at a particular hybrid may be either +, {, or?, representing positive, negative, or uncertain results of the marker/hybrid assay. Thetransition and output probabilities are described below. Figure 4.3 shows the hiddenMarkov model for one hybrid in the haploid case. In the diploid case there would bean additional state labeled \2" for each marker, and the edges connecting the states oftwo consecutive markers would form a complete bipartite graph with all edges directedtowards the higher-lettered marker.For example, suppose the observed result of the assay for marker A in hybrid i isnegative. If this observation is correct, marker A is truly not retained by hybrid i. Thiscase corresponds to being in state 0 of the model at marker A. Suppose that � and� are the average false-positive and false-negative error rates, respectively. Then theprobability of seeing the negative result if the model is truly in state 0 at marker A is1 � �. The other possibility is that the observed result is a false-negative error; themarker A really is retained by hybrid i, but the observed result is incorrect. This casecorresponds to being in state 1 at marker A. The probability of seeing the incorrectobservation, given that the model is in state 1, is exactly the false-negative probability�. Since the hybrid cell lines are independent of one another, the total likelihood is theproduct of the likelihoods for the individual hybrids. Hence we describe the method forcomputing the likelihood of a map for a single hybrid.Our goal is to determine Pr(DatajMap). We compute this quantity inductively usingBaum's forward-backward algorithm (see Rabiner [90] for an introduction to this andother basic HMM algorithms). Let PrL(i; j), the left-conditioned probability of statej at marker i, represent the probability of being in state j at marker i and seeing theobserved data at the �rst i markers, given the map. The left-conditioned probabilitiescan be computed inductively using the following equations:PrL(1; j) = Prior(j)Obs(O1 j j); 8j 2 S1; and
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Figure 4.3: The hidden Markov model for the haploid case. For the map consisting ofordered markers A,B,C,: : : , this model represents the true state of a particular hybridcell line. At each marker the system may be in one of two states, corresponding towhether or not the marker is retained by the hybrid in question. For example, therightmost state labeled \0" represents the case in which marker C is not retained bythe hybrid. One can then calculate the probability of seeing the observed data for thatmarker (in this case, a \+"), given that the marker is not retained; this is just the false-positive rate �. In this way one can determine the probability of seeing all the observeddata given the map.PrL(i; j) = Obs(Oi j j)0@ Xk2Si�1 PrL(i� 1; k) Tri(j j k)1A ; 8j 2 Si;where Obs(Oi j j) is the probability of seeing the observed data for marker i if themodel is in state j at the ith marker, Tri(j j k) represents the transition probabilityof moving from state k at the (i � 1)st marker into state j at the ith marker, andPrior(j) is the prior probability of starting in state j. The prior probabilities can beexperimentally determined by measuring the retention frequency, the percentage of theDNA fragments that are retained by a hybrid. For example, in the haploid case for ahybrid with retention frequency r, Prior(0) = 1� r and Prior(1) = r.



120 Building Human Genome Maps with Radiation HybridsIf the screens are carried out without error on haploid hybrid lines and no dataare missing then the observed and true states are in one-to-one correspondence, soObs(� j 0) = 1, and Obs(+ j 1) = 1. Accounting for errors changes these probabilities.Recall that the states of the model indicate how many copies of the marker are actuallyretained in the given hybrid cell line. Suppose � is the average false positive rate and �is the average false negative rate. ThenObs(� j 0) = 1� �;Obs(+ j 0) = �;Obs(+ j 1) = 1� �; andObs(� j 1) = �:Diploid and polyploid cases are treated by allowing all states other than 0 (thosestates in which some copy of the marker is retained) to correspond to a positive assayresult (Oi = +). Thus in the diploid case, we add Obs(+ j 2) = 1�� and Obs(� j 2) = �to the above equations.We further extend the model to account for missing data. Let 
 represent the prob-ability that an individual marker/hybrid assay result is missing or inconclusive (such aresult is represented by a \?" in the matrix of observed data). Let Obs0(Oi j j) representthe new probability of seeing the observed data for marker i when the model is in statej. Then Obs0(Oi j j) = 8>><>>: 
 if Oi = ?(1� 
) Obs(Oi j j) otherwiseThe transition probabilities for markers i � 1 and i separated by break probability� can be computed as follows. For the haploid case one can verify that Tri(1 j 0) = �r(a break occurs and the second marker is retained), Tri(0 j 0) = (1 � �) + �(1 � r)(either no break occurs, or a break does occur and the second marker is not retained),Tri(0 j 1) = �(1 � r) (a break occurs and the second marker is not retained), and



4.3 The Hidden Markov Model 121Tri(1 j 1) = (1� �) + �r (either no break occurs, or a break does occur and the secondmarker is retained.If we designate these probabilities as t10; t00; t01; and t11 respectively, then in thegeneral n-ploid case, the transition probability from the state with k retained copies tothe state with ` retained copies is given by the equation:Tlk = n�kXm=0 n� km ! kn � ` �m!tm00tn�k�m10 tn�`�m01 tk+`+m�n11 :In this equation we rely on the convention that �st� is equal to 0 if t > s or t < 0. Theindex m counts the number of copies that are not retained in either state.The transition matrix for the diploid case is easily derived from this equation or byconsidering the fates of the individual fragments:k` 0 1 20 (t00)2 t00t01 (t01)21 2(t10t00) t00t11+ t01t10 2(t11t01)2 (t10)2 t11t00 (t11)2The matrix entries show the probability of moving from a state with k retained copies ofa marker to one with ` retained copies of the next marker. For example, in the diploidcase T00 represents the probability of moving from the state with neither copy of the �rstmarker retained to the state in which no copy of the second marker is retained. Thus,each (haploid) strand of the DNA must move from state 0 to state 0; the probabilitythat both strands do this is just (t00)2.The likelihood for an entire hybrid can be computed by summing the left-conditionedprobabilities over all states for the rightmost marker:L = Xk2SN PrL(N; k):



122 Building Human Genome Maps with Radiation HybridsIf we were only interested in determining the likelihood of each hybrid, this resultwould be su�cient. However, to perform error detection we need to know the probabilityof being in a given state conditioned on all the data, so the intermediate probabilitiesPrL(i; j) become important.4.3.2 Error DetectionThe error-detection algorithm determines the ratio of the likelihood that the exper-imental result observed at a marker is in error to the likelihood that the result iscorrect, conditioned on all the observed data for the hybrid. For example, considerthe haploid case with no missing data, where the possible states correspond to hav-ing either 0 or 1 copy retained and where there are only two possible observations,{ or +. We write Pr(state at i = Oi) to represent the probability that the state atmarker i corresponds to a state in which one would see the observed output Oi if noerror occurred. Then the probability that the observed result at that point is cor-rect is just Pr(state at i = Oi j data), while the probability that it is incorrect isPr(state at i 6= Oi j data):These probabilities depend upon all the observed data for the hybrid, so the left-conditioned probabilities PrL(i; j) solve only half the problem. Analogously, one cande�ne the right-conditioned probability PrR(i; j), the probability of the observed dataat markers i+ 1 through N , given the map and the fact that the model is in state j atmarker i: PrR(N; j) = 1; 8j 2 SN ; andPrR(i; j) = Xk2Si+1Obs(Oi+1 j k)Tri(k j j)PrR(i+ 1; k); 8j 2 Si;Then to �nd Pr(state at i = Oi j data) in the haploid case, we only need theproduct PrL(i; state at i = Oi) � PrR(i; state at i = Oi). (In fact, this quantity shouldbe normalized by the probability of the data given the map. However, since we ultimately



