Submitted to the 2010 ACM Symposium on Principles of Programming Languages (POPL)

Hoopl: Dataflow Optimization Made Simple

Norman Ramsey Jaao Dias Simon Peyton Jones
Tufts University Tufts University Microsoft Research
nr@cs.tufts.edu dias@cs.tufts.edu simonpj@microsoft.com
Abstract e Hoopl helps you write correct optimizations: it statically rules

We present Hoopl, a Haskell library that makes it easy for compiler out transformations that violate invariants of the control-flow

; . . graph, and dynamically it can help find the first transformation
writers to implement program transformations based on dataflow o Higtoduces a fault in a test program (Whalley 1994).
analyses. The compiler writer must identify (a) logical assertions
on which the transformation will be based; (b) a representation ® Hoopl's polymorphic, higher-order design makes it reusable
of such assertions, which should form a lattice of finite height; with many languages. Hoopl is designed to help optimize im-
(c) transfer functions that approximate weakest preconditions or ~ perative code with arbitrary control flow, including low-level
strongest postconditions over the assertions; and (d) rewrite func- intermediate languages and machine languages. As Benitez and
tions whose soundness is justified by the assertions. Hoopl uses Davidson (1988) have shown, all the classic scalar and loop op-
the algorithm of Lerner, Grove, and Chambers (2002), which timizations can be performed over such codes.

can compose very simple analyses and transformations in a WaY\e introduce dataflow optimization by analyzing and transforming

It scieues e Same precision = commle, Danduriien, SUPE examplecode (Secton 2), kg about and usiyng assc op-
GlasgoleaskeII Compiler (version 6.12, forthcoming) timizations using Hoare logic and substitution of eql.JaI.s fqr equals.
B ’ To support our claim that Hoopl makes dataflow optimization easy,

Reviewerscode examples are indexedhatp: //bit.ly/jkr3K we explain how to create new dataflow analyses and transforma-
tions (Section 3), and we show complete implementations of sig-
nificant analyses (Section 5) and transformations (Selction 6) from

1. Introduction t_he Gla_lsgow Haskell Compiler. We also sketch a new implementa-
tion of interleaving (Section 7).

If you write a compiler for an imperative language, you can ex-

loit many years’ work on code improvement (“optimization”). The . .

\F/)vork is tyyp)i/cally presented as a Igng list of a(narloyses and tr)ansfor- 2. Dataflow analysis & transformation by example

mations, each with a different name. This presentation makes opti- |n dataflow optimization, code-improving transformations are jus-

mization appear complex and difficult. Another source of complex- tified by assertions about programs; such assertions are often com-

ity is the need for synergistic combinations of optimizations; you puted using strongest postconditions or weakest liberal precondi-

may have to write one “super-analysis” per combination. tions. Typical transformations are to insert assignments to unob-

But optimization doesn't have to be complicated. Most optimiza- Served variables, to substitute equals for equals, and to remove as-

tions work by applying well-understood techniques for reasoning Signments to uno.bser‘\‘/ed varlat;les’.’ Insertion and removal can be

about programs: assertions about states, assertions about continug£CMpPosed to achieve “code motion.” Hoopl expresses classic code

tions, and substitution of equals for equals. What makes optimiza- ImProvements by composing simple transformations.

tion different from classic reasoning techniques is that in dataflow))

optimization, assertions are approximated, and all assertions are2-1 Simple transformations

computed automatically. Here is a sequence of assignments separated by assertions. We com-

This paper presents Hoopl (higher-order optimization library), Pute assertions by starting with the weakest assertione) and
a Haskell library that makes it easy to implement dataflow opti- COMPputing strongest postconditions. Variables do not alias.
mizations. Our contributions are as follows:

