A Visual Language 6r Non-WIMP User Interfaces
Robert J.K. Jacob

Department of Electrical Engineering and Computer Science
Tufts Uniersity
Medford, Mass. 02155

Abstract

Unlike curent GUI or WIMP style interfaces, non-
WIMP user interfaces, sh@s virtual emironments, inolve
parallel, continuous inteactions with the useHowever,
most curent visual (and non-visual) langges for
describing human-computer intation ae based on
serial, discetg token-based models. This paper gduces
a visual languge for describing and pgramming the fine-
grained aspects of non-WIMP ingetion. It is based on the
notion that the essence of a non-WIMP diaie is a set of
continuous elationships, most of whicre tempoary. The
underlying model combines a data-flow or cosisit-like
component for the continuouslationships with anwent-
based component for digte inteactions, whib can
enable or disable individual continuouslationships. The
language thus sepates non-WIMP intexction into two
components, eac based on »asting visual languge
appmacdhes, and then prides a famavork for connecting
the two.

Intr oduction

“Non-WIMP” user interices preide “non-command,
parallel, continuous, multi-mode interaction—in contrast to
current GUI or WIMP (Vihdow, Icon, Menu, Pointer) style

interfaces [11]. This interaction style can be seen most

clearly in virtual reality intedces, bt its fundamental

characteristics are common to a more general class o

emeging usefcomputer ewronments, including e

types of @mes, musical accompaniment systems,
intelligent agent intedfces, interaote entertainment
media, pen-based intades, ge mwement-based

interfaces, and ubiquitous computing [18,24]. {fkbare a
higher dgree of interactity than preious interfices:
continuous input/outputxehanges occurring in parallel,
rather than one single-thread dialogue.

Most current (WIMP) user inteates are inherently
serial, turn-taking (“ping-pong style”) dialogues with a

This work was supported in part by Grant No. N00014-95-1-G014
from the Naval Reseach Laboratory to Tufts and by Grant No.
NO00014-95-1-1099 fsm the Office of Naal Reseach to Tufts. We
gratefully acknowledge their support.

single input/output stream. En where there are \s¥al
devices, the input is treated conceptually as a single
multiplexed stream, and interaction proceeds in half-
duple, alternating between user and comput#sers do
not, for ¢kample, meaningfully ma a mouse while typing
characters; thedo one at a time. Non-WIMP intexes are
instead characterized bgontinuousinteraction between
user and computer via \&al parallel, asynchronous
channels or daces.

Because interaction with such systems camdma the
users «isting skills for interacting with the realosld, they
offer the promise of inteatces that are easier to learn and to
use. Havever, they are currently making inteates more
difficult to huild. Advances in user intex€e design and
technology hee outpaced the admces in languages and
user interhce management systems and tools. The result is
that, today previous generation command language
interfaces can ne be specified and implementeary
effectively; current generation direct manipulation or
WIMP interfaces are ne moderately well sead by user
interface softvare tools; and theemeping concurrent,
continuous, multi-mode non-WIMP intedes are hardly
handled at all. Most of today’examples of non-WIMP
interfaces, such as virtual reality systemsyehaequired
considerable ad-hoc, Melevel programming approaches,
which, while \ery inventive, male these integces dificult
to develop, share, and reuse.

What is needed are languages for describing and
implementing these intex€es at a highenlel, closer to the
point of view of the user and the dialogue, rather than to the
exigencies of the implementation. This paper outlines a
visual language for describing and programming the fine-
grained aspects of non-WIMP interaction. It is based on the
notion that the essence of a non-WIMP dialogue is a set of
continuous relationships, most of which are tempoiésy
underlying model combines a datavfl@r constraint-lile
component for the continuous relationships with eene
based component for discrete interactions, which can
enable or disable inddual continuous relationships. It
separates non-WIMP interaction intoot@omponents, each
of which can gploit existing visual language approaches,
and preides a frameork for connecting the ta

Background A gquestion that arises is: Wltant the problem of user
interface design be sadd directly by visual programming
techniques? & example, wly is an interactie interfaice
builder, such as the NeXT Interfe Builder or Ysual Basic
not suficient? Such a solution auld handle the visual
layout of the objects in the megeneration user intexte,
but it would not address the problem of describingv ne
Interactive behaviors.