4.3 The Hidden Markov Model 123want the ratio of two such likelihoods, these normalization factors cancel each other out.Thus, they may safely be ignored in our calculations.) In the more general polyploidcase, the lod score in favor of an error isPstate at j 6=Oi PrL(i; j) � PrR(i; j)Pstate at j=Oi PrL(i; j) � PrR(i; j):One can calculate the likelihood of a hybrid inductively in either direction (i.e., usingeither PrL(i; j) or PrR(i; j)). Thus performing both calculations only doubles the work,and it allows us to determine the probability of error at each point with only a fewarithmetic operations.4.3.3 The EM AlgorithmGiven an ordered set of markers, we employ the EM algorithm to �nd the most likelymap distances associated with that order. The algorithm requires choosing an arbitraryset of break probabilities as a starting point; we assume initially that all markers areevenly spaced. (The initial break probabilities do not in
uence the result, but they maya�ect how long the algorithm takes to converge.) Using the method described above, thealgorithm evaluates the likelihood of the map with these speci�c break probabilities. Thislikelihood calculation also yields the state probabilities Pr(state i at marker j j data)for each state i 2 Sj. The algorithm then re-estimates the distances between markersby counting the expected number of breaks using the state probabilities. The new breakprobabilities correspond to new distance estimates. This process is repeated (using thenew distance estimates to calculate the likelihood of the next map) until it converges.The procedure is guaranteed to converge to a local maximum; in practice, it convergesrapidly to the globally-optimal map.Finally, we describe how the EM algorithm re-estimates the break probabilities tocalculate new map distances. Again, we �rst consider the haploid case. If two adjacentmarkers are in di�erent states (0,1, or 1,0), the probability of a break having occurred



124 Building Human Genome Maps with Radiation Hybridsbetween the markers is 1. If the markers are in the same state (1,1 or 0,0, indicatingthat both are retained or both are not retained), a break may or may not have occurred.The corresponding break probabilities, denoted b11 and b00, are:b11 = �r2�r2 + (1� �)r ; andb00 = �(1� r)2�(1� r)2 + (1 � �)(1� r) :For the diploid case, the expected number of breaks between states with k and` copies retained can be derived from these expressions. The diploid matrix of theexpected number of breaks is shown below.k` 0 1 20 2 b00 b00+ 1 21 b00+ 1 cis (b00+ b11) + 2 trans b11+ 12 2 b11+1 2 b11The only case that requires additional explanation is the middle square, representingthe expected number of breaks when moving from state 1 at the �rst marker to state 1 atthe second. In this case, there are two possibilities; either both markers retained are onthe same strand, or the retained markers are on di�erent strands. These probabilities arerespectively denoted by their biological terms, cis and trans. Let p1 be the probabilitythat one strand moves from state 0 to state 0 and the other moves from state 1 to state1; p1 = [(1� �) + �(1 � r)][(1� �) + �r]= (1� �) + �2r(1 � r):Similarly, the probability p2 that one strand moves from state 0 to state 1 and the othermoves from state 1 to state 0 is p2 = �2r(1� r). Then cis = p1=(p1 + p2), while trans =p2=(p1 + p2).



4.4 Initial Experiments in Map Construction 1254.4 Initial Experiments in Map ConstructionSimulated Annealing and Genetic AlgorithmsIn this section we describe our preliminary attempts to solve the second challenge inphysical map construction, that of �nding a good map e�ciently. The methods de-scribed in this section are often the �rst approaches suggested for the problem of �ndinggood maps, although we have had only limited success applying them to our large-scalemapping problem. Furthermore, it is instructive to explore the questions of when andhow each technique fails, and how one might hope to overcome these problems in futureexperiments.A natural approach is to use standard combinatorial optimization techniques withmap likelihood as the objective function. We tried two such methods: genetic algorithmsand simulated annealing. For both techniques, the search space is simply the space ofall possible orders of the n markers. For each marker order, we use the EM algorithm(as described in Section 4.3.3) to determine the maximum-likelihood map distancesassociated with that marker order, and we evaluate only this map in our comparisons.For our genetic algorithm2 we initialized the population with a set of random orders.In each new generation we created a \child" by combining the orders of two \parents"chosen at random, with a mild bias in favor of more likely orders. We then removedeither the child or one of the parents from the population, again chosen at random withprobabilities dependent on the likelihoods of the orders. We repeated this process untilthe set of the ten most-likely elements in the population remained stable for a largenumber of generations (generally at least 100).Our simulated annealing algorithm was based on the code in Numerical Recipes inC [88]. (The relevant chapter, by Press, et al., also contains a good overview of simulatedannealing.) New orders were derived from old ones by either swapping or reversingrandom substrings. We used the standard Metropolis algorithm to determine which2See Goldberg [51] for a general discussion of genetic algorithms.



126 Building Human Genome Maps with Radiation Hybridscandidate orders to accept. We experimented with several di�erent cooling schemes andinitial conditions, but in all of our attempts we sought maximum-likelihood permutationsof the markers.Our �rst observation is that for small enough data sets (containing fewer than 10markers), most optimization methods produce roughly equivalent, correct maps. Forexample, on a simulated data set of seven markers, the simulated-annealing algorithmsuccessfully found the maximum-likelihood permutation. However, for so small a dataset, it is possible to explore the entire space of possible orders! Near-exhaustive searchbecomes impossible as the number of markers increases, and once this happens our puremaximum-likelihood search methods begin to lose ground.For groups of more than 20 or 30 markers, the genetic algorithm may converge to anyof a number of likely orderings that bear little resemblance to the true order. Since eachpopulation is initialized at random, one can frequently evaluate the output by comparingthe results of two or three runs on the same data and iterating for a longer time if theresulting maps are not similar. However, for groups of about 60 markers, we found thatthe output orders di�ered dramatically even when each experiment was allowed to runfor several hours.Figure 4.4 shows the results of running a genetic algorithm on a 200-marker simulateddata set broken up into linkage groups of 10{75 markers each. (The simulator and thedata are described in Section 4.5.4.) The graph plots the correct order of the markers(according to the simulated chromosome) along the x-axis. The y-axis shows the samemarkers in their position according to the best map found by the genetic algorithm. Ifthe reconstructed map were completely correct, the graph would appear as a straightdiagonal line (on either axis). Diagonal lines in the plot represent regions that weremapped correctly; scattered clusters of markers represent linked groups of markers thatwere not ordered well.This �gure shows a problem common to both the genetic algorithm and simulatedannealing approaches: it is hard to tell whether the algorithm has converged to a correct



4.4 Initial Experiments in Map Construction 127or an incorrect order. The algorithm has used the same termination criteria for all of thelinkage groups shown in the �gure; some have converged to relatively good orders whileothers have not. Some small groups are incorrectly-ordered while other larger groups areordered well, so group size does not seem to predict whether or not the algorithm willconverge to a good map. Thus, it is di�cult to choose adequate criteria for accepting theoutput of such algorithms unless information about the true order is already available.
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0 50 100 150 200Figure 4.4: Genetic-algorithm order of a 200-marker simulated data set compared tothe true order. The markers are �rst divided into groups with strong pairwise linkage.Straight diagonal lines indicate groups that are ordered correctly; scattered clusters ofdots are groups that are not ordered well. All groups used the same criteria for declaringconvergence.Our experiments with simulated annealing yielded similar results but ran consider-ably more slowly. In one test, hoping to increase reliability, we chose a fairly slow coolingscheme and initialized the algorithm to a nearly-correct order of a 200-marker simulateddata set. After running for four days, the algorithm had converged to an order witha log likelihood score of over 100 worse than that of the initial permutation (i.e., theordering was 10100 times less likely to have produced the data)!



128 Building Human Genome Maps with Radiation HybridsThere are several possible explanations of why our large-scale mapping experimentswith these methods have been so disappointing. The �rst is that the moves we usedto derive new orders from old ones include swaps and reversals of substrings. However,it is possible that this set of moves is insu�cient for solving large mapping problemse�ciently. We might speed up the convergence process by including a move that in-tersperses two correctly-ordered substrings covering the same map region; for example,a single move that could change order 1357902468 into order 0123456789. It would beinteresting to conduct additional experiments with simulated annealing methods thatemploy di�erent sets of moves.Another reason for the failure of our early experiments might be the nature of themulti-dimensional likelihood function that we are exploring. All known mapping tech-niques have a limited range of distances over which one can accurately order markers.For the data described in Section 4.7, we are unable to distinguish con�dently two mark-ers that are closer than about 1 Mb apart. We also have di�culty seeing accurate linkagebetween two markers that are more than 6 Mb apart, so di�erent map orders with verydi�erent permutations of distant markers might have nearly identical likelihoods. Thusnot only must we search a vast space of possible orders, but our optimization functionhas a great many local maxima consisting of marker orders that may bear no resemblanceto the true order.A third possible reason for our di�culties with pure maximum-likelihood searchesmay be due to the limits of the model. Our model makes very speci�c assumptions aboutthe probabilities of breaks and errors. While we can estimate the overall error rates andbreak probabilities for the entire data set, these estimates may be inaccurate for speci�cregions of the data or for individual markers. Thus in some cases our algorithms �ndorders that are slightly more likely under our model than the true marker order!However, our goal is to use the likelihood function not as an end in itself, but as atool for discovering the truth. Thus we can bias our search algorithms by incorporatingadditional information about the true order into the objective function governing the



