
Abstract

Unlike current GUI or WIMP style interfaces, non-
WIMP user interfaces, such as virtual environments, involve
parallel, continuous interactions with the user. However,
most current visual (and non-visual) languages for
describing human-computer interaction are based on
serial, discrete, token-based models. This paper introduces
a visual language for describing and programming the fine-
grained aspects of non-WIMP interaction. It is based on the
notion that the essence of a non-WIMP dialogue is a set of
continuous relationships, most of which are temporary. The
underlying model combines a data-flow or constraint-like
component for the continuous relationships with an event-
based component for discrete interactions, which can
enable or disable individual continuous relationships. The
language thus separates non-WIMP interaction into two
components, each based on existing visual language
approaches, and then provides a framework for connecting
the two.

Intr oduction

“Non-WIMP” user interfaces provide “non-command,”
parallel, continuous, multi-mode interaction—in contrast to
current GUI or WIMP (Window, Icon, Menu, Pointer) style
interfaces [11]. This interaction style can be seen most
clearly in virtual reality interfaces, but its fundamental
characteristics are common to a more general class of
emerging user-computer environments, including new
types of games, musical accompaniment systems,
intelligent agent interfaces, interactive entertainment
media, pen-based interfaces, eye movement-based
interfaces, and ubiquitous computing [18,24]. They share a
higher degree of interactivity than previous interfaces:
continuous input/output exchanges occurring in parallel,
rather than one single-thread dialogue.

Most current (WIMP) user interfaces are inherently
serial, turn-taking (“ping-pong style”) dialogues with a

single input/output stream. Even where there are several
devices, the input is treated conceptually as a single
multiplexed stream, and interaction proceeds in half-
duplex, alternating between user and computer. Users do
not, for example, meaningfully move a mouse while typing
characters; they do one at a time. Non-WIMP interfaces are
instead characterized bycontinuous interaction between
user and computer via several parallel, asynchronous
channels or devices.

Because interaction with such systems can draw on the
user’s existing skills for interacting with the real world, they
offer the promise of interfaces that are easier to learn and to
use. However, they are currently making interfaces more
difficult to build. Advances in user interface design and
technology have outpaced the advances in languages and
user interface management systems and tools. The result is
that, today, previous generation command language
interfaces can now be specified and implemented very
effectively; current generation direct manipulation or
WIMP interfaces are now moderately well served by user
interface software tools; and theemerging concurrent,
continuous, multi-mode non-WIMP interfaces are hardly
handled at all. Most of today’s examples of non-WIMP
interfaces, such as virtual reality systems, have required
considerable ad-hoc, low-level programming approaches,
which, while very inventive, make these interfaces difficult
to develop, share, and reuse.

What is needed are languages for describing and
implementing these interfaces at a higher level, closer to the
point of view of the user and the dialogue, rather than to the
exigencies of the implementation. This paper outlines a
visual language for describing and programming the fine-
grained aspects of non-WIMP interaction. It is based on the
notion that the essence of a non-WIMP dialogue is a set of
continuous relationships, most of which are temporary. Its
underlying model combines a data-flow or constraint-like
component for the continuous relationships with an event-
based component for discrete interactions, which can
enable or disable individual continuous relationships. It
separates non-WIMP interaction into two components, each
of which can exploit existing visual language approaches,
and provides a framework for connecting the two.
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Background

The main contribution of this approach will thus be its
separation of non-WIMP interaction into two components,
continuous and discrete, and its framework for
communication between the two spheres, rather than the
languages for describing the internals of the two
components themselves. The discrete component can use a
variety of existing techniques for describing discrete event
handlers. The continuous component is similar to a data-
flow graph or a set of one-way constraints between actual
inputs and outputs. The model provides the ability to “re-
wire” the graph from within the dialogue. Another goal is to
keep the model simple enough to allow very fast run-time
performance, with the ultimate purpose of supporting virtual
reality interfaces directly.

A variety of specification languages for describing WIMP
and other previous generations of user interfaces has been
developed, and user interface management systems have
been built based up on them [22], using approaches such as
BNF or other grammar-based specifications [25], state
transition diagrams [23], event handlers [12], declarative
specifications [25], constraints [13], and others [10,26],
including visual languages [16].