The main contribtion of this approach will thus be its
separation of non-WIMP interaction intodveomponents,
continuous and discrete, and its frawek for
communication between the dwspheres, rather than the
languages for describing the internals of theo tw
components themsals. The discrete component can use
variety of &isting techniques for describing discreteet
handlers. The continuous component is similar to a data- Languages for visual programming can beidtd into
flow graph or a set of oneay constraints between actual two catgories. In the first, the object being designed is itself
inputs and outputs. The model pides the ability to “re- @ static graphical object—a menu, a screen layout, an
wire” the graph from within the dialogue. Another goal is to€ngineering dnaing, a typeset report, a font of type. While
keep the model simple enough to ellwery fast run-time such objects are frequently programmed in symbolic
performance, with the ultimate purpose of supporting virtualanguages (forx&le, a picture might be programmed as
reality interfices directly a sequence of calls to Xlib graphics subroutines), tre
obvious candidates for a “what you see is what you get”
mode of visual programming. A programming/ieanment
for such a visual programming language need only simulate
the appearance of the final object andvpule direct
ags‘raphical commands for manipulating it. When the designer
is satisfied with its appearance, he or shesdt and has
thereby written a visual program. Such systems can combine
great paver with ease of use, because the visual
programming language empked is a natural ay to

Several researchers are using constraints for describindescribe the graphical object. It is so natural that the system
the continuous aspect of graphical indeds [8,9,19], and is often not considered a programming language
other recent wrk in 3D interfices uses similar continuous ervironment at all, bt simply a “what you see is what you
approaches [3,27]. Also addressing the description ofet” style of editar Unfortunately this approach is only
interfaces by continuous models, Mackinlagard, and possible where there can be a one-to-one correspondence
Robertson allude to xeressing intedce syntax as between a visual programming language and the static
connections between the ranges and domains of inputsual object being programmed.
devices and intermediate dees [21]. Levis, Koved, and
Ling have addressed non-WIMP intades with an e@g@ant
UIMS for virtual reality using concurrent vent-based
dialogues [20].

A variety of specification languages for describing WIMP
and other pndous generations of user intaces has been
developed, and user intede management systemsvéna
been hilt based up on them [22], using approaches such
BNF or other grammabased specifications [25], state
transition diagrams [23],vent handlers [12], declaragi
specifications [25], constraints [13], and others [10,26]
including visual languages [16].

A more dificult problem arises with the second cptey
of visual programming language. Here, visual programming
is used to represent something abstract, which doesvet ha
a direct graphical image—time sequence, hiesarch

While their focus is on widgets found in current WIMP conditional statements, frame-basedwklsaige. B provide
interfaces, Abwd [1] and Carr [4,5] both present visual programming languages for these objects, it is
specification languages that separate the discrete amécessary first to gisse suitable graphical representations or
continuous spheres along the same lines as this model. Botisual metaphors for them. Thevperful principle of “what
approaches support the separation of interaction intgou see is what you get” is not much help, since the objects
continuous and discrete as a natural and desirable model fare abstract. Applying the visual programming language
specifying modern interagg interfices. Carr prades an paradigm to these situations depends critically on choosing
expressie visual language for specifying this type of good representations.

beharior, - with different types of connections for Sequence or interagé behaior of a user intece—as

trlansnj[lt;mg Hlents o'rf'mll:.e cTanges. Al;md grondlelz; anth' opposed to layout—is just such a problem; we need/émin
elegant formal specilication fanguage Tor describing ISappropriate visual representations for it in order to use visual
type of behgior, and uses the specification of a slider as

ing. C t intaat ild lly handl
key example. He strongly emphasizes the falénce Ebrogrammmg urrent intexte ilders usually handle

