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Abstract—The FRaC anomaly detection algorithm has
been previously used to identify anomalous mRNA expres-
sion patterns, and has served as the core of an approach
that characterizes individual anomalies by identifying dys-
regulated molecular functions. However, FRaC operates
by training supervised models for each feature in a data
set. Thus, scaling to substantially larger data sets, such as
those reflecting common sequence variants, would require
prohibitive amounts of computation time and memory.
Additionally, although FRaC is designed to be relatively
robust to irrelevant variables, it is not perfectly so; due
to the low sample sizes and large number of variables in
molecular data sets, substantially increasing the number of
features beyond those in gene expression data sets raises
the possibility of overwhelming the signal with noise. In this
paper, we examine the scalability of FRaC variants using
different feature reduction methods. We demonstrate that
it is possible to preserve the anomaly detection accuracy of
the original FRaC algorithm while requiring considerably
fewer computational resources, allowing these methods to
scale to handle other types of genomic data.

I. INTRODUCTION

Recent rapid technological advances have increased
the prospects for precision medicine, allowing us to tailor
medical care to individual patients or patient groups
based on underlying molecular patterns. This problem
is well-suited to the machine learning framework of
anomaly detection (1), in which predictive models are
trained on a population of either all normal or mostly
normal samples, and new samples are then individually
compared to this population to identify abnormalities
or outliers. Anomaly detection has great potential for
precision medicine applications. It can be used to detect
and explain rare medical abnormalities, such as obscure
genetic diseases, or to characterize specific instances
of molecularly heterogeneous disorders (2), for which
assembling a homogeneous data set may be challenging.

However, finding anomaly detection methods that
handle tasks of the size of most genomic classifica-
tion problems is not trivial. Among other concerns,
the chosen methods need to be relatively robust to
irrelevant variables, given that the majority of features
in most genomic data sets are likely to be irrelevant to

the chosen phenotype. The interpretability of anomaly
detection algorithms is also important. It is not enough
to determine that a sample is anomalous; we also want
to derive a molecular characterization of that specific
anomaly to yield insight into the nature of an individual
patient’s condition.

In previous work, we developed Feature Regression
and Classification (FRaC), a robust feature prediction
approach for the anomaly detection problem (3), and
we showed that it is more robust to irrelevant variables
(4) than top competing methods such as local outlier
factor (5) or one-class support vector machines (6). We
then used FRaC as a component of CSAX, a method
for identifying and interpreting anomalies in individual
gene expression samples (7). We applied this approach
to a collection of 28 public gene expression data sets,
which we refer to here as the “CSAX compendium.”
These data sets generally suffer from two characteristics
that negatively impact their amenability to learning: high
dimensionality and low sample sizes. For example, while
the classical machine learning data sets in the UCI
repository (8) typically have hundreds to hundreds of
thousands of samples yet fewer than 1,000 features, the
data sets in the CSAX compendium typically have at
most a few hundred samples and from a few thousand
to over 50,000 features.

Most anomaly detection methods struggle in such
cases. Theoretically, all of these problems could be
intractable: if an anomaly is only marked by abnormal
expression of a single gene, no computational method
could ever distinguish that signal from noise. Fortunately,
most phenotypes of interest involve large numbers of
related genes. In our previous work, we demonstrated
that anomaly detection difficulty is to a large degree
an inherent characteristic of the data set, reflecting the
number of and relationships between relevant features,
regardless of the computational method used. We also
demonstrated that FRaC and CSAX perform well on
many data sets in the CSAX compendium, and that they
are on average more effective than prior methods, which
appear to be more susceptible to the effects of irrelevant



variables.
Although FRaC and CSAX work relatively well, they

are computationally slow, because a FRaC predictive
model is constructed for each of the features as a
function of all others, and CSAX includes bootstrapping
over multiple FRaC runs. Parallelization can help, but the
overall commitment in CPU time and memory usage is
still substantial. While the problem is tractable for data
sets the size of those in the CSAX compendium, scaling
to much larger problems will require better methods.

With the advent of high-throughput genotyping and
the decreased cost of sequencing, however, we have
reason to try to solve this problem. It has been pos-
tulated that a similar anomaly detection approach using
genotype data, in which one tries to find relationships
between multiple common sequence variants that dis-
tinguish individual patients from the healthy normal
population, might be a valuable approach to understand-
ing the heterogeneity of complex diseases. Such an
approach has potential not only to detect novel genotypic
abnormalities as a diagnostic tool, but also to identify the
underlying molecular causes of disease susceptibility.