Several researchers are using constraints for describing
the continuous aspect of graphical interfaces [8,9,19], and
other recent work in 3D interfaces uses similar continuous
approaches [3,27]. Also addressing the description of
interfaces by continuous models, Mackinlay, Card, and
Robertson allude to expressing interface syntax as
connections between the ranges and domains of input
devices and intermediate devices [21]. Lewis, Koved, and
Ling have addressed non-WIMP interfaces with an elegant
UIMS for virtual reality, using concurrent event-based
dialogues [20].

While their focus is on widgets found in current WIMP
interfaces, Abowd [1] and Carr [4,5] both present
specification languages that separate the discrete and
continuous spheres along the same lines as this model. Both
approaches support the separation of interaction into
continuous and discrete as a natural and desirable model for
specifying modern interactive interfaces. Carr provides an
expressive visual language for specifying this type of
behavior, with different types of connections for
transmitting events or value changes. Abowd provides an
elegant formal specification language for describing this
type of behavior, and uses the specification of a slider as a
key example. He strongly emphasizes the difference
between discrete and continuous, which he calls event and
status, and aptly refers to temporary, continuous
relationships asinterstitial behavior, i.e., occurring in the
interstices between discrete events.

A question that arises is: Why can’t the problem of user
interface design be solved directly by visual programming
techniques? For example, why is an interactive interface
builder, such as the NeXT Interface Builder or Visual Basic
not sufficient? Such a solution would handle the visual
layout of the objects in the next-generation user interface,
but it would not address the problem of describing new
interactive behaviors.

Languages for visual programming can be divided into
two categories. In the first, the object being designed is itself
a static graphical object—a menu, a screen layout, an
engineering drawing, a typeset report, a font of type. While
such objects are frequently programmed in symbolic
languages (for example, a picture might be programmed as
a sequence of calls to Xlib graphics subroutines), they are
obvious candidates for a “what you see is what you get”
mode of visual programming. A programming environment
for such a visual programming language need only simulate
the appearance of the final object and provide direct
graphical commands for manipulating it. When the designer
is satisfied with its appearance, he or she saves it and has
thereby written a visual program. Such systems can combine
great power with ease of use, because the visual
programming language employed is a natural way to
describe the graphical object. It is so natural that the system
is often not considered a programming language
environment at all, but simply a “what you see is what you
get” style of editor. Unfortunately, this approach is only
possible where there can be a one-to-one correspondence
between a visual programming language and the static
visual object being programmed.

A more difficult problem arises with the second category
of visual programming language. Here, visual programming
is used to represent something abstract, which does not have
a direct graphical image—time sequence, hierarchy,
conditional statements, frame-based knowledge. To provide
visual programming languages for these objects, it is
necessary first to devise suitable graphical representations or
visual metaphors for them. The powerful principle of “what
you see is what you get” is not much help, since the objects
are abstract. Applying the visual programming language
paradigm to these situations depends critically on choosing
good representations.

Sequence or interactive behavior of a user interface—as
opposed to layout—is just such a problem; we need to invent
appropriate visual representations for it in order to use visual
programming. Current interface builders usually handle
behavior by providing a fixed set of predefined interactive
behaviors. They are the familiar screen buttons, sliders,
scrollbars, and other commonly-used widgets. Their
interactive behaviors have been defined by the programmer
of the toolkit using a conventional programming language;



the user interface designer merely decideswhere these
predefined objects should be placed on the screen. It is
generally difficult or impossible for him or her to change
their interactive behaviors or to create new objects with new
behaviors within the toolkit interface. Next-generation
interfaces will introduce new objects with new types of
interactive behaviors. The designer needs a scheme for
designing and programming the actual, internal interactive
behaviors. Such languages may well be visual, and the
designer may use visual programming techniques with them
[16]. But they will require new visual languages, to describe
sequence or behavior, not just a picture of the layout of the
screen or virtual world.