) ; . behaior by providing a fixed set of predefined interaci
between discrete and continuous, which he caﬂ@teand behaiors. The are the d&miliar screen littons, sliders,
status, and aptly refers to temporargontinuous

lationshi snterstitial behaior. i ing in th scrollbars, and other commonly-used widgets. Their
re1ationships asnterstt enhaior, 1.e., occurmng I 1€ interactive behaiors hare been defined by the programmer
interstices between discretecats.

of the toolkit using a camrentional programming language;

the user intedce designer merely decidesere these to program (and, inatt, eerything in a typical digital
predefined objects should be placed on the screen. It ¢@mputer ultimately gets translated into something with
generally dificult or impossible for him or her to change those properties). But we see in the \aexamples that
their interactie behaiors or to create meobjects with n& events are the wrong model for describing some types of
behaiors within the toolkit intedice. Ne&t-generation interactions; thg are more perspicuously described by
interfaces will introduce ne objects with ne types of declaratve relationships among continuowsiables. Non-
interactve behaiors. The designer needs a scheme foWIMP interface styles tend to i@ more of these kinds of
designing and programming the actual, internal intemcti interactions.

behgnors. Such Ianguages may vyell be v_|suaI, a_nd the Therefore, we need to address the continuous aspect of
designer may use visual programming techniques with the[ﬁ]\e interbce aplicitly in our language. Continuous inputs

[16]. But they vt\)/llLl_rqumi _newtwsu_alt Iangl;a:ﬁesl, to dtes<f:rt|rl?e have often been treated by quantizing them into a stream of
sequence or bemar, not just a picture of the fayout ot the “change-alue” or “motion” e/ents and then handling them

screen or virtual erld. as discrete tans. Instead we ant to describe continuous
Underlying Properties of Non-WIMP Interac- user interaction as a first-class element of our language. W
tions describe these types of relationships with a data-giaph,
_) ~which connects continuous inpuanables to continuous

To develop a visual language for non-WIMP interaeti gppjication (semantic) data and, ultimatey continuous
beha/_lor, we t_herefore need to |de_nt|fy the_basm structure OButputs, through a netwk of functions and intermediate
such |nterac_:t|on as_the user sees it. Whgt is the essence of {B@iables. The result resembles a plugboard or wiring
sequence of interactions in a non-WIMP intexfe? V& posit diagram or a set of oneay constraints. It also supports
that it isa set of continuous relationships, most of which are parallel interaction implicitly because it is simply a
temporary. declaratve specification of a set of relationships that are in

For example, in a virtual erironment, a user may be able principle maintained simultaneous{vaintaining them all
to grasp, mee, and release an object. The hand position an@n & single processor within required time constraints is an
object position are thus related by a continuous functiofimportant issue for the implementationytbshould not
(say an identity mapping between theot®D positions)— appear at this el of the specification.)

but only while the user is grasping the object. Similarly Thjs |eads to a tarpart description of user interaction.
using a scrollbar in a ceantional graphical user intade, e part is a graph of functional relationships among
they coordinate of the mouse and thgiem of the file being continuous ariables. Only a fe of these relationships are
displayed are related by a continuous function (a Iinea{rypica"y active at one moment. The other part is a set of
scaling function, from 1D to 1D)ubonly while the mouse giscrete gent handlers. Thesevent handlers can, among
button is held dwn (after haing first been pressed within gther actions, cause specific continuous relationships to be
the scrollbar handle). The continuous relationship ceasestiated or deactated. A ley issue is he the continuous
when the user releases the moustton. and discrete domains are connected, since a modern user

Some continuous relationships are permanent. In #terface will typically use both. The most important
corventional plysical control panel, the rotational position connection in our model is theay in which discretevents
of each knob is permanently connected to soan@ble. In can actate or deactate the continuous relationships.
a flight simulatorthe position of the throttleer and the Purely discrete controls (such as pughins, toggle

setting of the throttle parameter are permanently connectédvitches, menu picks) also fit into this framuek. They are
by a continuous function. described by traditional discrete techniques, such as state