But genotyping data sets measuring common single
nucleotide polymorphisms (SNPs) are different from
the real-valued expression data sets. Each variable is
typically a ternary categorical variable (a site is either
heterozygous, or homozygous for either the major or
minor allele). Genotyping arrays commonly include half
a million or more features, and high throughput se-
quencing now allows genotyping essentially all common
variants. (Note that rare variants are less useful in an
anomaly detection context, because a rare variant, even
an irrelevant one, will always appear to be anomalous.)

In this paper, we focus on scalability for both gene
expression data sets from the CSAX compendium and
on two public SNP data sets. Specifically, we address
the issues of computation time and sample complexity.

In FRaC, a model is trained for each feature, using
every other feature as input. Previous work has seen
most success using support vector machines (SVMs) as
the underlying model, likely because they are efficiently
trainable and through regularization can mitigate the
impact of overfitting. However, with the small sample
sizes in many biomedical experiments, the time cost of
training hundreds of thousands of SVMs is substantial,
and the memory requirement is also prohibitive. Further-
more, even with regularization, it is far too easy for even
a linear SVM to overfit on these data sets.

Specific to discrete data is the issue of representation.
Many modeling techniques, such as SVMs, assume con-
tinuous data, and exactly how to represent discrete data
in order to use the modeling techniques is a matter of
some debate. We avoid this issue by modeling discrete
features using decision trees. We further convert the

ternary SNP features to binary vectors as described
below.

An additional issue with the FRaC algorithm is that
while some patterns in data may be obvious, others may
be subtle. For instance, it may be that gene A is promoted
by gene B and less strongly by gene C. It may be that
the action of C is masked by that of B, so for instance
a decision tree may fail to identify this relationship.
As a result, if this relationship is violated in abnormal
specimens, the breakdown may go undetected. FRaC,
running on a data set with so many irrelevant variables,
may miss the impact of the weaker predictor entirely.

In this paper, we discuss techniques that filter and
project a data set in various ways to produce simpler
learning problems that are more efficiently computable
and less susceptible to overfitting. We use randomization
to solve reduced problems, which partially addresses the
issue of subtle patterns being masked by stronger ones.

A. Background

1) The FRaC Algorithm: FRaC works by computing
an anomaly criterion known as normalized surprisal
(NS). The NS score is an information-theoretic measure
of the amount of information carried by by each feature
of a data point, conditioned on the other features.

The FRaC algorithm is defined to work on data that
is real, categorical, or mixed. For a data point x of f
features, the normalized surprisal NS(~x)

.
=

f∑
i=1

p∑
j=1

{
~xi defined : - log (P(~xi|pij(~x1,...,i−1,i+1,...,f )))−H(fi)
otherwise : 0

Here P(~xi|pij(~x1,...,i−1,i+1,...,f )) is the probability
of having true feature value ~xi given the prediction
produced by predictor pij given ~x1, . . . , ~xi−1, ~xi+1, ~xf ,
and H(fi) is the entropy of feature i (as calculated using
the training set).

Predictors can be any supervised learning algorithm,
and probabilities are estimated with error models, which
in the discrete case are confusion matrices, and in
the continuous case are density function estimators
for the probability density function given by ~xi −
pij(~x1, . . . , ~xi−1, ~xi+1, ~xf ).

In order to train error models, k-fold cross validation
is used, and predictions on the holdout fold, paired with
the true value, are used to construct error models. Then,
the entire data set is used to train predictors.

In this paper, all continuous features are learned with
linear support vector machines. This choice was made
because the SVM is a regularized model, and the linear
SVM has a particular constrained hypothesis class. As
such, although this model is only able to learn linear
functions, it is not highly susceptible to overfitting. This
is extremely important in learning high dimensional data



with small sample sizes. Error models simply fit a Gaus-
sian to the error distribution, as again there is insufficient
data to accurately learn a more detailed model. Finally,
categorical features are learned using decision trees, and
their error models are simply confusion matrices.

For the data sets we consider here, where anomaly
detection problems are built from standard classification
problems, we in fact do know the right answers. We can
therefore train our models on a training set consisting
solely of control samples, and compute surprisal scores
on samples in a test set consisting of both control and
anomalous samples. We can then evaluate the perfor-
mance of anomaly detection methods by computing the
AUC (area under the Receiver Operating Curve (9)), by
ranking the anomaly scores of anomalous and control
samples in the test set, as in the FRaC and CSAX papers.