{ true }
¢ Hoopl defines a simple interface for implementing analyses and z 1;: 73
transformations: you provide representations for assertions and - 5.
for functions that transform assertions, and Hoopl computes as- T _
.) - ’ . ; {x=78&vy==81}
sertions by setting up and solving recursion equations. Addi- = x4y

tional functions you provide use computed assertions to justify
program transformations. Analyses and transformations built |n the assignment te, the assertior == 7 justifies substituting 7

on Hoopl are small, simple, and easy to get right. for x, leavingz = 7 + y. This transformation is traditionally called
« Using the sophisticated algorithm of Lerner, Grove, and Cham- ‘constant propagation.” We may also substitute 8 for=inally,
bers (2002), Hoopl can perform super-analysessrleaving becauser + 8 == 15, we may again substitute equals for equals,

simple analyses and transformations. Interleaving is tricky to !€aving the final assignment as
implement, but by using generalized algebraic data types and , _ 4¢.
continuation-passing style, our new implementation expresses ’
the algorithm with a clarity and a degree of static checking that The final transformation, although it also substitutes equals for
has not previously been achieved. equals, has a different name: “constant folding.”

1 2009/8/1

http://bit.ly/jkr3K

2.2 A complex transformation

The loop optimization known as “induction-variable elimination”
can be composed from simpler transformations. We begin by show-
ing a loop that sums red pixels from an array:

struct pixel { double r, g, b; };
double sum_r(struct pixel a[], int n) {

double x = 0.0;

int i;

for (i = 0; i < nj; i++)
x += ali] .r;

return x;

}

To explain induction-variable elimination, we show the same code
at the machine level, using our low-level compiler-target lan-
guage, G- (Ramsey and Peyton Jones 2000):

sum_r ("address" bits32 a, bits32 n) {
bits64 x; bits32 i;

x = 0.0;

i= 0;

if (i >= n) goto L2;

b'd %fadd(x, bits64[a+i*24]);

i i+ 1;

goto L1;

return x;

L1:

L2:
}

Induction-variable elimination replaceiswith a new variablep,
helping us to remove the computatiani*24 from the loop. Vari-
ablep is intended to satisfy the invariant

{p==a+1i%*241}%

Variablei is also used in the loop-termination test. To rewrite that
test, we introduce another new variablen satisfying the invariant
lim == a + n * 24, so thati >= nifand only ifp >= 1im.

We implement the code improvement as a sequence of transfor-
mations. After each transformation, the observable behavior of the
program is unchanged. Our first transformation declar@sdlim

and inserts suitable assignments. New codlbasged.

sum_r ("address" bits32 a, bits32 n) {

bits64 x; bits32 i; |bits32 p, lim;

x = 0.0;
i= O;[p = a; lim

a+n * 24#

L1: if (i >= n) goto L2;
x = %fadd(x, bits64[a+i*24]);
T
goto L1;

L2: return x;

}

As written, the assignments @and1lim have no effect on the
program, but they establish the assertigns= a + i * 24 and

(i >=n) == (p >= 1im). On the basis of these assertions, the
compiler substitutes equals for equals, resulting in the new code
in boxes below:

sum_r ("address" bits32 a, bits32 n) {
bits64 x; bits32 i; bits32 p, lim;
x = 0.0;
i=0; p=a; lim

a+n x 24;

Li: if (p >= lim)) goto L2;
x = %fadd(x, bits64[[p[1);
i=1i+1; p=p+ 24;
goto L1;

L2: return x;

}

Here the compiler switches from reasoning about states to reason-
ing about continuations. In particular, we reason about whether the
value of a variable can be used by a continuation; this reasoning is
called “liveness analysis.” Niee analysis would show that although

i is not live at labeL2, it is nevertheless live immediately after the
assignment = i + 1 inthe loop body, because the valueiafould

be used by the next iteration of the loop. But we use Lerner, Grove,
and Chambers’s (2002) algorithm iaterleaveliveness analysis
with “dead-assignment elimination.” Dead-assignment elimination
removes an assignment if the variable assigned to is not live, that is,
if it cannot be used by the assignment’s continuation. No sequential
composition of liveness analysis and dead-assignment elimination
can get rid of these assignmentsitdut interleaving analysis with
transformation does the tri€kinterleaving (Sectioh 7) eliminates
the boxed assignments 1o

sum_r ("address" bits32 a, bits32 n) {

bits64 x; bits32 p, lim;

x = 0.0;

p=a; lim = a + n * 24;
Li: if (p >= lim) goto L2;

x = %fadd(x, bits64[pl);