Th f th in@zés is. th ¢ of diagrams and are cered by the “discrete” part of our
€ essence of nese Inwuts 1, then, a Set O \hoqe| That part sees both to erage and diserzge the

continuous r'elat|onsh|ps some Of.Wh'Ch are permanent ar{vgontinuous relationships and to handle the truly discrete
some of which are eaged and diserged from time to interactions

time. These relationships accept continuous input from the - _ _ _

user and typically produce continuous responses or inputs to Our contritution, then, is a visual language thaitnbines
the system. The actions that egg or diserage them are data-flav or constraint-lile continuous relationships and
typically discrete inputs from the user (pressing a moustoken-based\ent handlers. Its goal is to igiate the tw

button over a widget, grasping an object). components and map closely to the userw of the fine-
. grained interaction in a non-WIMP intade. The basic
Toward a Visual Language model for it is:
Most current specification models are based oertslor « A set of continuous user intadeVariables, some of

events. Their top-dan, triggered quality mas them easy which are directly connected to inputvites, some to

outputs, some to application semantics.

Somehree base classes; subclassesvalle specifier to define

variables are also used for communication within theparticular kinds of Links, &tiables, and EantHandlers as
user interhce model (bt possibly between the needed. While Links andaviables are connected to each
continuous and discrete components), and, finallyother in a graph for input and output, yheomprise tw
some \ariables are simply interior nodes of the graphdisjoint trees for inheritance; this enhances thgressie

containing intermediate results.

¢ A set ofLinks, which contain functions that map from
continuous wriables to other continuousinables. A

power of the model.

The model preides for communication between its
discrete (eent handlers) and continuous (links and

link may be operate at all times or may be associatedvariables) portions in seral ways:

with aCondition, which allaws it to be turned on and
off in response to other user inputs. This ability to
enable and disable portions of the datavfiraph in
response to user inputs iseyKeature of the model.

¢ A set of EventHandlers, which respond to discrete
input events. The responses may include producing
outputs, setting syntacticdel variables, making
procedure calls to the application semantics, and
setting or clearing the Conditions, which are used to
enable and disable groups of Links.

The model is cast in an object-oriented framek. Link,
Variable, and EventHandler each hee a separate class
hierarcly. Their fundamental properties, along with the
basic operation of the sofare frameork (the user
interface management system) are encapsulated into the

TOOLS

VAR O [|

mousepos
LELE INPUT

O

value
SEM

mousetoval
DRAGGING

MOUSEDN

STATE

TRANS

A

-

Figure 1. Specification of a simple slider
the contin uous par t of the specification, using solid gre

Cond: Inside(mousepos,handlepos)

MOUSEUP

Communication from discrete to continuous occurs
through the setting and clearing@énditions, which
effectively re-wire the data-fle graph.

In some situations, there are analogue data coming in,
being processed, recognized, then turned into a
discrete gent. This is handled by a communication
path from continuous to discrete by allag a link to
generate tokns which are then processed by thengé
handlers. A link function might generate aeakin
response to one of its inputanables crossing a
threshold. Or it might generate a éskwhen some
complex function of its inputs becomes trueorF
example, if the inputs were all the parameters of the
users fingers, a link function might attempt to
recognize a particular hand posture and fire artok

handlepos
OUTPUT

valtoscrn
ALWAYS

, illustrating the fir st visual langua ge. The upper por tion of the figure sho ws
yovals to representv ariables, solid gre yrectanglesf or links,

and grey arrows for data flo ws. The lo wer por tion sho ws the e vent handler in the f orm of a state dia gram, with states

represented as cir cles and transitions as arr ows.

when it was recognized. language, using a static mockup of an editor for @. T
introduce them, we will use amample from a corentional
WIMP interface. In this a simplified slider widget, if the user

continuous and discrete components to set and tegfzsses_”th; r_nofus”euttpn iigvn on tr(‘f s:|derf ?r?ndle, the
arbitrary user intedice \ariables, which are accessible stiger will begin Tollowing they coordinate of In€ mouse,
scaled appropriatelyt will follow the mouse continuously

to both components. R X .