4.5 Greedy Algorithms for Ordering Markers 129search. This technique works quite well in practice; the algorithms described in the nexttwo sections are examples of such approaches.Gap MinimizationFinally, we reinforce the conclusions of Boehnke [29] that gap-minimization producesworse results than maximum-likelihood methods for radiation hybrid mapping. We usedthe gap-minimization software that Karp's group has written and successfully appliedto STS-content mapping [3]. However, gap-minimization is particularly sensitive tofalse-positive errors, since each such error produces an additional gap. The STS-contentdata in Karp's project were carefully �ltered to remove as many false-positive errorsas possible, at the expense of adding some false-negative errors. While our group atthe Genome Center performs every experiment twice to obtain relatively clean radiationhybrid data, there are still a number of errors present in our data sets.Furthermore, radiation hybrid mapping di�ers from STS-content mapping in thatthere are a large number of inherent gaps. Each hybrid cell line retains many humanDNA fragments, so even in the error-free case there are a large number of gaps in thematrix. Thus, perhaps it is not surprising that in our experiments for ordering groups of�fty or more markers, the maps produced by gap-minimization appeared indistinguish-able from random permutations of the markers! We therefore agree with Boehnke'sassessment that this technique is unlikely to be useful for developing good radiationhybrid maps.4.5 Greedy Algorithms for Ordering MarkersIn this section we describe a greedy approach to the problem of �nding good markerorders. We �rst de�ne a simple greedy algorithm and then show how to use the basicmethod as a subroutine for a faster, more accurate algorithm.



130 Building Human Genome Maps with Radiation Hybrids4.5.1 The Basic-Greedy AlgorithmThe Basic-Greedy algorithm inserts markers one by one into a growing map. The initialmap consists of a pair of markers. At each step, the next marker to insert may bechosen at random or may depend on linkage to other previously-placed markers. Thealgorithm computes the likelihood of the current order with the new marker insertedin each possible interval. The marker is then permanently inserted into the positionyielding the new order with the highest likelihood.Basic-Greedy(M): fM = f all markers to be mapped g g1 map = Initialize-Map(m1 ; m2) f start with any 2 markers in map g2 M := Mnfm1; m2g f remove m1; m2 from M g3 for each m 2 M4 for i = 0 to sizeof(map) ffor each interval in map g5 mapi = map with m inserted in interval i6 map = mapi with maximum likelihood7 return mapFor example, if the map starts with markers A and B, there are three intervals intowhich a third marker C could be inserted, producing the three maps CAB, ACB, andABC. (Note that we are unable to distinguish map ABC from map CBA, since theyhave the same likelihood. Thus we need only consider three possible permutations ofthree markers, not six.) The basic greedy algorithm would evaluate all three maps usingthe most-likely map distances as determined by the EM algorithm. It would choose themost likely of these as the current map and continue adding new markers into this newmap.This approach works well on small groups of markers where all markers are withinabout 10 Mb of one another. Over larger distances, the limits of the mapping techniquereduce our con�dence in the orders produced.One general problem with the basic greedy approach, however, is that if a mistakeis made early in the process, it can cause a lot of trouble later on. Mistakes may bedue to several factors. If we try to place a marker that belongs too far away from any



4.5 Greedy Algorithms for Ordering Markers 131markers already in the map, the algorithm will place the marker o� one end of the map,but it might be the wrong end. If we try to add a marker too close to one already inthe map, there will be two positions that are nearly-equally good, one on either side ofthe previously-placed marker. And if we try to place a marker with many errors, it maybe advantageous for the algorithm to place the marker in an interval where it doesn'treally belong.We can improve our results somewhat by adding markers in order of strongest pair-wise linkage to markers already mapped. This process avoids the problem of placingmarkers too far from previously-mapped ones. Another improvement, which handlesmarkers too close to those already mapped, is to defer the addition of a marker if thereare two or more intervals for it that are of nearly-identical likelihood. We reserve allmarkers with this property and insert them last, so that their addition into an incorrectposition won't cause later markers to be placed incorrectly.Even with these improvements, the basic greedy method runs into trouble whenasked to map several hundred markers. At �rst glance the algorithm appears to have anO(n2) running time, since it requires O(n2) likelihood calculations of maps. However,this analysis ignores the fact that evaluating a map is not a constant-time operation.The time for the EM algorithm to converge is proportional to the size of the map aswell. Thus it pays to break the problem into smaller groups for two reasons: our resultsare more accurate for groups of markers that are near each other in the true map, andworking with smaller groups of markers dramatically decreases the running time.4.5.2 The Parallel-Greedy AlgorithmWe have implemented a new algorithm that forms greedily-ordered subgroups and thenattempts to join the subgroups together correctly. While it is not truly a parallel algo-rithm, it is called Parallel-Greedy since all the subgroups are grown at the same time.The advantage of this new method is that it biases the search for good maps by ensur-ing that tightly-linked pairs of markers remain near each other in the �nal order. This



132 Building Human Genome Maps with Radiation Hybridsconstraint helps combat the problems of the methods described in Section 4.4 and of theBasic-Greedy algorithm.Parallel-Greedy(M): fM = f all markers to be mappedg g1 S := Initialize-Subgroups(M)2 A := [s2Ss f A = all markers in any subgroup in S g3 M := MnA f M = remaining markers g4 while M is not empty5 do m := marker in M most closely linked to any m0 2 A6 s := subgroup of S containing m07 Insert m into s with Basic-Greedy8 M :=Mnfmg9 Try to merge s with all other subgroups using Group-Merge10 Merge all remaining subgroups using Group-Merge at a lower lod threshold11 return �nal merged groupInitialize-Subgroups(M):1 L := list of all pairs of markers in M , sorted by decreasing pairwise lod score2 k := 13 while L is not empty4 do hi; ji := the �rst pair in L f the remaining pair with highest lod score g5 if pairwise-lod(i; j) < threshold f all pairs left have lod: : :6 then return S = fs` j 1 � ` � k � 1g : : : scores below threshold g7 else sk := map of markers i and j at distance �opt8 k := k + 19 remove all pairs containing i or j from L10 return S = fskgFor the new algorithm we �rst initialize the subgroups to contain only pairs of tightly-linked markers. At each step, we greedily add a marker to its most tightly-linked sub-group. Each time a new marker is inserted into a subgroup, there is a chance that theevidence for linkage between the two subgroups has increased to the point where it isstatistically signi�cant. Thus, after each insertion, we try to join the newly augmentedsubgroup with the others to see if there is now strong enough evidence for linkage. Wealso defer insertion of any marker if there are two nearly-equally-likely positions for themarker. At the end, we greedily insert all deferred markers into their best positions.Our algorithm often needs to merge a number of groups of already-ordered markers.



4.5 Greedy Algorithms for Ordering Markers 133To do this we use the procedure Group-Merge, which calculates multipoint lod scoresfor pairs of groups. The groups m1 and m2 are merged end to end in each of the fourpossible combinations: m1 m2m1 reverse(m2)reverse(m1) m2reverse(m1) reverse(m2)For each combination, the likelihood score for the two groups linked at the optimaldistance is compared to the score when the groups are separated by an in�nite distance(� = 1:0). If the lod score comparing these two maps exceeds a certain threshold, thetwo groups are joined; otherwise they remain as separate groups.Group-Merge(group1; group2):1 for each orientation (m1; m2) of the two groups2 linked := map joining m1 and m2 at optimal distance3 unlinked := map joining m1 and m2 at in�nite distance (� = 1:0)4 if lod score (linked vs. unlinked) > threshold5 then return linked6 return group1; group24.5.3 A Greedy Strategy for Large-Scale MappingWe have incorporated the Parallel-Greedy algorithm into a general method for mappinglarge data sets. At the top level, our strategy consists of four steps. The �rst stepinvolves breaking the data set into strong linkage groups of fewer than 100 markerseach. Linkage groups are formed by computing the transitive closure of pairwise linkageat a given lod threshold. Markers that show high pairwise linkage to one another arelikely to be near each other on the chromosome; the algorithm that follows places allsuch markers together in the �nal map.Next, we greedily order the markers within each linkage group using either the Basic-Greedy algorithm or the Parallel-Greedy algorithm. In the third step, we attempt to