P =P+ 24

goto L1;
L2: return x;
}

After the insertion of assignments pcandlim, the substitution of
equals for equals, and the removal of newly dead assignmeits to
we have “eliminated the induction variable:”

sum_r ("address" bits32 a, bits32 n) {
bits64 x; bits32 p, lim;
x = 0.0;
p = a; lim

a +n x 24;

L1: if (p >= lim) goto L2;
x = %fadd(x, bits64[pl);
p=p + 24;
goto L1;

L2: return x;

}

3. Making dataflow simple

The goal of dataflow optimization is to compute valid assertions,
then use those assertions to justify code-improving transforma-
tions. Assertions are representeddasaflow facts Dataflow facts
relate to traditional program logic:

¢ A dataflow fact is usually equivalent to an assertion about pro-
gram state or about a continuation. For example, in Section 2.1,
x == 7 is a dataflow fact that describes the program state.

¢ A set of dataflow facts forms a lattice. To ensure that analysis
terminates, it is enough if no fact has more than finitely many
distinct facts above it.

1You might be tempted to modify the liveness analysis so thati + 1
is not considered a “use” dfif i is itself dead. This modification is tanta-
mount to writing a single “super-analysis” theambinediveness analysis
and dead-code elimination. In this case, writing a supelyaisais easy,
but the approach does not scale: most super-analyses are ongpéaated
than the examples shown here; the cost of writing a supeysinaloes not
scale linearly with the number of analyses combined; supalyaes often
cannot be composed; and some super-analyses require narstamand-
written traversals of the control-flow graph. Lerner, Groged Chambers
(2002) discuss these issues in detail; Click and Cooper5)188ow both
the advantages of and the programming cost of combining arsalyse

2009/8/1

Specified Implemented data ChangeFlag = NoChange | SomeChange

Part of optimizer by by How many data DataflowLattice a = DataflowLattice
{fact_bot i oa,
Control-flow graphs (54 Us One -
. fact_add_t HH -> -> , Ch F1l
Nodes in a You You Two datatypes per act-add_to 2 @ (= angeFlag) }
control-flow graph intermediate language Figure 2. Representation of a dataflow lattice
Dataflow factF’ You You One datatype per logic
Lattice operations ¥ You One setper logic
Transfer functions ¥ You One setper analysis 3.1 Dataflow lattices
Rewr.lte functions B You One set per transformation As an example, we present a lattice of facts about constant propaga-
Iterative solver Us Us Two (forward & tion. At any program point, a standard constant-propagation analy-
functions backward) sis computes exactly one of three facts about a variable
Solve-and-rewrite Us Us Two (forward & . . o
functions backward) ¢ The analysis shows that = k&, wherek is a compile-time

constant of typ&€onst.

e The analysis shows that is not a compile-time constant.
We notate this factags = T.

Table 1. Parts of an optimizer built with Hoopl

¢ The analysis shows nothing abaytwhich we notate: = .

e Each analysis or transformation may use a different lattice of The pottom element of the lattice is = L, and the join oper-

dataflow facts. ation LI approximates disjunction, the logical operation that com-
. . o) bines facts flowing to a single label. A disjunction of two inconsis-
An assertion about a continuation is an assertion about fraths tent facts is represented by= T, so for examples = 7V z = 8

program point to the procedure gxit; such a;sertions are establishedg approximated by = T, losing informatior?

by abackward dataflow analysisAn assertion about pathe a) o)

program point from the procedure entry is established foyvsard The lattice used by the analysis is the Cartesian product of the
dataflow analysisAs an important special case, an assertion, such lattices for all the local variables. We represent this lattice as a finite
asx == 7 above, may say simply that all paths to a point establish map from a variable to a value of typiaybe Const. A variablex

a predicate which describes the program state at that point. is not in the domain of the map iff = L; = maps toNothing iff
.) x = T; xz maps toJust kiff x = k.
A program point is represented as an edge éomtrol-flow graph ’] S) _
Edges connect nodes, each of which represents a label, an assigrH0opl’s dataflow engine uses joins in a stylized way. Joins occur at

ment, or a control transfer. labels. If f;4 is the fact currently associated with the lab&land if
) . a transfer function propagates a new fégt, into the labelid, the
To write a dataflovanalysis you must dataflow engine replacefs, with the join f,.c., LI f;q. Furthermore,