Because Normalized Surprisal is a giant sum, FRaC
is highly parallelizable. On the other hand, due to cross-
validation, each component of the sum requires the
training of multiple models, so computing the entire
sum is computationally intensive. In this paper, we
focus primarily on techniques that modify exactly what
is computed in ways that don’t negatively impact the
accuracy of the technique, while improving time and
memory efficiency.

2) The Johnson-Lindenstrauss Lemma: The Johnson-
Lindenstrauss (JL) transform is a technique by which a
point set can be projected into a low-dimensional space
while preserving key properties of the original space
(10). Using the ε-δ formulation of the transformation,
described below, the JL transform is independent of
the training set, and thus doesn’t risk preferentially
destroying the very signal FRaC detects, as might a data-
dependent transform such as PCA.

In (11), the authors give an algorithm for a storage-
and computation-efficient dimensionality-reducing
Johnson-Lindenstrauss transformation. In (12), the
authors show that, like distances, dot products are
approximately preserved by Johnson Lindenstrauss
transformations.

The Johnson-Lindenstrauss lemma proves that these
distance guarantees hold. Specifically, it states that, given
n points, there exists a projection into k-dimensional
space such that the square Euclidean distance between
any two points is perturbed by a factor no less that 1− ε
and no greater than 1+ε, so long as the following holds:

k ≥ 4 ln(n)

ε2/2− ε3/3

This formulation is actually much stronger than we
need. We really don’t need every pair of points to have
their distances preserved: it suffices to have most dis-
tances preserved. But given this strong distance preser-
vation property, it is reasonable to assume that if learning

is possible in the unprojected space, it will be almost as
effective in the projected space.

The distributional form of the lemma gives the guar-
antee that the distance between any two points is simi-
larly constrained with probability 1 − δ, so long as the
following holds:

k ≥
ln
(
2
δ

)
ε2/2− ε3/3

The distribution from which the JL transform is drawn
may then be a k×d matrix where all entries are Gaussian
distributed or Uniform(−1, 1) distributed.

We will therefore investigate whether using the JL
transform to reduce the dimensionality of the anomaly
detection problem allows us to preserve the accuracy
of an anomaly detection algorithm while reducing the
computational resources needed.

Note that, perhaps counterintuitively, neither formula-
tion of the JL lemma depends on the input dimension.
Consider that you can rotate n points in any dimensional
space into n−1 dimensional space. With this in mind, it
should not be surprising that the JL lemma is dependent
on the original number of points rather than the original
dimension. The probabilistic version of the formula
doesn’t even depend on n, because it is just a statement
about the fraction of point pairs that have their distance
preserved.

II. SCALABLE FRAC VARIANTS

Here we describe several techniques, including one
using the above lemma, for reducing the magnitude of
the FRaC learning problem. A graphical overview of
several filtering techniques is given in Figure 1.

A. Filtering

Filtering techniques can be divided into full filtering
and partial filtering. The former is a computationally
efficient but heavily lossy technique; the latter, a slower
but less lossy technique. Filter techniques identify some
property of each feature, rank the features by this prop-
erty, and remove some features from consideration. In
full filtering at a percentage p, p of these features are kept
while the rest are removed entirely, and the technique
simply runs ordinary FRaC on the remaining features.
In partial filtering, these 1 − p features aren’t removed,
but we do not construct predictive models for the filtered
features. However, these features are used to construct
models to predict non-filtered features.

In this manuscript, we evaluate simple random filter-
ing, in which we remove features from the data set at
random. For expression data sets, we know that there is
likely to be enough correlation between expression of



Predictors

0 1 2 3 4 5 6 7
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Filtering: features {2, 4, 7}.

Predictors
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Partial Filtering: features {1, 3, 5, 7}.
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Features

Diverse FRaC, p = 1
3 .

Fig. 1. Graphical depiction of FRaC variants. In this example with eight features, predictors for a subset of the features are trained on the
whole feature space except for the target feature (partial filtering), or on the chosen subset of the feature space except for the target feature (full
filtering). Diverse FRaC chooses both target features and the training features randomly. Lines in the figure indicate that a feature is considered
by a predictor.

different genes that random filtering is likely to be ef-
fective. This is not as obvious for the genotype data, but
these data sets may contain enough signal redundancy
to allow random models to preserve anomaly detection
accuracy. We considered random partial filtering as well,
but we do not present results based on this approach here
because our initial experiments found this approach to
be inferior to full filtering.