134 Building Human Genome Maps with Radiation Hybridsimprove the order of each linkage group using a local permutation method (the \ripple"algorithm described in Section 4.6.2). Finally, the ordered groups are linked togetherwith the Group-Merge procedure to form the �nal map. At this stage, the lod thresholdfor merging can be decreased gradually until all groups are merged together.4.5.4 ResultsWe tested our greedy strategy on both real and simulated data. In this section wedescribe the results.Chromosome 4We obtained haploid data for 234 markers on Chromosome 4, courtesy of David Cox.The markers were screened by PCR assay against the Stanford radiation hybrid panelof 85 hybrid cell lines. All assays were duplicated and any discrepancies were treated asmissing data, so the error rate for this data set is rather low. Cox used version 1.0 ofRHMAP [32] to generate a maximum-likelihood order of the markers.Using the same data, we generated a map of their markers blindly (without referenceto Cox's map) and then compared our ordering to theirs. It took our software about 3hours to obtain the �nal order.A graph plotting our marker order against Cox's is shown in Figure 4.5a. A straightdiagonal line would represent complete agreement between our orders. When markerswhose relative position cannot be determined from the data are placed into bins, thetwo orderings become even more similar (as shown in Figure 4.5b). Under our likelihoodmodel, our map beats Cox's map by a lod score of 0.7.While the maps produced are quite similar, there are a few discrepancies beyond thosecaused by the arbitrary ordering of markers in the same bins. These discrepancies aremost likely due to several di�erences in our models. One di�erence is that our methodused a diploid model to evaluate the haploid data, since these tests were performedbefore we added the haploid option to our software.
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0 20 40 60 80 100Figure 4.5: a) Comparison of our greedy order of 234 markers on Chromosome 4 toDavid Cox's order of the same data. b) The same data, with markers that are essentiallyindistinguishable { i.e., the estimated distance between them is 0 cR { placed into bins.This comparison of our bins to Cox's bins shows that the two orders agree very closely.Another di�erence is the presence of errors in the data. RHMAP does not account forerrors at all. We estimated the average false positive rate to be about 1% and the falsenegative rate to be about 3%. We also assumed that if the results of a marker/hybridassay were \missing" (i.e., the duplicated experiments yielded discrepant results), therewas a 50% chance that the true result was positive. We have since discovered that thevast majority of the missing data in these experiments are actually weak positives, sothis probability is closer to 95%. Our map is likely to be slightly worse because of thisincorrect assumption.In constructing our order, we assumed that the retention frequency was constantacross all hybrids. This assumption is probably incorrect, but it is one that Cox madeas well. Our software can handle variable retention frequencies, but we used a constantretention frequency to correspond more closely to the RHMAP model.Simulated Diploid DataTo further test our algorithms, we generated a sample diploid data set using a programcalled Groupsim. Groupsim generates linkage groups and simulated radiation hybrid databy placing markers according to a Poisson distribution. The program includes random



136 Building Human Genome Maps with Radiation Hybridserrors in its simulated data according to user-de�ned error rates. Other user-adjustableparameters include the retention frequency (constant or per-hybrid), the mean distancebetween markers and the mean fragment length.Our test data set contained 200 markers in a single linkage group, screened againsta hypothetical panel of 85 hybrids. We assumed a mean distance of 500kb between themarkers and a mean fragment length of 3kb. These values correspond roughly to themean fragment length and spacing of the Chromosome 4 data. The simulated data hada retention frequency of about 15%, which is typical of the Chromosome 4 data as well.(In contrast, the retention frequency for the data used to build the maps described inSection 4.7 is about 32%.) We used a 2% false-positive rate and 10% false negative rate,much higher error rates than we would expect for duplicated assays on real data.Our algorithm ran to completion in 1 hour, 41 minutes on a Dec Alpha 3000. The�nal ordering we obtained is compared to the \true" order (that of the simulated inputdata) in Figure 4.6. A straight diagonal line would correspond to a perfect ordering ofthe data. Almost all markers were placed at most three steps away from their positionin the true order. The greedy order had a lod score of 3.4 less than the true order.In a set of 200 markers with only 85 hybrids and a substantial noise rate, we wouldexpect to see about one marker that, by chance, looks more like some other region ofthe map than like its neighbors. As expected, a single marker appears in the wrongsection of the map. Such deceptive markers would be observed in real data, but theirpresence could be detected by other means (i.e., strong linkage to two distinct regions ofthe map; assignment to a di�erent chromosome than other markers in the same linkagegroup, etc.).Comparison with RHMAPWe also compared the e�ciency of our algorithm with that of version 1 of RHMAP [32].(Tests with version 2, performed later, yielded similar maps but ran even more slowly.)We used the maximum-likelihood option and compared our results to RHMAP's stepwise
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0 50 100 150 200Figure 4.6: Test of our greedy mapping strategy on a simulated chromosome of 200markers. The x-axis represents markers in the order output by the greedy algorithm;the y-axis lists them in their correct order.ordering method (the fastest option, and the one most like our greedy approach). Weassumed equal retention probabilities for all fragments.Due to RHMAP's computational limitations, we were only able to obtain results forsmall linkage groups. We tested the algorithm on two linkage groups from our simulateddiploid data set; one of 17 markers and one of 22. The maps produced by RHMAP forthese groups were remarkably similar to those produced by our greedy algorithm, whichran in a fraction of the time taken by RHMAP. Table 4.1 compares the running time ofour method to that of RHMAP.The maps for the 22 marker linkage group are shown in Figure 4.7. The best locusorders produced by the two algorithms are virtually identical; the di�erence in each caseis only a single pair of swapped markers producing a negligible di�erence in likelihoodunder our model. The only substantial di�erences between the two maps, aside from therunning time of the algorithms, are the estimated map distances. Our algorithm seems
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4.6 Framework and Placement Maps 139Running Timesnumber of markers RHMAP Greedy17 4 hours, 54 mins 1 min, 37 sec22 8 hours, 50 mins 2 mins, 7 sec63 > 10 days 1 hour, 3 mins200 ?? 1 hour, 41 minsTable 4.1: This table compares the running times of RHMAP to those of our greedymapping strategy for several di�erent-sized groups of markers. All benchmarks wererun on a Dec Alpha 3000 workstation. RHMAP is written in optimized FORTRAN 77,while our software is written in a combination of Perl and optimized C.to underestimate the map size somewhat, while RHMAP overestimates it. This makessome sense, since RHMAP does not model errors in the data.We suspect that due to our error model, there would be more noticeable di�erencesbetween our maps and RHMAP's on larger data sets. In an attempt to test this hypoth-esis we ran RHMAP on a group of 63 markers, but we gave up after it ran for over 10days without halting. It would be interesting to continue trying to test this hypothesisby performing additional experiments on intermediate-sized data sets.4.6 Framework and Placement MapsOne disadvantage of all the algorithms described above is that they provide no indicationof the degree of con�dence in the placement of each individual marker. Figure 4.6illustrates the need for such con�dence estimates. While the map shown in the �gureis generally quite accurate, one marker is placed in a grossly incorrect position. Aresearcher using the map, however, would have no indication of which markers are placedwith high con�dence and which might be placed incorrectly. The method described inthis section builds maps with inherent con�dence estimates.Our maps consist of two sets of markers, indicating di�erent degrees of con�dence in



140 Building Human Genome Maps with Radiation Hybridsthe markers' map positions. A framework map is a set of markers whose relative order isknown with reasonable certainty. We add as many markers as possible to the frameworkmaps. Those markers that cannot be mapped with su�cient con�dence, perhaps becausethey are too close to markers already in the framework, are placed into bins relative to theframework markers. These binned markers comprise a placement map. Placed markerscannot be ordered con�dently relative to one another using the available radiation hybriddata. Instead, placement maps indicate the markers' approximate locations with respectto the framework and list all alternative placements that are nearly equally likely.To build framework maps we start with a sparse, correct framework that spansthe chromosome to be mapped. Building this framework is non-trivial; we discuss itsconstruction from radiation hybrid data in Section 4.6.1. However, one could imagine�nding a sparse framework of 10 or 20 correctly-ordered markers on a chromosome fromanother source such as genetic linkage maps. Given a good initial framework map, weincrementally add selected markers to nearly-proper places in the framework using asimple greedy algorithm to be described below. We can then use a local permutationalgorithm (such as the \ripple" algorithm described in Section 4.6.2) to improve the mapand to test its accuracy. Markers that fail to satisfy the criteria for admission to theframework map are then added to the placement map.4.6.1 Building Initial FrameworksOur algorithms for �nding initial frameworks begin by examining all triples of markers.Three markers in their most likely permutation form a strongly-ordered triple if theirorder is more likely than that of any other permutation by a �xed lod threshold, andif the estimated distances between the three markers are within a certain range. (Wegenerally look for triples with a lod score of at least 3, and with inter-marker distancesranging from 5 to 20 cR.) The markers in a strongly-ordered triple are quite likely to be intheir correct map order with respect to one another. Thus it may be possible to integrateseveral strongly-ordered triples to form longer, correctly-ordered sparse framework maps.