_ truncated to lie within theartical range of the slider area,

A further refinement >presses thevent handlers as directly setting its associated semanticele application

individual state transition diagrams, which alfoanother yariable as it mees.
method of bringing the continuous and discrete componentsW iav thi functional relationship bet
closer together conceptually and leads to an alternate form 3.‘”?"’ flti as a func Iodnti rela !Sns Ifthe vl\{zenhyhedl
of the visual language. Imagine that each state in the stsf[fgor matg otthe mo_ust,)el,- an d_e pozll 'on cih €S 'It.er tan €
transition diagram had an entire dataaflgraph associated Wwo continuous ariables (disrgarding their ultimate

with it. When the system enters a state, gibe eecuting Leallzatltl)r_l[s. in pIIE| umtts)l).dTh|ﬁ.IreIE'ﬂhUonshlp.|sdtemp_0rs’:1rt);1
that data-flaw graph and continues until it changes to owvever, It IS only enabled while the user is dragging the

another state. The state diagram can be&edeas a set of slider with the mouseutton davn. Therefore, we prade

transitions between whole datavflographs. W& hae event handlers to process thation-dovn and bitton-up
gvents that initiate and terminate the relationship. Those

events &ecute commands that enable and disable the
%ntinuous relationship.

« Finally, as with augmented transition netks and
other similar schemes, we pide the ability for

links in a data-flr graph by gplicit action. If we simply
associate such sets with states, we can automatically enals
and disable the links belonging to a state whenthat state Figure 1 shas the specification of this simple slider in
is entered ordted, as if we set and cleared the conditionsthe first \ersion of the visual language, with the upper
with explicit actions, yielding a particularly apt description portion of the screen stving the continuous portion of the
of moded continuous operations (such as grab, drag, amsgecification, using solid gyreovals to representaviables,
release). solid gre rectangles for links, and grearronvs for data
User I nterface Description Language flows. The Iayer portion'shvys the gent handler in thg form
of a state diagram, with states represented as circles and
We shoev the underlying model as baversions of a visual transitions as arwms; further details of this state diagram

TOOLS

VAR

@)

name MOUSEDN
Cond: Inside(mousepos,handlepos)

KIND

LINK

name
COND

- [Of+0 0 -]-0o] o0

value handlepos mousepos handlenos
valtoscrn value andiepo
SEM OUTPUT INPUT Mousetoval SEM valtosern - quTPUT

STATE

TRANS

A

-

Figure 2. The same slider as in Figure 1, illustrating the second ver sion of the visual langua ge. Here, the lar ge ovals
represent states, and the arr ows between them represent transitions. Eac h state contains a data-flo w graph sho wing
the data flo ws that are operational while the system is in that state

notation itself are found in [15,16]. Thisery simple long as the state diagram remains in this state, the
example illustrates the use of separate continuous amuousetoval link is enabled, and the mouse is connected to
discrete specifications and theyin which enabling and the slider handle, without the need forydarther eplicit
disabling of the continuous relationships \pdes the specification. TheMOUSEUP token will then trigger a
connection between the &ir'he continuous relationship is transition to the initial state, causing tieagging condition
divided into two parts. The relationship between the mousdo be disabled and hence thwusetoval relationship to
position and thealue variable in the application semantics cease being enforced automatica(ljhe condition names

is temporary while dragging; the relationship between like dragging provide a layer of indirection that is useful
value and the displayed slider handle is permanent. Becausghen a single condition controls a set of links; in this
value is a \ariable shared with the semantivde of the example there is only one conditional limkpusetoval.)
system, it could also be changed by the application or by
function keys or other input, and the slider handleuld
respond. Theariablemouseposis an input ariable, which
always gves the current position of the mousandleposis

an output ariable, which controls the current position of the

slider hagdle. 'Lhe underlying F'Sglr imﬂf m:nsgergent moded continuous operation dikengging, dragging, and
system lkeps themousepos variable updated based on leasing the slider handle. The nested diagram approach