There are many possible ways, other than random
selection, to choose features for filtering. Entropy fil-
tering, where one ranks features by information content
and keeps only the highest entropy features, is one such
method. For nominal features with values v1, . . . , vk
we estimate the likelihood of each vi, pr(vi), from
its frequency fi in the training set, and define entropy
as

∑k
i=1 −pr(vk) log(pr(vk)). For continuous features

distributed with density f(x), the differential entropy is
defined as −

∫∞
−∞ f(x) log(f(x)) dx. We estimate this

value by fitting a Gaussian kernel density estimator (13)
to the feature values over the training set, and computing
the differential entropy of f̂(x). Removing low entropy
features may be useful because these features are less
interesting, particularly in the discrete case, where the
features may be highly predictable but have low surprisal
if they are not relevant to the anomaly of interest. Such
features mostly contribute noise to the FRaC algorithm,
so removing them may improve performance.

B. Diverse FRaC

Similar to the filtering techniques, the Diverse FRaC
technique is intended to simplify each learning problem
by learning each feature on a subset of the remaining

features. Specifically, for some probability p, at feature
i, each feature j 6= i is selected with probability p. Then,
a predictor for i is trained using only the features that
were selected.

This approach may combine some of the potential
strengths of partial filtering and full filtering, as Fig-
ure 1 illustrates. Furthermore, in addition to addressing
the computational issue with respect to memory and
time costs, this technique also addresses the sample
complexity issue, as learning in the reduced spaces is
less prone to overfitting. Notably, it also allows subtle
patterns to be detected over stronger, particularly when
features necessary to learn stronger patterns are absent.
This addresses the issue cited in the introduction where
a pattern is not learned due to the presence of a stronger
patter. To further detect these sorts of patterns, we can
train multiple predictors for each feature, each utilizing
a different feature subset, though this increases the
computational cost of the technique.

C. Ensembles

As mentioned earlier, the normalized surprisal score
for a sample is simply the summation of the surprisal
scores for all its terms. This makes implementing en-
sembles of FRaCs very easy - one simply sums all the
normalized surprisal scores over all the members of the
ensemble. If multiple members of the ensemble have a
score for one feature, one can simply combine them by
taking the median score for that feature. Ensembles of
multiple random full filtered or diverse FRaC models can
greatly increase the stability of results.



Feature Schema: R R R R {0,1,2} {0,1,2,3}
Data: 3.4 0 −2 0.6 1 2

1-Hot Transform: — — — — 〈0,1,0〉 〈0,0,1,0〉

Vector Concatenation: 〈3.4, 0,−2, 0.6, 0, 1, 0, 0, 0, 1, 0〉
JL-transform: Apply 11× 4 random linear transform.
Possible Result: 〈2.5,−3, 1.05,−2.73〉

Fig. 2. Illustration of the 1-hot transform, vector concatenation, and
JL transformation preprocessing steps.

D. Preprojection

In this technique, we take a data set that may include
categorical variables and convert it to an entirely real
data set. This is accomplished by converting categorical
k-ary features to 1-hot1 vectors, and concatenating all of
these vectors with a vector representing any real features.
We then apply the JL transform to the entire data set,
reducing it to a low-dimensional space, and then perform
ordinary FRaC in the projected space. The process is
illustrated in Figure 2.

This projection addresses all three issues discussed in
the introduction: clearly computation time will be sub-
stantially improved, as we train fewer models in simpler
spaces. The approach also aids in sample complexity,
as low-dimensional models are less prone to overfitting.
Lastly, by performing this projection, we end up posing
a large number of similar regression problems, some of
which may be dominated by strong relationships and
others of which rely on weaker relationships.

Let us first discuss the interpretation of this technique
over real data sets with linear regressors. After perform-
ing the projection, each feature is a linear combination
of other features. The task is thus to learn a sum of
functions, given a feature space such that each feature is
a also a linear combination of features from the original
space. Of course, the very features we are trying to learn
may also be components of the features from which
we are learning, but so long as no linear combination
of features exactly matches the linear combination of
features we are trying to learn, we still must learn
something for each combination feature.

The same interpretation applies to nonlinear regression
techniques, except the linear combinations interpretation
is somewhat less relevant.

The interpretation for discrete data sets is a bit more
subtle. Each feature in the input space corresponds to one
class of one discrete feature, and features in the projected
space now represents sums of these input features.