. o the dataflow engine wants to knowfife.,, U fia = fia, because if
* Choose a representatidgnof dataflow facts and a logical inter- pot, the analysis has not reached a fixed point.

pretation thereof.) o) L
When computing a join, it is often cheap to learn if the join is

* Implement lattice operations ovéf (Section 3.1). equal to one of the arguments. We therefore use a nonstandard rep-
e Write transfer functionghat relate dataflow facts before and resentation of lattice operations, as shown in Figure 2. The join
after each type of node (Section 3.2). operationU and equality test are represented by a single func-

tion calledfact_add_to. The termfact_add_to frnew fid iS
To write atransformationbased on an analysis, you must also cre- equal to(fis, NoChange) if frew U fia = fia and is equal to
ate arewrite function which is presented with a flow-graph node (fnew U fiq, SomeChange) otherwise. Thefact_bot value is the
and with the dataflow facts on the edges coming into that node (Sec-bottom element.
tion 6.2). The function either proposes to replace the node with a
fresh subgraph, or it leaves the node alone. If the function proposes3.2 Transfer functions
a replacement, the replacement must preserve semantics; preserv.
tion may be justified by incoming facts. For example, in Section 2.1
the factx == 7 justifies replacing = x + ywithz = 7 + y.

%\ transfer function is presented with dataflow facts on edges com-
ing into a node, and it computes dataflow facts on outgoing edges.
To understand transfer functions, we must understand how Hoopl
Table 1 shows how Hoopl interacts with your client code. Hoopl organizes the nodes and edges of a control-flow graph.

defines the types of control-flow graphs, lattice operations, transfer
functions, and rewrite functions. All these types are parameterized
by the types of nodes in the control-flow graph, whiau get to
define, so you can use Hoopl with many intermediate languages
(Table| 1). Function types are also parameterized by the type of
dataflow facts, so you can define different analyses, using ditferen
types of facts, all operating over one type of graph.

A control-flow graph is a collection dfasic blockseach labelled
with a BlockId. A basic block is a sequence beginning with a
first node containing zero or moreniddle nodesand ending in

a last node (An optimizer also works withsubgraphs which,

as discussed in Section 6.1, may omit an initial first node or a final
last node.) A first node is alwaysBaockId; a typical middle node
assigns to a register or memory location; and a typical last node is a
To run an optimization, you pass lattice operations, transfer func- conditional, unconditional, or indirect branch. You choose the types
tions, and rewrite functions to one of Hoopgslver functionsor of middle and last nodes to suit your intermediate representation;
rewrite functions—Hoopl's dataflow engingA solver function uses if these types ara and1l, the type of a basic block Block m 1.

a forward or backwardnalysisto compute a dataflow fact for each

program point (Section 3.3). A rewrite function uses a forward or 2your client code determines how much information is lost. Famegle,
backwardransformatiorto compute facts and to rewrite a control- in a similar analysis for a functional language, you mightkratether a
flow graph in light of those facts (Section 6). value is the result of applying a constructor from any finée{&”; }.

3 2009/8/1

newtype LastOuts a = LastOuts [(BlockId, a)l (a backward analysis calls functiemfSolveBwd, which has a

data ForwardTransfers m 1 a = ForwardTransfers S"n”artypey
{ft_first_out :: BlockId -> a -> a,
ft_middle_out :: m -> a > a, zdeolngwd .
ft_last_outs :: 1 -> a -> LastOuts a} :: HavingSuccessors 1 —-- Find successors of 1
=> PassName -- Name of the analysis
data BackTransfers m 1 a = BackTransfers -> DataflowLattice a -- Lattice .
{bt_first_in :: BlockId -> a -> a, -> ForwardTransfers m 1 a -- Transfer functions
bt_middle_in :: m -> a -> a, -> a -- Input fact
bt_last_in i1 -> (BlockId -> a) -> a} -> Graph m 1 -- Control-flow graph
-> FwdFixedPoint m 1 a ()