4.6 Framework and Placement Maps 141We have designed algorithms that search for the longest framework orders supportedby the triples. To see why we want the longest possible order, consider the case of aninitial framework that spans only half of a chromosome. Many markers to be mappedmight belong to the part of the chromosome not covered by the framework. Thesemarkers would be poorly linked to all of the framework markers. Such markers would beplaced o� some end of the framework map, but not necessarily in their correct location.Any errors introduced at this early stage are likely to propagate throughout the mapconstruction process. Thus it is critical to start with a framework map that spans theentire region.There are two obstacles to assembling frameworks from strongly-ordered triples.First, a small but signi�cant fraction of the triples (generally less than 5% for a lodthreshold above 3.0) may be ordered incorrectly. Second, the orientation of the triples(A-B-C vs. C-B-A) is unknown, increasing the computational di�culty of the problem.Without some knowledge of which triples are incorrect, we cannot guarantee �nding acorrect initial framework. However, we have developed two algorithms that generategood candidate frameworks.Each of these algorithms creates a directed acyclic graph (DAG) based on the triplesand then �nds the longest path in that DAG. Finding the longest path in a DAG with Vvertices and E edges requires O(V +E) steps [40]; in our case this is O(n) steps, wheren is the number of good triples. In contrast, �nding the longest path in a general graphis NP-complete.The �rst algorithm relies on all partial order information available from the triplesto assemble a path. For example, the triples A-B-C and A-C-D would be combinedinto A-B-C-D by this algorithm. The vertices of the graph correspond to all the markernames in the list of good triples (each marker gets one vertex, no matter how manytriples it appears in). The edges impose a partial order on the markers de�ned by thestrongly-ordered triples. If all the triples were listed in their correct forward/reverseorientation, it would be possible to place all edges on the graph in just one pass through



142 Building Human Genome Maps with Radiation Hybridsthe data. However, since some triples are reversed in orientation with respect to others,we need to be a bit more careful.The edges for the �rst triple may be added in arbitrary direction. For example, if the�rst triple is A-B-C, we add the edges A! B and B ! C to the graph. The algorithmthen makes up to n passes through the list of remaining triples. For each triple, thealgorithm adds edges for that triple if there is exactly one consistent orientation forthat triple in the current graph. This means that in one orientation, adding the edgescorresponding to the triple would cause a cycle in the graph, while in the other (correct)orientation it would not. If both orientations are consistent, the triple is deferred untilthe next pass. If neither is consistent, some triple must be incorrectly ordered. Thealgorithm then prints a warning message and discards the current triple. After all tripleshave been added to the graph (or discarded), the algorithm simply �nds the longest pathin the directed acyclic graph. Figure 4.8 illustrates a sample run of this algorithm.a) b)
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4.6 Framework and Placement Maps 143This algorithm uses all partial ordering information available; consequently, the pathsoutput may contain pairs of adjacent markers that are adjacent in only one triple in theinput data. These markers may actually be too close together for both to appear in thesame framework map. Thus, we sometimes prefer using a stricter algorithm for �ndinglong paths of framework markers.This second, more selective method seeks the longest path of overlapping triples suchthat, for all adjacent triples in the path, the last two markers of the left triple are the �rsttwo markers of the right triple. For example, triples A-B-C and B-C-D would be mergedto form A-B-C-D, but triples A-B-C and A-C-D would not. Because this criterion isvery stringent, the paths found using this method tend to be shorter and more reliablethan paths found using the �rst method.To implement this method, we build a graph whose vertices correspond to triplesrather than individual markers. We �rst assign undirected edges between any two tripleswhose end-most markers overlap. Next, the algorithm assigns an arbitrary direction toone of the graph edges. It then performs a breadth-�rst search of the undirected graphto determine the directions of the remaining graph edges (so that they are consistentwith the initial edge, and so that the graph remains acyclic). Edges that form cycles arediscarded. Finally, the algorithm seeks the longest path through the directed graph oftriples. This algorithm is illustrated in �gure 4.9.The danger of both of these methods is that if an incorrectly-ordered triple is addedto the map at an inconvenient time, the resulting path could be incorrectly-ordered.Our solution to this problem is to run the algorithm several times on di�erent randompermutations of the input �le. We have found that in most cases, the incorrectly-orderedtriples appear inconsistent with the rest of the graph and are discarded. Occasionally,a bad triple is added to the graph early; in that case, many other triples are discardedand the resulting path tends to be very short. Thus, we have generally been able to �ndgood frameworks using these methods.
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ABCEFHFigure 4.9: The second, more stringent path-�nding algorithm. The �gure shows the�nal graph for the same list of triples as in Figure 4-8. Triples are only linked if theyshare two adjacent markers in a way that allows for path extension. (For example, FEBand EFG share an edge, but EFG and HFE do not, since the latter two cannot becombined to form a longer path.) Note that the resulting candidate frameworks di�erfrom the one produced by the previous algorithm.4.6.2 Testing Initial FrameworksThe candidate frameworks produced by these algorithms are subjected to a great dealof testing before they are accepted as initial frameworks. First, the most-likely mapdistances are determined for the given candidate marker order. The maps are examinedto ensure that no pair of adjacent markers are too close together or too far apart. Theraw data vectors for the map are examined as well, to see if any obvious gaps or out-of-place markers appear.The candidate is then subjected to the \ripple" test. In this test, a sliding window kmarkers wide (for some constant k) is moved along the map, and the map's likelihood isevaluated for each possible permutation of the markers in the window, with the rest ofthe map remaining constant. If the initial framework order is substantially more likelythan any other permutation found this way then the candidate passes the test. If a



4.6 Framework and Placement Maps 145candidate fails the ripple test, it may contain two markers that are too close together ortoo far apart to be ordered reliably or a small set of markers that are ordered incorrectly.The candidate is then adjusted by hand to �x the problem, if possible.Candidate frameworks are also subjected to the \pull-out" test, in which one markerat a time is removed from the map. The test attempts to insert the one removed markerinto each possible interval in the remaining map. If the best place for the marker is insome interval other than the one it came from, or if the lod score favoring the correctinterval over the next-best one isn't high enough, the candidate fails the test.Finally we test the maps by trying to add markers to the frameworks greedily, usingthe methods described in the next section. Any incorrect ordering in an initial frame-work is likely to produce a map interval that rejects the placement of future markers.These gaps are obvious upon inspection of the expanded maps. During our genome-widemapping e�orts we detected several errors in this fashion, �xed the initial frameworksas necessary, and re-built the maps. Since constructing a correct initial framework is byfar the most time-intensive part of the map-building process, this sort of correction isnot too expensive.4.6.3 Growing LOD-k FrameworksOnce a good initial framework has been found, reliably adding markers to it is easy.We call the resulting framework a LOD-k framework map, for some constant k. Weconsider as a candidate any marker in the database that shows strong pairwise linkageto some marker already in the framework. We then subject each candidate marker totwo tests. First, we use the Basic-Greedy algorithm (from Section 4.5) to �nd the most-likely interval for the new marker. If the lod score comparing the map with the newmarker in its best interval to the map with the new marker in the next-best interval isat least k, then the best map is considered as a tentative new framework. This mapis then subjected to the ripple test. If it passes the test at a lod threshold of k, thetentative order is promoted to become the new framework, and the process continues