mouse inputs and thg position of the sll|der handle updatg llows that of Citrin [7], although in this case it is confined
based on changes inandlepos. The link mousetoval to two levels, and each Vel has a dferent syntax. One
contains a simple scaling and truncating function that reIategb\/ious drawback of this type of language is that it is
Fhe mouse p;sn_lc;]n LO thawg_a .Of the ;‘c;r;trqlledanabr:e; '.t difficult to scale the graphical representation to fit a more
IS associated with t € con ition namikagying, S.O.t at.|t comple interface into a single static imageorfinteractie

can be enabled and disabled by the state transition dlagra[&e an editor that supports zooming will sdllze problem
The link valtoscrn scales the ariable value back to the For ,example Figure 3 shes the interice from Figure 2'
screen position of the slider handle; it ways enabled. zoomed in on the first state, with its enclosed data-flo

The discrete portion of this specification isegi in the diagram clearly visible and editable. d&vbetter wuld be
form of a state transition diagram, althougly ather form rapid continuous zooming, such as\pded by the RD++
of event handler specification could be used interchangeablgystem [2], or head-coupled zooming, as in the pre-screen
in the underlying system. It acceptdVBODUSEDN token projection technique [14].
that occurs within the slider handle and esk transition to
a nav state, in which thdragging condition is enabled. As

The second form of the visual language vefén Figure

2, unifies the tw components into a single representation by
considering each state in the state transition diagranvéo ha
an entire data-fls graph associated with it. As described

above, this preides a particularly apt description of a

As a further gample, Figure 4 shes a twp-mouse

TooLS
MOUSEDN

VAR Cond: Inside(mousepos,handlepos)

name
KIND

LINK

name
COND

FLOW

[0

value handlepos
SEM valtoscrn OUTPUT

STATE

TRANS

Figure 3. The e xample fr om Figure 2 after zooming in to edit the data-flo w graph within one of the states.

scheme for graphical interaction. While wa&pect the introduce higher Mel, cleaner user intexte description
second ersion of the visual language to be preferable fotanguages into the non-WIMP arena, particularly for virtual
interfaces such as this, with#germanent links, we will use environments, where performance requirements arerse

the first \ersion here and belp because it is easier to read Using the testbed, we intend to demonstrate that the ne
on a printed page. In this intade, deised by Chatty [6], languages need not compromise performance; the
dragging the right mouse normally wes a selected object, underlying model is free of restrictions that mightverrat it

but dragging it while holding the left mousatton rotates from being transformed and compiled intastf runtime

the object around the location of the left mouse. Here, thalgorithms.

RIGHTMOUSEDN token refers to pushing theutbon on

the mouse in the ussrtight hand, and EFTM OUSEDN, hC(? |] o
@) INPUT ALWAYS enpaint
the left hand. = © |] Q
K:.N:K headangle FLY o
htCmo)sepos |] 9 II
R ri u j
@) INPUT MovE SUTRUT =l O ®)
name oW handpos objectpos
KIND ﬂ INPUT OUTPUT
LINK. glé)_ri__?\é)out_r o DRAG :
II handangle objectangle
name HLMSESEDTT INPUT OUTPUT
FLOW @ E GRASP idethandpos,objectextent)
RIG = oF TRANS
OUSEDN
leftmousepos [\
= o
LEFTMY Figure 5. Three common interactions in a vir tual
(Royate environment: the position and orientation of the user’ s
Q e head contr ol the position and orientation of the

viewpoint at all times; the user can “fly” in the direction

his or her head is pointing b y holding a pushb utton; and

the user can grasp an object, mo ve it, and release it. The

three interactions can be perf ormed sim ultaneousl y.
The two state transition dia grams sho wn are both

active , operating as cor outines.