1A 1-hot vector for a categorical feature over k categories is a k
dimensional vector, where category j maps to a vector ~v such that
~vj = 1 and ~vl = 0 for any l 6= j. For example, categories 1 and 3
out of {1, 2, 3} would map to 〈1, 0, 0〉 and 〈0, 0, 1〉, respectively.

TABLE I
Number of features, normal samples, and anomaly samples for each

data set.

data set features normal anomaly
breast.basal 3167 56 19
biomarkers 19739 74 53
ethnic 19739 95 96
bild 20607 48 7
smokers2 19739 40 39
hematopoiesis 13322 97 91
autism 7267 317 228
schizophrenia 171763 280 54

One attractive property of the preprojection technique
is that it is very likely that there is something to learn in
each of the projected features. With the original FRaC
algorithm, it is easy for some features to be unlearnable
from the remaining features. In that case, unless the
target features are uniformly distributed in the training
data2, each such feature adds only noise to the NS score.
When a substantial number of these features exist, as
seems likely in many biological data sets, this noise may
degrade the performance of FRaC. However, because
projected FRaC features are linear combinations of the
original features, it is unlikely that any projected feature
is unlearnable, so this issue may be mitigated.

One issue with JL preprocessing is that it becomes
more difficult to identify relevant features and feature
relationships. We can however examine the output in
aggregate, and it may be possible to identify input
features that are present in many of the highly predictive
projected features.

III. EXPERIMENTS

A. Data Sets

We present results from six expression data sets and
two SNP datsets. The expression data sets are taken
from the CSAX compendium (7), and were selected
for being relatively predictable (FRaC AUCs above
approximately 0.6) and for having a range of feature and
sample sizes. One important conclusion from the original
FRaC and CSAX papers was that the difficulty of an
anomaly detection task is an inherent property of the
data set; performance of all anomaly detection methods
was highly correlated across different data sets, which
can be either ”easy” (no matter how you look at them,
the anomalous samples stand out), or ”hard” (there is
little or no signal in the data with which to predict which
samples are anomalous). We therefore selected data sets
for this study that appeared to range from “feasible” to

2Note that features that are uniformly distributed over the training set
and are predicted uniformly given any true label make no contribution
to NS, as the surprisal values are always equal to the entropy value,
thus subtractively cancelling.



“easy,” and augmented them with two SNP data sets. We
chose publicly available anonymized SNP data to avoid
human subjects concerns.

Three of the expression data sets - biomarkers (14),
ethnic (15; 16; 17; 18; 19; 20; 21), and breast.basal (22)
- were used for initial methods development, while the
other three - bild (23), smokers2 (24), and hematopoiesis
(25) - were brought in later.

The first SNP data set is a subset of an autism data
set from GEO, GSE6754 (26). This is a small SNP data
set, with only 7267 features, so it was possible to run
FRaC on the entire data set. However, likely because of
the complexity of the molecular causes of autism, FRaC
has no predictive power on even the full data set (mean
AUC of 0.50), so insights gained here are mainly to do
with how much time improvement we can expect without
making things worse.

The second SNP data set is a schizophrenia data set
compiled from several different sources. The training
set consists of 270 normal HapMap (27) samples from
GSE5173 (28), while the test set consists of 10 normal
samples from GSE21597 (29) and 54 schizophrenic
samples from GSE12714 (30). This data set has 171763
features and is far too large to run in a reasonable amount
of time. Entropy filtering on this data set produced al-
most perfect results, with an AUC around 1.0. However,
given the difficulty of even diagnosing schizophrenia
with such accuracy, we don’t believe that the high AUC
represents true relationships between variants linked to
schizophrenia. Rather, we suspect that FRaC is instead
detecting differences in ancestry that are confounded
with disease status in this data set. Results from this
data set, therefore, though not necessarily biologically
informative, are useful for determining how to run such
algorithms on larger collections of genotyping data.
They also demonstrate that it is possible to identify
signals related to variation in SNP data sets by anomaly
detection methods.

For each data set except schizophrenia, we construct
five replicates. Each replicate consists of a training
set containing a randomly selected two-thirds of the
normal samples. The test set consists of the remaining
normal samples as well as all non-normal samples. The
schizophrenia data set consists of only a single replicate,
constructed as noted above.

B. Settings

In these experiments, we use Support Vector Machines
with a linear kernel for all six expression data sets,
exactly as in the original FRaC paper, and implemented
with libSVM (31). In initial experiments, SVMs did

not appear to work well on the discrete SNP data,
taking more time and space to compute while producing
less accurate anomaly scores compared to decision tree
models. Thus, for the SNP data sets, we train decision
trees as the predictive models, implemented with the
Waffles library (32).