Figure 3. Transfer functions for forward and backward analyses. 14 function is polymorphic in the types of middle and last nodes

mandl and in the type of the dataflow fagt Polymorphism allows
First nodes are the only targets of control transfers; middle nodes Hoopl to work with any intermediate language, as long as the type
never perform control transfers; and last nodes always pedorm of last nodel satisfies the constraiftavingSuccessors 1 by
trol transfers. So a first node has arbitrarily many predecessdrs an providing a functionsuccs of typel -> [BlockId], which gives
exactly one successor; a middle node has exactly one predecessdhe labels of the blocks to which a last node of tgpeight transfer
and one successor; and a last node has exactly one predecessor afontrol.

arbitrarily many successors. After the type constraint, the first three argumentsd#SolveFwd

These constraints on number of predecessors and successors detecharacterize the analysis. The next argument is the dataflow fact

mine the signatures of transfer functions, which are shown in Fig- that holds on entry to the graph; because a procedure’s caller may
ure’ 3. For each type of node (first, middle, last) and for each kind establish some facts about parameters or about the stack, this fact

of analysis (forward, backward), there is a distinct transfer func-
tion. Functions are grouped by kind of analysis, and each group
is parameterized over a dataflow fact of typpand over the types

m andl of middle and last nodes.

A fact in a forward analysis typically represents an assertion about
program state, and because a label does not change program stat
the transfer functiodt _first_out is oftenflip const—a vari-

ation on the identity functidA For a middle node, the transfer func-
tion ft_middle_out is given a node and a precondition and re-
turns an approximation of the strongest postcondition. For a last
node, different postconditions may be propagated to different suc-

is not alwaysl . The last argument tedfSolveFwd is the graph,
and the result is a fixed point.

TheFwdFixedPoint data structure, whose final type parameter
is explained in Sectioh 6.3, is a big bag of information about a
solution. The most significant information is a finite map from each

g]ock label to the dataflow fact that holds at the label, which is

extracted using functiopdfFpFacts:

type BlockEnv a = Data.Map BlockId a
zdfFpFacts :: FwdFixedPoint m 1 a g -> BlockEnv a

4. Related work

cessors; for example, the true and false successors of a conditional

branch may accumulate information implied by the truth or false-
hood of the condition. A collection of (successor, fact) pairs is rep-
resented by a value of tyfast0Outs a (Figure 3).

In a forward analysis, the dataflow engine starts with the fact at the
beginning of a block and applies transfer functions to the nodes in
that block until eventually the transfer function for the last node

While dataflow analysis and optimization are covered by a vast
literature,designof optimizers, the topic of this paper, is covered
relatively sparsely. We therefore focus on foundations.

When transfer functions are monotone and lattices are finite in
height, iterative dataflow analysis converges to a fixed point (Kam
and Ullman 1976). If the lattice’s join operation distributes over

computes the facts that are propagated to the block’s successorstransfer functions, this fixed point is equivalent to a join-over-all-

For example, in the block

Li: x =7;
y =38;
z=3x+y;
goto L2;

a forward analysis would propagate the fact 7 A y = 8, which

we will call f,..,, along the edge tn2. The dataflow engine then
replacesthe current fact at2 (fi12) with the lattice joinf e U fra.

The dataflow engine iterates over the blocks repeatedly, creating
new factsf and joining them with factg;; until f LI f,s = fiq at
every labelid. When the facts at labels stop changing, the dataflow
engine has reached a fixed point.

3.3 Running the dataflow engine

Given lattice operations of typRataflowLattice a (Figurel2)
together with transfer functions of typerwvardTransfers m 1 a
(Figurd 3), you can run the corresponding analysis by calling Hoopl
function zdfSolveFwd, which is a part of our dataflow engine

3Not every fact is about program state, so not every forwaelyais can
ignore labels. For example, dominator analysis and othgradlis analyses
often compute a set of labels through which control may (or mpast}.

paths solution to the recursive dataflow equations (Kildall 1§73).
Kam and Ullman (1977) generalize to some monotone functions.
Each client of Hoopl must guarantee monotonicity, but for trans-
fer functions that approximate weakest preconditions or strongest
postconditions, monotonicity falls out naturally.