Finally, to illustrate some of the kinds of interactions in aAcknowledgments
virtual ervironment, Figure 5 shes three simple, ary)
common interactions. First, the position and orientation of | want to thank my graduate students, Leonidas
the usess head control the position and orientation of theDeligiannidis, Quan Lin, and Stephen Morrison, for their
viewpoint at all times. Second, the user can “fly” in then€lp with this verk and Linda Sibert and Jameanfipleman
direction his or her head is pointing by holding a pusten. ~ for valuable discussions about these issues.
Third, the user can grasp an objectvmd, and release it. References

All of these interactions can be performed simultaneousl . .
P y[1] G.D. Abonvd and A.J. Dix, “Intgrating Status and Ewnt

Figure 4. Specification of Chatty’ s two-mouse sc heme
for graphical interaction. Dra gging the right mouse
normall y moves a selected object, b ut dra gging it while
holding the left mouse b utton r otates the object ar ound
the location of the left mouse

The tV_D state ftransmon diagrams slm_)are _bOth acte, as Phenomena in dfmal Specifications of Interacé

coroutines, using the approach described in [17]; and all data Systems, Proc. ACM SIGSOFT'94 Symposium on

flows that are enabledcecute conceptually in parallel.The Foundations of SoftwarEngineeringAddison-Wesle/

user can drag an object while simultaneously flying without ACM Press, Ne Orleans, La. (1994).

ary changes to Figure 5. [2] B.B.Bederson, L. Stead, and J.D. HollaradP+: Adwances

in Multiscale Interfices, Proc. ACM CHI'94 Human

We are testing the language by attempting to use it to Factors in Computing Systems Comfece Companion

program a griety of WIMP and non-WIMP interactions, as pp. 315-316 (1994).

well as some non-computer interactions (such as automobildl L.D. Begman, J.S. Richardson, D.C. Richardson, aml F

. i : Brooks, “VIEW - An Exploratory Molecular
controls), which we feel future non-WIMP intaces are Visualization System with Us&efinable Interaction

likely to emulate. The language willave as we continue SequencesProc. ACM SIGGRAPH'93 Confencepp.
these dbrts, and then our prototypes will be refined into a 117-126, Addison-\sleg//ACM Press (1993).
full-scale user intedce softvare testbed. W hare also [4] D. Carg “Specification of Intedice Interaction Objects,
developed a user inteate management system topde a Proc. ACM CHI'94 Human R&ctors in Computing

run-ime implementation of user intades that are g?’:;‘z“glsggz)”fencepp- 372-378, Addison-@slg//ACM

descrlbgd by our model, pl_’ocessmg the data-giaphs an_d &5] D.A. Cart N. Jog, H.PKumar M. Teittinen, and C. Ahlbey,
state diagrams as required. Our long-term goal is t “Using Interaction Object Graphs to Specify and

Develop Graphical Wigets; Technical Report ISR-TR- Software Specification dchniques, ed. N. Gehani and

94-69, Institute Br Systems Research, Weisity of A.D. McGettrick, Addison-Wslg/, Reading, Mass,
Maryland (1994). 1986, pp. 209-222.

[6] S. Chatty “Extending a Graphicaldblkit for Two-Handed [16] R.J.K. Jacob, A State Tansition Diagram Language for
Interactior?, Proc. ACM UIST'94 Symposium on User Visual Programming,IEEE Computerl8(8) pp. 51-59
Interface Softwax and €dnolagy pp. 195-204, (1985).

Addison-Weslg/ACM Press, Marina del Re Calif. [17] R.J.K. Jacob, A Specification Language for Direct
(1994). Manipulation User Intedices, ACM Transactions on

[7]1 W. Citrin, M. Dohertyand B. Zorn, “Design of a Completely Graphics 5(4) pp. 283-317 (1986). http://
Visual Object-Oriented Programming Languagie, www.cs.tufts.edu/~jacob/papers/tog.txt [ASCII]; http://
Visual Object-Oriented Rgramming ed. M. Burnett, www.cs.tufts.edu/~jacob/papers/tog.ps [Postscript].
A. Goldbeg, and T Lewis, Prentice-Hall, N& York [18] R.J.K. Jacob, “Eye Meement-Based Human-Computer
(1995). Interaction Echniques: @ward Non-Command

[8] C. Elliot, G. SchechteR. Yeung, and S. Abi-Ezzi, “TRG: Interfaces, pp. 151-190 in Advances in Human-
A High Level Frame&vork for Interactve, Animated 3D Computer Inteaction, \l. 4, ed. H.R. Hartson and D.
Graphics Application, Proc. ACM SIGGRAPH'94 Hix, Ablex Publishing Co., Noraod, N.J. (1993). http:/
Confeence pp. 421-434, Addison-@sle//ACM Press www.cs.tufts.edu/~jacob/papers/hartson.txt [ASCII];
(1994). http://www.cs.tufts.edu/~jacob/papers/hartson.ps

[9] M. Gleicher “A Graphics Dolkit Based on Dierential [Postscript].