Underlying Properties of Non-WIMP Interac-
tions

To develop a visual language for non-WIMP interactive
behavior, we therefore need to identify the basic structure of
such interaction as the user sees it. What is the essence of the
sequence of interactions in a non-WIMP interface? We posit
that it isa set of continuous relationships, most of which are
temporary.

For example, in a virtual environment, a user may be able
to grasp, move, and release an object. The hand position and
object position are thus related by a continuous function
(say, an identity mapping between the two 3D positions)—
but only while the user is grasping the object. Similarly,
using a scrollbar in a conventional graphical user interface,
they coordinate of the mouse and the region of the file being
displayed are related by a continuous function (a linear
scaling function, from 1D to 1D), but only while the mouse
button is held down (after having first been pressed within
the scrollbar handle). The continuous relationship ceases
when the user releases the mouse button.

Some continuous relationships are permanent. In a
conventional physical control panel, the rotational position
of each knob is permanently connected to some variable. In
a flight simulator, the position of the throttle lever and the
setting of the throttle parameter are permanently connected
by a continuous function.

The essence of these interfaces is, then, a set of
continuous relationships some of which are permanent and
some of which are engaged and disengaged from time to
time. These relationships accept continuous input from the
user and typically produce continuous responses or inputs to
the system. The actions that engage or disengage them are
typically discrete inputs from the user (pressing a mouse
button over a widget, grasping an object).

Toward a Visual Language

Most current specification models are based on tokens or
events. Their top-down, triggered quality makes them easy

to program (and, in fact, everything in a typical digital
computer ultimately gets translated into something with
those properties). But we see in the above examples that
events are the wrong model for describing some types of
interactions; they are more perspicuously described by
declarative relationships among continuous variables. Non-
WIMP interface styles tend to have more of these kinds of
interactions.

Therefore, we need to address the continuous aspect of
the interface explicitly in our language. Continuous inputs
have often been treated by quantizing them into a stream of
“change-value” or “motion” events and then handling them
as discrete tokens. Instead we want to describe continuous
user interaction as a first-class element of our language. We
describe these types of relationships with a data-flow graph,
which connects continuous input variables to continuous
application (semantic) data and, ultimately, to continuous
outputs, through a network of functions and intermediate
variables. The result resembles a plugboard or wiring
diagram or a set of one-way constraints. It also supports
parallel interaction implicitly, because it is simply a
declarative specification of a set of relationships that are in
principle maintained simultaneously. (Maintaining them all
on a single processor within required time constraints is an
important issue for the implementation, but should not
appear at this level of the specification.)

This leads to a two-part description of user interaction.
One part is a graph of functional relationships among
continuous variables. Only a few of these relationships are
typically active at one moment. The other part is a set of
discrete event handlers. These event handlers can, among
other actions, cause specific continuous relationships to be
activated or deactivated. A key issue is how the continuous
and discrete domains are connected, since a modern user
interface will typically use both. The most important
connection in our model is the way in which discrete events
can activate or deactivate the continuous relationships.
Purely discrete controls (such as pushbuttons, toggle
switches, menu picks) also fit into this framework. They are
described by traditional discrete techniques, such as state
diagrams and are covered by the “discrete” part of our
model. That part serves both to engage and disengage the
continuous relationships and to handle the truly discrete
interactions.

Our contribution, then, is a visual language thatcombines
data-flow or constraint-like continuous relationships and
token-based event handlers. Its goal is to integrate the two
components and map closely to the user’s view of the fine-
grained interaction in a non-WIMP interface. The basic
model for it is:

• A set of continuous user interfaceVariables, some of
which are directly connected to input devices, some to



outputs, some to application semantics. Some
variables are also used for communication within the
user interface model (but possibly between the
continuous and discrete components), and, finally,
some variables are simply interior nodes of the graph
containing intermediate results.

• A set ofLinks, which contain functions that map from
continuous variables to other continuous variables. A
link may be operative at all times or may be associated
with aCondition, which allows it to be turned on and
off in response to other user inputs. This ability to
enable and disable portions of the data flow graph in
response to user inputs is a key feature of the model.