146 Building Human Genome Maps with Radiation Hybridswith the next marker.Adding new markers to a framework changes the likelihoods for inserting other mark-ers. Therefore, the process of growing a framework may be repeated with markers re-jected in a previous iteration until no new markers are accepted.4.6.4 Placement MapsIn any mapping project some markers will not be added to the framework, either becausethey are too close to markers already in the framework or because they have an aboveaverage noise rate. These markers are binned in a placement map. A placement mapconsists of a framework map and a set of markers positioned relative to the framework.Each placed marker may map into several framework intervals with nearly-equal likeli-hood; all such possibilities are represented in the placement map. Markers are addedto the placement map with the same greedy test used to choose candidate frameworkmarkers. However, the algorithm not only records the best placement interval but alsoall placement intervals within lod 3.0 of the best one. If the acceptable placement inter-vals are not all adjacent in the framework (for example, if a marker's best placement iso� one end of the map but its next-best placement is o� the other end), the marker islikely to have a high error rate.A marker may be rejected from the placement map if it does not exhibit strongpairwise linkage to any framework marker, or if its best placement is too far from anyneighboring framework marker. The �rst criterion removes markers that are not trulylinked to the chromosome being mapped. The second criterion is designed to preventerror-prone markers from sliding to the end of the chromosome. This artifact of ourtechnique occurs when a marker has enough errors that placing the marker in its correctinterval implies a large number of obligate breaks. If the marker's correct position isnear the end of a chromosome, there may be a higher likelihood score for placing themarker o� the end of the map or into the large gap that often occurs at the centromere.However, since the marker does not really belong o� the end of the map, the optimal



4.6 Framework and Placement Maps 147distance between the new marker and the rest of the framework is quite large. Thus wereject all such placements, since the majority of them are incorrect.This criterion points out the importance of having a framework map that spans theentire chromosome. If one end of the chromosome is not represented, many markers willplace too far o� the end for acceptance to the map. For example, at one point we noticeda lack of framework markers on the top of Chromosome 21 when a number of markershad placed o� the end there; adding a new framework marker �xed the problem.Figure 4.10 shows part of a placement map and data for several markers on Chro-mosome 16. In this �gure, the �rst column consists of marker names and the secondcolumn lists the estimated distances (in cR) between adjacent markers. Two markerswith virtually identical data vectors, such as EST157352 and MR14121, are placed at adistance of zero. An \F" in the third column indicates that the marker in question ispart of the framework map, while a \P" indicates that it is a placement marker. Eachplaced marker is listed in its most likely position, and the number to the right of the\P" indicates the lod score between the best and next-best placements for that marker.Marker AFM340YE5 is placed at a very low lod score, because its data vector is nearlyidentical to that of the adjacent framework marker, and thus it could in fact belong oneither side of that marker. However, EST151329 is placed with a lod score of greaterthan 3.0, indicating that the marker is at least 103 = 1000 times more likely to belong inthe interval between AFM214ZG5 and MR7804 than in any other framework interval.Such a marker is a candidate for promotion to the framework.4.6.5 Tests with Simulated DataWe tested our algorithms for building framework and placement maps on simulated datacomparable to the real data used to construct our genome-wide maps.The data were generated by the simulator Groupsim, which is described in Section 4.5.Our data set consisted of 200 markers on a single chromosome, with an average spacingof 500 kb between markers. The mean fragment size was 10 Mb (corresponding to the



148 Building Human Genome Maps with Radiation HybridsMR10702 2.20 F 1000100100010000011000100100100000120010EST156791 2.30 P0.29 1000100100010000011000100100100000110010UTR-05569 1.82 F 1000100101010000011000100100100000110010EST157352 0.00 P1.26 1100100101010000011000100100100000110010MR14121 1.82 P1.33 1100100102010000011000100100100000110010UTR-04543 0.26 P>3.00 1100100101010000011000100100100000110010AFM214ZG5 2.67 F 1100100101010000011000100100000000110010EST333861 0.52 P1.34 1100100101000000011000000100000000110010EST181036 0.97 P2.73 1100100101010000011000000100000000210010EST151329 0.07 P>3.00 1100100101010100111010000100010000110010A002K14 1.02 P1.05 1100101101010000111000000100000000210010MR7804 1.81 F 1100100101010000111000000100000000110010AFM112XH2 4.09 P1.74 1100100101000000111010000100000000110010AFM340YE5 0.00 P0.03 1100100101010000111000000100000000100010MH1082 0.00 F 1100100101010000111000000100000000110010Figure 4.10: A placement map of several markers on Chromosome 16. The �rst columnlists the marker names, the second column lists distances between adjacent markers, andthe third column designates markers as framework or placement markers, listing thecon�dence (lod score) for each placement. The data vectors for each marker are shownas well.estimated mean fragment size of the Genebridge 4 radiation hybrid panel); the averageretention frequency was 30.3%. The average false-positive and false-negative error rateswere .4% and .2% respectively, corresponding to the expected error rates for real datain which each PCR assay has been performed twice, and any discrepant results recordedas missing data.Of the 200 markers, we chose a random subset of 100 and computed the likelihoods ofall triples of these markers in about 1.5 hours. The more conservative initial-frameworkalgorithm found a framework of 33 markers after running for 30 minutes. After somebrief testing and visual examination, this framework was expanded at lod 3.0 using thegreedy method described in Section 4.6.3. This phase, in which all 200 markers were



4.6 Framework and Placement Maps 149considered as possible framework markers, ran for approximately 2.5 hours at a loweredpriority (+10, on a scale of 0 (highest) to +20 (lowest)). The resulting framework mapwas examined and tested with the pull-out and ripple tests, but was not altered in anyway. This map contained 89 markers that were in perfect order with respect to the\true" order of the simulated data; a graph comparing the framework order and thetrue order of the same markers is shown in Figure 4.11a.a) b)
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150 Building Human Genome Maps with Radiation Hybridsdo not always exactly follow the assumptions of our model. Our practical experimentsin map construction are described in the next section.4.7 Results4.7.1 RHMAPPER: Interactive Map Construction SoftwareWe have written an interactive software package called RHMAPPER [104, 106] thatincorporates the algorithms described here for the construction of genome-wide radiationhybrid maps. The package includes facilities to automatically detect and 
ag errors inthe data, allowing error-correction during map assembly. In addition to the framework-construction and testing algorithms described above, the software includes several toolsfor evaluating and manipulating groups of markers, and displaying, testing, and editingmaps.RHMAPPER is written in C and Perl for the UNIX operating system. The packageis built on a client/server architecture, allowing the user to modify the map-buildingroutines in an incremental and experimental manner. The server is written in optimizedC and is responsible for the computationally intensive maximum likelihood calculations.The remainder of the software consists of a series of Perl scripts tied together by afront end that is essentially a Perl interpreter. Thus one can type in commands to beevaluated immediately or create new subroutines and macros using any of Perl's controlconstructs and functions. RHMAPPER can also run in batch mode.The software and documentation are available free of charge, under a license that al-lows unlimited redistribution, at http://www-genome.wi.mit.edu/ftp/pub/software/rhmapper, or via anonymous ftp from ftp-genome.wi.mit.edu, in directory /pub/software/rhmapper.



4.7 Results 1514.7.2 A Genome-Wide Radiation Hybrid MapPractical Map Construction MethodsRHMAPPER has been tested extensively at the Whitehead Institute Center for GenomeResearch, where we have used it to build the �rst human genome-wide radiation hybridmaps. The laboratory work for this project represents the combined e�ort of a largeteam of biologists. To build the map, our group initially screened a total of 6,795 STSsagainst the Genebridge 4 radiation hybrid panel, which consists of 91 human/hamsterhybrid cell lines. The average fragment length in the panel is about 10 Mb and the aver-age retention rate per hybrid is about 32%. All assays were performed twice to improveaccuracy; discrepant results were marked as unknown for mapping purposes. Chromo-somal assignments for 5134 markers were determined by somatic-cell hybridization orgenetic map position.Once we had obtained data for roughly the �rst two thousand markers, we segregatedthe assigned markers by chromosome and built initial framework maps for each chro-mosome using only markers known to be on the chromosome. Although this approachexcludes many potentially good framework markers, it has two advantages. First, itnarrows down the number of markers considerably. This is crucial, since to �nd strongly-ordered triples our algorithms must examine nearly all combinations of three markersin the data set. This cubic algorithm can take a number of hours for groups of severalhundred markers (running on a DEC Alpha 3000 workstation). Second, this criterionincreases the con�dence we have in the resulting framework maps, since each marker in aframework not only exhibits strong radiation-hybrid linkage to other framework markers,but is placed on the correct chromosome by independent experimental evidence.We built the initial framework maps using the methods described in Section 4.6.1.During this process, we noticed that adjacent markers on opposite sides of the centromereshow very low pairwise linkage. Therefore, we often constructed separate frameworkmaps for each chromosome arm. We then relied on the genetic map positions of markersas well as on radiation-hybrid linkage to correctly order the two arms of each framework.