1) Filtering and Filtering Ensembles: Initial exper-
iments with filtering revealed that partial filtering was
consistently worse than full filtering in time, space,
and AUC preservation across all data sets, so partial
filtering results are not presented here. Random selection
of filtered features proved to be the most effective
method, though entropy-based filtering methods proved
effective on some data sets. However, random filtering at
small values, though fast, is not particularly stable, and
results could vary wildly depending on exactly which
features were kept. On some data sets, AUCs fell within
an absolute range of up to .2, even within the same
replicate. To remove this source of variability, we moved
to ensembles of full filtered FRaC, in which FRaC was
run 10 times at a filtering value of .05 (5% of features
kept). Each sample’s final NS score is simply the median
of all NS scores generated by members of the ensemble.
Entropy filtering results for p = .05 are also presented.

2) Diverse: Diverse FRaC was run with p = 1
2 .

This value was selected as it halves the size of each
learning problem, resulting in substantially less memory
and computation time use.

We also ran experiments with ensembles of diverse
FRaC. In these experiments, we ran 10 instances of
diverse FRaC with p = 1

20 in order to fairly compare
with the full filtering ensembles.

3) JL: The JL experiments were run with a projected
dimension of 1024. This number was selected as it is a
round number, results in a computationally efficient data
set reduction, and gives the probabilistic JL guarantee
with δ = 0.05 and ε = 0.057 (in other words, 19 of every
20 pairs of points have their square distance distorted by
a factor in [0.943, 1.057]).

For the schizophrenia data set, we ran additional
JL experiments with projected dimensions of 2048 and
4096.

IV. RESULTS AND DISCUSSION

In Table II, we report the results of running the
original FRaC algorithm on each of these data sets.
The table shows the mean and standard deviation of the
AUCs across five replicates of each method. We note that
the last row, in italics, represents only an estimate for the
full Schizophrenia data set. Based on the time required
for the small autism SNP data set, we extrapolated to
determine the expected running time and memory usage.

Tables III and IV show the results for the random
filtering ensembles, JL transform, entropy filtering, di-



TABLE II
Full run results, showing mean AUC, AUC standard deviation, CPU
time, and memory usage across all replicated for each data set. We

were not able to run full FRaC on the schizophrenia data set.
Therefore, time and memory performance for this data set were

estimated by extrapolation from the performance on the autism data.

data set AUC Time (h) Mem (GB)
breast.basal 0.73 (0.06) 1.02 4.59
biomarkers 0.88 (0.05) 58.21 152.54
ethnic 0.71 (0.03) 96.67 195.11
bild 0.84 (0.08) 36.51 106.59
smokers2 0.66 (0.04) 29.23 82.57
hematopoiesis 0.88 (0.02) 56.56 90.69
autism 0.50 (0.03) 188.40 3.39
schizophrenia N/A 44,000 148

Fig. 3. JL transform AUC performance on the schizophrenia data set
with various numbers of projected dimensions (d). Each data point is
the average AUC of ten different projections at a given (d), with error
bars representing standard deviation.

verse, and diverse ensemble FRaC algorithms on the six
expression data sets and the autism data set, presented
as a fraction of the full results from Table II. In other
words, we are no longer concerned with how well we
can do at anomaly detection, but how well we can do (or
how quickly we can do it) compared to running the full
method. Table V contains results for some methods on
the schizophrenia data set. Because we did not run the
original FRaC algorithm on the full data set, this table
contains raw AUCs, but fractional run time and memory
usages based on the estimates in Table II.

Surprisingly, we find that it is possible to perform
anomaly detection with essentially the same accuracy
as in the full runs, but much more quickly. We see in
the tables that on average, all four methods other than
entropy filtering have nearly identical performance to
running FRaC on the full data sets, but significantly
reduced time and memory usage. Entropy filtering is less
consistent; it works extremely well on some data sets but
quite poorly on others.

Across the six expression data sets, all four of the
non-entropy methods exhibit comparable levels of AUC
preservation. JL pre-projection seems to perform best in
both run time and memory usage. Its prediction accuracy
is also very good. However, the complex projected
models make it more difficult to tell which of the original
features are contributing to anomaly scores. This might
be acceptable for the simple anomaly detection task, but
in most biological applications, the goal is not only to
identify anomalous samples, but to identify the molec-
ular reasons that they are being considered anomalous.
Therefore, for the best interpretability, one should use
the random filter ensembles method, which still does a
good job of preserving accuracy while being nearly as
fast as the JL transform. Diverse filtering and diverse
ensembles, we found, also learn well, but are typically
too slow and memory intensive to use effectively on
larger data sets.