• A set of EventHandlers, which respond to discrete
input events. The responses may include producing
outputs, setting syntactic-level variables, making
procedure calls to the application semantics, and
setting or clearing the Conditions, which are used to
enable and disable groups of Links.

The model is cast in an object-oriented framework. Link,
Variable, and EventHandler each have a separate class
hierarchy. Their fundamental properties, along with the
basic operation of the software framework (the user
interface management system) are encapsulated into the

three base classes; subclasses allow the specifier to define
particular kinds of Links, Variables, and EventHandlers as
needed. While Links and Variables are connected to each
other in a graph for input and output, they comprise two
disjoint trees for inheritance; this enhances the expressive
power of the model.

The model provides for communication between its
discrete (event handlers) and continuous (links and
variables) portions in several ways:

• Communication from discrete to continuous occurs
through the setting and clearing ofConditions, which
effectively re-wire the data-flow graph.

• In some situations, there are analogue data coming in,
being processed, recognized, then turned into a
discrete event. This is handled by a communication
path from continuous to discrete by allowing a link to
generate tokens which are then processed by the event
handlers. A link function might generate a token in
response to one of its input variables crossing a
threshold. Or it might generate a token when some
complex function of its inputs becomes true. For
example, if the inputs were all the parameters of the
user’s fingers, a link function might attempt to
recognize a particular hand posture and fire a token
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when it was recognized.

• Finally, as with augmented transition networks and
other similar schemes, we provide the ability for
continuous and discrete components to set and test
arbitrary user interface variables, which are accessible
to both components.

A further refinement expresses the event handlers as
individual state transition diagrams, which allows another
method of bringing the continuous and discrete components
closer together conceptually and leads to an alternate form
of the visual language. Imagine that each state in the state
transition diagram had an entire data-flow graph associated
with it. When the system enters a state, it begins executing
that data-flow graph and continues until it changes to
another state. The state diagram can be viewed as a set of
transitions between whole data-flow graphs. We have
already provided the ability to enable and disable sets of
links in a data-flow graph by explicit action. If we simply
associate such sets with states, we can automatically enable
and disable the links belonging to a state whenever that state
is entered or exited, as if we set and cleared the conditions
with explicit actions, yielding a particularly apt description
of moded continuous operations (such as grab, drag, and
release).

User Interface Description Language

We show the underlying model as two versions of a visual

language, using a static mockup of an editor for it. To
introduce them, we will use an example from a conventional
WIMP interface. In this a simplified slider widget, if the user
presses the mouse button down on the slider handle, the
slider will begin following they coordinate of the mouse,
scaled appropriately. It will follo w the mouse continuously,
truncated to lie within the vertical range of the slider area,
directly setting its associated semantic-level application
variable as it moves.

We view this as a functional relationship between they
coordinate of the mouse and the position of the slider handle,
two continuous variables (disregarding their ultimate
realizations in pixel units). This relationship is temporary,
however; it is only enabled while the user is dragging the
slider with the mouse button down. Therefore, we provide
event handlers to process the button-down and button-up
events that initiate and terminate the relationship. Those
events execute commands that enable and disable the
continuous relationship.

Figure 1 shows the specification of this simple slider in
the first version of the visual language, with the upper
portion of the screen showing the continuous portion of the
specification, using solid grey ovals to represent variables,
solid grey rectangles for links, and grey arrows for data
flows. The lower portion shows the event handler in the form
of a state diagram, with states represented as circles and
transitions as arrows; further details of this state diagram

Figure 2. The same slider as in Figure 1, illustrating the second ver sion of the visual langua ge. Here, the lar ge ovals
represent states, and the arr ows between them represent transitions. Eac h state contains a data-flo w graph sho wing
the data flo ws that are operational while the system is in that state .
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notation itself are found in [15,16]. This very simple
example illustrates the use of separate continuous and
discrete specifications and the way in which enabling and
disabling of the continuous relationships provides the
connection between the two.The continuous relationship is
divided into two parts. The relationship between the mouse
position and thevalue variable in the application semantics
is temporary, while dragging; the relationship between
value and the displayed slider handle is permanent. Because
value is a variable shared with the semantic level of the
system, it could also be changed by the application or by
function keys or other input, and the slider handle would
respond. The variablemousepos is an input variable, which
always gives the current position of the mouse;handlepos is
an output variable, which controls the current position of the
slider handle. The underlying user interface management
system keeps themousepos variable updated based on
mouse inputs and the position of the slider handle updated
based on changes inhandlepos. The link mousetoval
contains a simple scaling and truncating function that relates
the mouse position to the value of the controlled variable; it
is associated with the condition namedragging, so that it
can be enabled and disabled by the state transition diagram.
The link valtoscrn scales the variable value back to the
screen position of the slider handle; it is always enabled.