Cousot and Cousot (1977) introduce abstract interpretation as a
technique for developing lattices for program analysis. Schmidt
(1998) shows that an all-paths dataflow problem can be viewed as
model checking an abstract interpretation.

The soundness of interleaving analysis and transformation, even
when some speculative transformations are not performed on later
iterations, was shown by Lerner, Grove, and Chambers (2002).

5. Example analysis passes

Hoopl makes it easy to write compiler passes based on dataflow. To
showhow easy, we present two analyses; related transformations
appear in Sectidn]6. The examples help solve a real problem in the
Glasgow Haskell Compiler: because most calls are tail calls, GHC

4Kildall uses meets, not joins. Lattice orientation is cori@mal, and
conventions have changed. We use Dana Scott’s orientatiamjch higher
elements carry more information.

2009/8/1

: extendAvail
: delFromAvail
: elemAvail

: interAvail

: smallerAvail

: data AvailVars = UniverseMinus VarSet

| AvailVars VarSet
AvailVars
AvailVars
Bool
AvailVars
Bool

add var to set
remove var from set
set membership

set intersection
compare sizes

LocalVar
LocalVar
LocalVar
AvailVars
AvailVars

: AvailVars ->
:: AvailVars
: AvailVars
:: AvailVars
:: AvailVars

Dataflow fact
and operations

->
->

ad

SSe RN oh s

NN~

: availVarsLattice ::
: availVarsLattice = DataflowLattice empty add
where empty = UniverseMinus emptyVarSet

DataflowLattice AvailVars

Lattice
d new old = let join = interAvail new old in
(if join ‘smallerAvail‘ old then SomeChange else NoChange, join)

~
Lo

:middleAvail
: middleAvail
: middleAvail
: middleAvail
: middleAvail

NN NN NN
RSN

I\
S

: lastAvail ::
: lastAvail (L
: lastAvail 1

I\SER\S)
B~

: availTransfers
; availTransfers = ForwardTransfers (flip const) middleAvail lastAvail

: middleAvail ::

:: ForwardTransfers CmmMiddle CmmLast AvailVars

CmmMiddle -> AvailVars -> AvailVars

(MidAssign (CmmLocal x) (CmmLoad 1) avail | 1 ‘isStackSlotOf‘ x
(MidAssign 1lhs _expr) avail = foldVarsDefd delFromAvail avail lhs
(MidStore 1 (CmmVar (CmmLocal x))) avail | 1 ‘isStackSlotOf‘ x = avail
(MidStore 1 _) avail | isStackSlot 1 = delFromAvail avail (var0fSlot 1)
(MidStore _ _) avail = avail

extendAvail avail x

Transfer
functions

CmmLast -> AvailVars -> LastOuts AvailVars
astCall _ (Just k) _ _) _ = LastOuts [(k, AvailVars emptyVarSet)]
avail = LastOuts $ map (\id -> (id, avail)) $ succs 1

I\SERASER\S)
RS

where fp =

S
S

: cmmAvailableVars
: cmmAvailableVars g = zdfFpFacts fp

: Graph CmmMiddle CmmLast -> BlockEnv AvailVars . .
Available-variables
analysis

zdfSolveFwd "available variables" availVarsLattice
availTransfers (fact_bot availVarsLattice) g

uses no callee-saves registers. Therefore, at each (rare)ihoaitta
all live variables must be spilled to the stack.

To illustrate the results of the example analyses and transforma-

tions, here is a contr

f (bits32 a) {
bits32 w, x, vy,

X = a * a;

w=a+a+ a;

y = gln;

zZ=y+Yy;

if (y > 0) {
return z;

} else {

return z + X;
}
}

A spill and a reload should be inserted as follows:

f (bits32 a) {
bits32 w, x, vy,
X = a * a;
w=a+a+ a;
y = glw);
zZ=y+*ty;
if (y > 0) {

return z;
} else {

return z + Xx;

}

}

Figure 4. Dataflow analysis pass to compute available variables

Although theSPILL andRELOAD operations are introduced because
of the call tog(a), they are moved as far from the call as possi-
ble: x is spilled immediately after being assigned a, andx is
reloaded not immediately after the call g but just before its
use in the expressian+ x. On the control-flow path teeturn z,

x needn't be reloaded at all.

ived example program in the style of Section 2:

z; // local variables

Spills and reloads are inserted by a sequence of dataflow passes:

1. A backward analysis computes liveness to identify the variables
that should be spilled at call sites (Section]5.3 and Figure 5).
An accompanying transformation (not shown) inserts reloads
immediately after each call site and inserts spills not immedi-
ately before call sites, but rather immediately after the reaching
definitions.