152 Building Human Genome Maps with Radiation HybridsWhen constructing candidate initial framework maps, we occasionally encountered\circular chromosomes" { candidate frameworks whose ends were linked together. Whileit has been suggested that these cycles were caused by the prevalence of repeated DNA,we found that increasing the lod-threshold criterion for strongly-ordered triples elimi-nated the problem.Once the initial frameworks were formed and tested we greedily added markers tothem, again restricting our search to chromosomally-assigned markers. At �rst, werequired that all frameworks pass the ripple test at a lod threshold of 3.0. In a laterpass, we reduced this threshold to 2.5 to increase the number of framework markers.Further attempts at lod-threshold reductions resulted in a marked decrease in mapquality.Next, we assigned all the remaining markers to placement maps. For the 1,661markers whose chromosomal assignment was still unknown, we used YAC contig in-formation and RH linkage to determine a unique chromosomal assignment wheneverpossible. There are 187 markers in the database for which we were unable to determinea unique chromosomal assignment by any method. (Many of these have shown linkageto more than one chromosome.)We then engaged in a round of error-detection and correction. We generated a listof the marker/hybrid assays most likely to be incorrect and repeated these experimentsin the laboratory. We then incorporated the corrected data into the database. Sincesome frameworks failed to satisfy the ripple test using the new data, we adjusted thoseframework maps by hand, generally by removing one or two improperly-placed markers.We then re-built the placement maps using the corrected data.Finally, we screened an additional 5,693 markers, most of these expressed sequenceswhose genomic location was unknown. We expanded and tested the framework mapsagain, and we added a total of 5,164 new markers to the placement maps.



4.7 Results 153Description of the MapOur maps consist of 11,357 markers, 1,638 of them on lod-2.5 framework maps, spanningchromosomes 1..22 and X.3 The markers are spaced at an average distance of 264 kb.Table 4.2 lists the number of mapped markers as of May 6, 1996 and the map sizes foreach chromosome.A sample map is shown in Figure 4.12. The markers named in bold are frameworkmarkers; placement map markers are shown in their most likely positions. All of ourmaps are available on the Genome Center web server, athttp://www-genome.wi.mit.edu/cgi-bin/contig/phys map.This page includes a con�dential facility for electronically submitting markers to belocated on our radiation hybrid maps. The page also displays our latest RH maps bychromosome and allows the user to click on individual markers to learn more about thedata placing them onto the map.Coverage and AccuracyWe estimate that the maps cover 99% of the (female) genome. To derive estimates ofcoverage, we attempted to place 100 random STSs onto our maps. Using RH linkagealone, we assigned all 100 markers to the correct chromosome. We were able to positionall 100 on the map with pairwise linkage to at least two framework markers at a lod ofgreater than 8.0. Since 94 of the markers also fell into YAC contigs, we were able toverify that the RH placement was consistent with the YAC linkage in all 94 cases. Thatis, all of the RH-mapped markers were placed within 15cR (about 4.2 Mb) of anotherRH-mapped marker in the contig in question.We also note that there are no gaps larger than 30 cR in the framework map ofany chromosome arm. Since the Genebridge 4 Hybrid Panel allows us to detect RHlinkage between markers 30 cR apart, we can conclude that there are no substantial3Chromosome Y was not mapped because a detailed physical map of Chromosome Y had alreadybeen published by a collaborating Whitehead team [47].



154 Building Human Genome Maps with Radiation HybridsChr Framework Total Length Physical RH vs. PhysicalMarkers Markers (cR) Length (Mb) Length (cR/Mb)1 139 1066 911 248 3.72 139 961 999 240 4.23 117 863 819 202 4.14 109 608 674 191 3.55 77 626 485 183 2.76 117 678 763 173 4.47 76 643 606 161 3.88 87 495 652 146 4.59 78 488 428 137 3.110 91 528 612 136 4.511 76 636 543 136 4.012 75 552 556 135 4.113 51 287 289 92 3.114 43 407 338 88 3.815 50 381 376 84 4.516 38 343 245 92 2.717 42 316 346 87 4.018 55 277 441 80 5.519 30 273 308 63 4.920 41 278 273 68 4.021 25 98 213 37 5.822 22 182 184 41 4.5X 60 371 697 155 4.5Total 1638 11357 11362 2975 3.8Table 4.2: Breakdown showing the number of markers on the radiation hybrid frame-work and placementmaps, and the estimated physical size of a centiRay, by chromosome.Physical lengths are calculated as proportional fractions of a 3,000 Mb genome (minus25 Mb for the Y chromosome). The RH map lengths exclude the size of large intervalsat the centromere.
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156 Building Human Genome Maps with Radiation Hybridsholes in any of the framework maps. (However, it is possible that the frameworks mighthave incomplete coverage of the centromeres or telomeres. The issue of gaps at thecentromeres is of independent interest and is discussed below.)Measuring the accuracy of the maps is di�cult, since there is no known correct map towhich we can appeal. However, we have validated our maps and our methods in severalways. First we veri�ed that our map construction methods can be used successfullyon simulated data, as reported Section 4.6.5. One way of estimating accuracy is tocompare our maps to di�erent maps of the same regions. Constructing the integratedmap described below facilitated such comparisons. Across the entire genome we foundonly four con
icts between the initial RH framework and the Genethon genetic linkagemap; each con
ict consists of two markers that are at most 3 Mb apart.Furthermore, chromosomal assignment by RH linkage appears to be extremely accu-rate. Of the 5,134 markers also assigned by other methods, we found only 31 discrepan-cies between the assignment due to RH linkage and that derived from another method.In most of these cases, experimental veri�cation con�rmed the RH linkage assignment.In the remaining few cases, we suspect that DNA repeats are to blame.Centromeric RetentionWe have noticed two phenomena that occur at the centromeres of most chromosomes.First, markers near the centromeres tend to have a higher retention rate than markersfrom elsewhere along the chromosome. This �nding has previously been noted by otherresearchers [63, 111]. Second, we see very low pairwise linkage between markers onopposite sides of the centromere whose genetic map positions are only a few cM apart(so that we would expect to see signi�cant RH linkage).We believe that the high retention rate at the centromeres is related to the fact thatfragments can be retained by the hybrid cell in two di�erent ways. Walter, et al. [111]have observed by 
uorescence in situ hybridization (FISH) that some human DNA frag-ments become integrated into existing hamster chromosomes in the hybrid cells, while



4.7 Results 157other fragments join together to form entirely new chromosomes. Our hypothesis is thatcentromeric fragments are more likely than other fragments to be retained in this latterform, since the centromere confers stability on the nascent chromosome. However, it ispossible for a centromeric fragment to be incorporated into a hybrid chromosome as well,provided that the centromeric sequence is inactivated so that it no longer functions as acentromere. (A chromosome with two centromeres cannot reproduce properly during mi-tosis and thus would be unstable.) One could use FISH to 
ag markers near centromeresand determine whether they are retained exclusively as independent chromosomes, orwhether they also appear in hybrid human/hamster chromosomes.The phenomenon of low linkage across centromeres may be explained in several ways.One is that the probability of a radiation-induced break might be extremely high at thecentromere. If this were the case, nearby markers on opposite sides of the centromerewould be retained independently in almost all hybrids, yielding the low pairwise linkagethat we see.Another possibility is that the gaps at the centromeres of our radiation hybrid mapsmight be real. It is known [78] that there is a low rate of recombination near thecentromeres, so the genetic map distances in the region may correspond to much largerphysical distances than expected. Thus two markers near the centromere that are 3cM apart on the genetic map might be be separated by 10 Mb on the physical map, sothe pairwise RH linkage between them would be rather low. It is also known that thecentromeric region contains relatively few genes. The region may be similarly biasedagainst the selection of random markers. Thus our di�culty in seeing linkage across thecentromere might be exacerbated by the fact that we rarely �nd usable markers withina few megabases of the centromere.One way to test this hypothesis is to try speci�cally to generate several markers inthe centromere itself, as James' group did with microsatellite markers on Chromosome11 [63]. One could then test to see whether satellite markers from opposite sides of thecentromere show linkage to one another or not. If the centromere is just a region with