The discrete portion of this specification is given in the
form of a state transition diagram, although any other form
of event handler specification could be used interchangeably
in the underlying system. It accepts aMOUSEDN token
that occurs within the slider handle and makes a transition to
a new state, in which thedragging condition is enabled. As

long as the state diagram remains in this state, the
mousetoval link is enabled, and the mouse is connected to
the slider handle, without the need for any further explicit
specification. TheMOUSEUP token will then trigger a
transition to the initial state, causing thedragging condition
to be disabled and hence themousetoval relationship to
cease being enforced automatically. (The condition names
like dragging provide a layer of indirection that is useful
when a single condition controls a set of links; in this
example there is only one conditional link,mousetoval.)

The second form of the visual language, shown in Figure
2, unifies the two components into a single representation by
considering each state in the state transition diagram to have
an entire data-flow graph associated with it. As described
above, this provides a particularly apt description of a
moded continuous operation like engaging, dragging, and
releasing the slider handle. The nested diagram approach
follows that of Citrin [7], although in this case it is confined
to two levels, and each level has a different syntax. One
obvious drawback of this type of language is that it is
difficult to scale the graphical representation to fit a more
complex interface into a single static image. For interactive
use, an editor that supports zooming will solve the problem.
For example, Figure 3 shows the interface from Figure 2,
zoomed in on the first state, with its enclosed data-flow
diagram clearly visible and editable. Even better would be
rapid continuous zooming, such as provided by the PAD++
system [2], or head-coupled zooming, as in the pre-screen
projection technique [14].

As a further example, Figure 4 shows a two-mouse
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scheme for graphical interaction. While we expect the
second version of the visual language to be preferable for
interfaces such as this, with few permanent links, we will use
the first version here and below, because it is easier to read
on a printed page. In this interface, devised by Chatty [6],
dragging the right mouse normally moves a selected object,
but dragging it while holding the left mouse button rotates
the object around the location of the left mouse. Here, the
RIGHTMOUSEDN token refers to pushing the button on
the mouse in the user’s right hand, andLEFTMOUSEDN,
the left hand.

Finally, to illustrate some of the kinds of interactions in a
virtual environment, Figure 5 shows three simple, very
common interactions. First, the position and orientation of
the user’s head control the position and orientation of the
viewpoint at all times. Second, the user can “fly” in the
direction his or her head is pointing by holding a pushbutton.
Third, the user can grasp an object, move it, and release it.
All of these interactions can be performed simultaneously.
The two state transition diagrams shown are both active, as
coroutines, using the approach described in [17]; and all data
flows that are enabled execute conceptually in parallel.The
user can drag an object while simultaneously flying without
any changes to Figure 5.

We are testing the language by attempting to use it to
program a variety of WIMP and non-WIMP interactions, as
well as some non-computer interactions (such as automobile
controls), which we feel future non-WIMP interfaces are
likely to emulate. The language will evolve as we continue
these efforts, and then our prototypes will be refined into a
full-scale user interface software testbed. We have also
developed a user interface management system to provide a
run-time implementation of user interfaces that are
described by our model, processing the data-flow graphs and
state diagrams as required. Our long-term goal is to

introduce higher level, cleaner user interface description
languages into the non-WIMP arena, particularly for virtual
environments, where performance requirements are severe.
Using the testbed, we intend to demonstrate that the new
languages need not compromise performance; the
underlying model is free of restrictions that might prevent it
from being transformed and compiled into fast runtime
algorithms.
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