Constraints, Proc. ACM UIST'93 Symposium on User [19] M. Kass, “CONDOR: Constraint-Based Dataflb Proc.
Interface Softwax and €dnolagy pp. 109-120, ACM SIGGRAPH’92 Confencepp. 321-330, Addison-
Addison-Weésle//ACM Press, Atlanta, Ga. (1993). Wesleg//ACM Press (1992).

[10] M. Green, “The Uniersity of Alberta User Inteste [20] J.B. Lewis, L. Koved, and D.TLing, “Dialogue Structures for
Management SystetmComputer Gaphics 19(3) pp. Virtual Worlds} Proc. ACM CHI'91 Human Ectors in
205-213 (1985). Computing Systems Corgecepp. 131-136, Addison-

[11] M. Green and R.J.K. Jacob, “Softve Architectures and Wesleg/ACM Press (1991).

Metaphors for Non-WIMP User Intexfes, Computer [21] J.D. Mackinlay S.K. Card, and G.G. RobertsoA, Semantic
Graphics25(3) pp. 229-235 (July 1991). Analysis of the Design Space of Inputizes; Human-

[12] R.D. Hill, “Supporting Concurreryg Communication and Computer Inteaction5 pp. 145-190 (1990).
Synchronization in Human-Computer Interaction-The [22] B.A. Myers, “User Intedice Softare Tols; ACM
Sassafras UIMS,ACM Transactions on Gphics5(3) Transactions on Computétuman Inteaction 2(1) pp.
pp. 179-210 (1986). 64-103 (March 1995).

[13] R.D. Hill, T. Brinck, S.L. Rohall, J.FPatterson, and W [23] W.M. Newman, ‘A System for Interacte Graphical
Wilner, “The Rendezous Architecture and Language for Programming,Proc. Spring dint Computer Confence
Constructing Multiuser Applicatiorfs, ACM pp. 47-54, AFIPS (1968).

Transactions on Computéfuman Inteaction 1(2) pp. [24] J. Nielsen, “Noncommand User Intecks, Comm. £M
81-125 (June 1994). 36(4) pp. 83-99 (April 1993).

[14] D. Hix, J.N. empleman, and R.J.K. Jacob, “Pre-Screen[25] D.R. Olsen,User Interface Mangement Systems: Models
Projection: From Concept to eSting of a Ne and Algorithms Morgan Kaufmann, San Mateo, Calif.
Interaction EBchnique, Proc. ACM CHI'95 Human (1992).

Factors in Computing Systems Corfecepp. 226-233, [26] J.L. Sibert, WD. Hurley, and TW. Bleser “An Obiject-
Addison-Vieslg/ACM ~ Press (1995). http:// Oriented User Intesice Management Systém,
www.acm.og/sigchi/chi95/Electronic/documnts/papers/ Computer Gaphics20(4) pp. 259-268 (1986).
dh_bdyhtm [HTML]; http:/www.cs.tufts.edu/~jacob/ 27] M.p. Stevens, R.C. Zeleznik, and J.FHughes, An
papers/chi9s.ixt [ASCII. _ Architecture for an Extensible 3D Intade Dolkit,”

[15] R.J.K. JaCOb, "US|ngﬁ'ma| SpeCIflcatlonS n the DESIgn Of Proc. ACM UIST94 Symposium on User Interface
a Human-Computer Intex€e;, Communications of the Softwae and ®dinolagy pp. 59-67, Addison-\asley/

ACM 26(4) pp. 259-264 (1983). Also reprinted in ACM Press, Marina del ReCalif. (1994).