For the SNP data sets, our conclusions are a little less
clear. Random filter ensembles appear to perform as well
as full FRaC on the autism data set. On the other hand,
this is a famously genetically heterogeneous disorder, so
it is perhaps not surprising that the anomaly detection
task is essentially impossible (the full FRaC AUC hovers
around 0.50) to begin with. It seems unlikely that random
subsets could perform substantially worse than what is
already effectively random guessing. We therefore used
this data set primarily to estimate efficiency for the larger
SNP data set.

Our overall goal is to come up with recommendations
for scaling to discrete data sets. On the large schizophre-
nia data set, the true AUC, time, and memory usage
are unknown. Given the relatively high memory usage
for the diverse ensemble runs, we did not run these
on the schizophrenia data. However, we did try random
ensembles, entropy filtering, and the JL transform on the
schizophrenia data.

The JL experiments proved to be more variable than
expected on the discrete data, which might reflect the use
of decision trees rather than SVMs for the discrete data.
Initial results with 1024 dimensions suggested that there
was some signal (an AUC > 0.5) on this data set, but also
suggested that perhaps a larger number of dimensions
might be required to capture relevant patterns from
among so many features. As we increased the dimen-
sionality, we did indeed see better performance (Figure
3). Further experimentation will be required to determine
how to find the best tradeoff between AUC performance
and time/space requirements for future large SNP data
sets.

The poor performance of the JL preprocessing tech-
nique on the SNP data set, and to a lesser extent on
the autism data, may also indicate that this transform
is less effective for discrete data. The prediction task in



TABLE III
Results for the Random Filter Ensemble, JL Projection, and Entropy Filtering techniques. AUC, Computation time, and memory usage shown

as fractions of the full run utilization. Each quantity is reported as an average across five replicates, and the average across all data sets is
reported as well. Standard deviation for the AUC fraction is reported in parentheses.

Ensemble of Random Filtering JL Entropy Filtering
data set AUC % Time % Mem % AUC % Time % Mem % AUC % Time % Mem %
breast.basal 1.01 (0.03) 0.278 0.005 0.98 (0.02) 0.258 0.078 0.97 (0.06) 0.028 0.004
biomarkers 1.09 (0.05) 0.046 0.003 1.08 (0.02) 0.003 0.003 1.01 (0.06) 0.004 0.003
ethnic 0.90 (0.03) 0.057 0.003 0.87 (0.04) 0.003 0.003 0.79 (0.06) 0.004 0.003
bild 0.97 (0.05) 0.029 0.003 0.98 (0.05) 0.003 0.003 0.93 (0.09) 0.002 0.003
smokers2 1.11 (0.07) 0.058 0.003 1.10 (0.09) 0.002 0.003 0.95 (0.06) 0.003 0.003
hematopoiesis 1.02 (0.02) 0.050 0.003 1.05 (0.02) 0.006 0.007 1.07 (0.02) 0.005 0.003
autism 1.02 (0.06) 0.030 0.028 0.94 (0.05) 0.008 0.548 0.90 (0.06) 0.005 0.043
Avg 1.02 0.078 0.007 1.00 0.040 0.092 0.95 0.007 0.009

TABLE IV
Results for the Diverse and Diverse Ensemble methods. Information is presented as in Table III.

Diverse Diverse Ensemble
data set AUC % Time % Mem % AUC % Time % Mem %
breast.basal 0.99 (0.01) 0.455 1.123 0.99 (0.01) 0.597 0.395
biomarkers 1.09 (0.05) 0.355 0.521 1.09 (0.04) 0.402 0.510
ethnic 0.91 (0.04) 0.401 0.518 0.92 (0.04) 0.372 0.518
bild 0.96 (0.05) 0.547 0.531 0.94 (0.06) 0.533 0.534
smokers2 1.12 (0.09) 0.270 0.536 1.12 (0.08) 0.290 0.540
hematopoiesis 1.02 (0.02) 0.226 0.514 1.03 (0.01) 0.259 0.517
autism 0.97 (0.06) 0.166 0.744 1.02 (0.01) 0.099 0.786
Avg 1.01 0.346 0.641 1.02 0.365 0.543