158 Building Human Genome Maps with Radiation Hybridslow density of the sort of markers used in our map, it ought to be possible to build amap of tightly-linked microsatellite markers spanning the centromere. However, if thereis some particular point in the centromere with an unusually high break probability,that break point would appear even in a map of intra-centromeric markers.A �nal possibility has to do with high centromeric retention rates. James' studyof chromosome 11 [63] showed that the retention frequencies of several markers nearthe centromere were higher than 60%. It is possible that for markers right near thecentromere, the retention rates are so high that the hybrid screening vectors are rejectedby our database software. (Very few markers with retention rates greater than 65%are accepted, since such retention patterns can be indicative of DNA repeats or ofindiscriminate probes that hybridize to nearly everything.) To test this theory, onewould �nd markers known (by other mapping methods) to be near the centromere of aspeci�c chromosome, screen them against the hybrid panel, and examine their retentionfrequencies. If the retention frequencies are extremely high, one could then try to builda map spanning the centromeric region by adjusting the assumed retention frequency ofthe model.It is likely that some combination of high retention rates and low marker density nearthe centromeres is to blame, and that we will be able to map the centromeric regions bycompensating for these problems as described above. We hope to perform experimentsto resolve this issue shortly.E�ciencyA key issue in large-scale map construction is that of computational e�ciency. RHMAP-PER is designed for use on large data sets. The central function that evaluates the like-lihood of an order is highly optimized and scales linearly with the number of markers.The computation time required to evaluate a single group becomes noticeable only forfairly large groups (about 1 second for 70-80 markers on our DEC Alpha 3000 worksta-tion). However, for procedures like the ripple test that repeatedly evaluate orders, such



4.7 Results 159delays do add up. To build the initial 6,193-marker map, we attempted to place 6,608chromosomally-assigned markers onto a 1,339-marker framework spanning 23 chromo-somes. This task required about 8 hours of computation time. We ran such processesas batch jobs overnight and kept a log of their actions.Error Detection and CorrectionFinally, we have successfully implemented error detection and correction. We selectedabout 2,500 of the most egregious errors from a preliminary version of our genome-widemap4. Upon laboratory veri�cation of these assays, we found that 65.6% of RHMAP-PER's error predictions were con�rmed. Thus, it appears that despite some known 
awsin the model, the software can correctly identify a large proportion of laboratory errors.Such iterative error-detection and veri�cation is a crucial step towards re�ning the dataand ultimately perfecting the maps.Integrated MapThe resolution of radiation hybrid mapping can be controlled by adjusting the amount ofradiation used to create the hybrid panel. In particular, the method can generate mapsintermediate in resolution between genetic linkage maps and �ne-grain STS content mapson YACs [35, 60]. Thus, radiation hybrid maps may provide the cohesion necessary forintegrating several di�erent types of mapping data.The radiation hybrid maps described here formed the basis for the construction ofa 15,086-marker integrated map described in Hudson, et al. [60], which has since beenexpanded to contain 20,186 markers. The integrated map shows the consistency of theRH map with other types of map data. For example, there are only four minor con-
icts between the RH framework and the Genethon genetic linkage map; the placementmap is overwhelmingly consistent with the genetic linkage map as well. The RH map4The 2,500 assays to verify were selected from about 500,000 assays used in that stage of mapconstruction, representing about 0.5% of the total.



160 Building Human Genome Maps with Radiation Hybridsprovides a sca�old for incorporating the �ne-ordered STS-content map data on YACswhile highlighting many of the YAC errors. For example, chimeric clones are quite vis-ible when the YACs are anchored to a substantially-correct large-scale map. Thus, theRH map has enabled the construction of a large-scale integrated map with estimatedYAC coverage of 94% of the genome. Based on the low frequency of signi�cant con
ictsbetween maps, we estimate that perhaps 0.5% of the loci on the integrated map may besigni�cantly misplaced.Part of the integrated map of chromosome 18q is shown in Figure 4.13. The longvertical lines represent the di�erent types of maps; the STS-content map is representedtwice (on the outside columns) and is compared with the Genethon genetic linkage mapand with our radiation hybrid map. Note that while there are a few con
icts betweenthe genetic and radiation hybrid maps (seen as crossed lines in the middle of the �vecolumns connecting the maps), there are no crosses involving two framework markers(whose names appear in boldface). The three maps appear overwhelmingly consistent.4.8 ConclusionsIn this chapter we have chronicled our experiences in building the �rst human genome-wide radiation hybrid maps. In addition to providing a clear contribution to the �eldof genetics, this project has been a successful experiment in drawing conclusions fromimperfect data. The hidden Markov model, a theoretical model representing our un-certainty about the data, played an essential role in the mapping process. However,the model alone was insu�cient for �nding correct maps quickly. Ultimately, employinga combination of theoretical modeling and practical engineering techniques enabled usto achieve our goals. This union of the theoretical and the practical is likely to be ane�ective paradigm for solving future problems of learning from imperfect data.
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Glossary
base One of the individual components (A,C,T,G) of a DNA strand. Also used as ameasure of physical distance; larger distances are measured in kilobases (kb) ormegabases (Mb). See page 104.centromere A unique region of each chromosome (often found in the center) crucial toaccurate DNA replication and separation in cell division. See page 146.chimeric clone A clone that picks up DNA from two or more regions of the genome,instead of only one. See page 113.chromosome A linear arrangement of DNA, found inside a cell, that carries geneticinformation. See page 104.co-retention The correlation between the retention patterns of two markers. See page108.diploid An organism having two copies of each chromosome in each cell. See page 110.DNA Deoxyribonucleic acid. The basic genetic material. Long DNA molecules, formedof two complementary strands twisted together in a double helix, encode genes andother regulatory information. See page 104.framework map A sparse, accurate map in which all markers are placed with highcon�dence. See page 107.gene A substring of a DNA strand that encodes hereditary information. See page 104.genetic algorithm A combinatorial optimization technique meant to simulate naturalselection in evolution. A \population" of hypotheses is chosen, recombined insome way to produce \o�spring," and then the population in each generation is163



164 Glossarywhittled down to contain only the hypotheses that are most \�t" according tosome selection criterion (the optimization function). In our case, each hypothesisis an order of the markers, and the optimization function is the likelihood of thebest map corresponding to that marker order. See page 125.genome The entire genetic complement of an organism (e.g., human). See page 104.haploid An organism having one copy of each chromosome in each cell. See page 110.hybrid One hybrid cell line in a radiation hybrid panel. See page 108.likelihood The probability of seeing the observed data, given a map consisting of anordered list of markers and the distances between them. See page 116.lod score The log of the likelihood ratio between two maps. For example, the lod scorecomparing map M1 to map M2 is log10[Pr(DjM1)=Pr(DjM2)]: See page 116.marker A landmark in a genome map. Markers may be genes, expressed regions ofgenes, or random sequenced strings of DNA. See page 105.nucleotide One of the individual letters (A,C,T,G) of a DNA strand; a molecule com-prised of one of four possible nitrogen bases attached to a sugar-phosphate group.See page 104.pairwise lod score The lod score comparing two maps, each consisting of two markers:one with the two separated by the optimal distance �opt, and the other placing thetwo markers in�nitely far apart (� = 1). See page 116.physical map A map showing the relative locations of and distances between markersalong a chromosome. See page 105.placement map A map with markers placed into bins or intervals in a framework map.See page 107.radiation hybrid panel A collection of several radiation hybrid cell lines. Each hybridcontains a di�erent random subset of human DNA fragments. See page 108.retention frequency The probability that a DNA fragment is retained by a hybrid.See page 119.simulated annealing A combinatorial optimization technique based on random 
uc-tuations. A \temperature" variable controls the probability of moving to a less-optimal state with respect to the optimization function. At high temperatures thesystem moves around randomly and may frequently move to less-optimal states;at low temperatures, few moves are made unless they improve the value of theoptimization function. If the system starts at a high enough temperature and is\cooled" slowly enough, it is guaranteed to converge to the global optimum. For



Glossary 165many applications it is impractical to cool slowly enough, so the method oftenconverges to local optima. See page 125.STS Sequence-tagged site. A DNA marker used as a landmark in map construction.See page 114.STS-content mapping A marker-based mapping technique in which STSs (markers)are screened against YAC clones. See page 114.yeast-arti�cial chromosome (YAC) A type of clone suitable for large-scale map-ping. See page 113.
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