TABLE V
Results for JL Pre-projection, random filtering ensembles, and
entropy filtering on the schizophrenia data set. Information is

presented as in Table III.

method AUC Time % Mem %
Entropy Filtering 1.00 (N/A) 0.004 0.017
Ensemble of Random Filtering 0.86 (0.01) 0.040 0.017
JL, 1024 comps 0.55 (0.08) 0.000 0.015
JL, 2048 comps 0.63 (0.09) 0.000 0.032
JL, 4096 comps 0.64 (0.08) 0.001 0.075

the transformed, discrete case is somewhat unusual, as
it is akin to predicting a weighted sum of feature values.
We may find success in future work by applying pre-
processing techniques tailored to preserve the structure
of discrete data. Additionally, using entropy-minimizing
decision trees in the transformed space may also have
negatively impacted performance, as this model is not
invariant under linear transformation. This suggests that
it is important to select a preprocessing technique that is
compatible with the learning models employed.

On the schizophrenia data set, entropy filtering at
5% of features had an AUC of 1.0, while keeping all
the performance benefits we see of random filtering.
Given the complexity of the schizophrenia diagnosis,
and the hybrid nature of the data set, we suspect that
the method is very accurately learning to distinguish
markers of ancestry or ethnicity in the control set from
ancestry in the affected patients, as they come from
different populations. Supporting this hypothesis, several

of the key features implicated in the entropy models
have allele frequencies that differ substantially across
the the HapMap populations. On the other hand, two of
the top 20 predictive SNP models for the single random
schizophrenia run (with an AUC of 0.86) are SNPs just
adjacent to the two genes PLXNA2 and GRIN2B, both
of which have been implicated in the disease (33; 34).
The hypergeometric probability of finding 2 out of the
top 100 known schizophrenia genes (35) by sampling
20 from a pool of 4173 (the number of SNP features
in our random models) is 0.011, suggesting that the
method does appear to be finding predictive SNPs and
SNP interactions on this data set.

For many data sets, random filtering is highly effec-
tive. This will likely be true in any case where there is
a strong and diffuse signal. So, for example, in data sets
measuring gene expression in cancer we would not be
surprised to see random filtering performing well. Such
data sets include breast.basal, which compares different
types of breast cancer, and biomarkers, which compares
ER positive and ER negative tumors. Smokers2, which
focuses on discriminating mucosal cells from current and
never-smokers, is again likely to contain a widespread
signal, so that random selection of features can be
expected to perform well, as observed.

For the hematopoiesis data set, which aims to iden-
tify blood cells of lymphoid origin from among those
with myeloid origins, entropy filtering is most effective.
Although the 20 most predictive genes in the random



filtering runs show borderline enrichment for T-cell
related functional processes (in DAVID (36), unadjusted
EASE scores below 0.05), there is a stronger single
using entropy filtering, where even the more cautious GO
enrichment tool (37) highlights leukocyte and immune
related processes as significant among the most predic-
tive genes. The most influential predictive gene models
for this data set include those for MAFB, a transcription
factor that plays a well-studied role in hematopoiesis
(38), and CCR6, a gene that regulates B cell maturation
(39).

Although entropy filtering found a strong signal in
schizophrenia and performed better than other methods
on the hematopoiesis data set, it was not a top performer
on any other data set. We therefore hesitate to recom-
mend it until we can predict on which data sets it will
be most helpful.

On some data sets (smokers2 and biomarkers), most
scalable FRaC variant techniques produce significantly
better AUCs than FRaC on the full data set is able to. On
these data sets, it may be the case that the trained FRaC
models are overfitting on the full data set. However, we
also note that our reported full results here, computed
from five replicates of the original FRaC algorithm, are
different from those reported in the CSAX paper, with
20 replicates and a larger fraction of the normal samples
used in the training set. The smokers and biomarkers data
sets have the lowest performance here as compared to the
performance reported in the CSAX paper. We therefore
suspect that the large improvement over full FRaC in
these cases is because our initial estimate of the full
performance is actually a bit low.

In conclusion, we have shown that in most cases,
running a reduced FRaC variant is as good as, or possibly
even better than, running the original FRaC algorithm.
As high dimensional data and low sample sizes are
common in precision medicine, it may be that this
insight could be of great value in other analysis tasks.
Furthermore, techniques such as the JL transform, and
the idea of examining random subsets of data (as with
features in diverse FRaC) are quite broadly applicable.
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