// call; x must be spilled

. A forward analysis finds “available variables” which have been
reloaded from the stack (Section 5.2 and Figure 4), and an
accompanying transformation inserts redundant reloads before
their uses (Sectidn 6.4 and Figlre 8). By keeping variables on
the stack longer, this pass reduces register pressure.

. A backward analysis (the same as in pdss 1) computes liveness,
and an accompanying transformation (Figure 9 in Settion 6.5),
dead-assignment elimination, removes redundant reloads.

Z;

ist f .)
// no register pressure from x Passes 2 and 3 cooperate to “sink” reloads away from the call site.

// mo register pressure from x 5.1 Choosing node types for GHC

To show that Hoopl works at scale, we present examples that have
been implemented and tested in GHC. GHC'’s low-level interme-
diate code, calledmm, is a subset of the portable assembly lan-
guage G- (Ramsey and Peyton Jones 2000). We specialize Hoopl
to GHC by instantiating type parametarandl with GHC's types
CmmMiddle andCmmLast

// x does not need reloading

2009/8/1

~

: type Live = VarSet

Dataflow fact

: liveLattice :: DataflowLattice Live
: liveLattice = DataflowLattice emptyVarSet add
where add new old =

let join = unionVarSets new old in

Lattice

(if sizeVarSet join > sizeVarSet old then SomeChange else NoChange, join)

: liveTransfers ::

R DT W

9: middleLiveness :: CmmMiddle -> Live -> Live
10: lastLiveness
11: middleLiveness m = addUsed m .

12: lastLiveness 1 = addUsed 1 .

13: addUsed ::
14: remDefd ::

remDefd m
remDefd 1 .

UserOfLocalVars

17: lastLiveOut ::
18: lastLiveOut 1 env = last 1
19: where last (LastBranch id) = env id

BackTransfers CmmMiddle CmmLast Live
: liveTransfers = BackTransfers (flip const) middleLiveness lastLiveness

a => a -> Live -> Live
DefinerOfLocalVars a => a -> Live -> Live
15: addUsed a live = foldVarsUsed extendVarSet 1live a
16: remDefd a live = foldVarsDefd delFromVarSet live a

CmmLast -> (BlockId -> Live) -> Live

: CmmLast -> (BlockId -> Live) -> Live

lastLiveOut 1

Transfer
functions

20: last (LastCondBranch _ t f) = unionVarSets (env t) (env f)
21: last (LastSwitch _ tbl) = unionManyVarSets $ map env (catMaybes tbl)

22: last (LastCall { }) = emptyVarSet

23: cmmLiveness
24: cmmLiveness g = zdfFpFacts fp

25: where fp = zdfSolveBwd "liveness" liveLattice liveTransfers emptyVarSet g

:: Graph CmmMiddle CmmLast -> BlockEnv Live

Liveness
analysis

Figure 5. Dataflow analysis pass to compute liveness

A middle node stores the value of an expression:

data CmmMiddle
= MidAssign CmmVar CmmExpr -- store in variable
| MidStore CmmExpr CmmExpr -- store in memory

TypeCmmVar represents a variable, which may be loGan{l.ocal
LocalVar) or global CmmGlobal GlobalVar). Type CmmExpr
represents a pure expression; among its constructoiGmat®ad
(a value from memory) andumVar (the value of a variable).

Instead of the usual mutable bit vectors, we use a purely func-
tional representation of sets—one in which we can represent
the set of all variables without enumerating them. A set is ei-
ther UniverseMinus s, which stands for all variables except
those in the set, or AvailVarss, which stands for the vari-
ables in the sets (Figure[4, line[1). The bottom element is
UniverseMinus emptyVarSet. To manipulate these sets, we pro-
vide the functions declared in line§ 2—6 of Figure 4.

The most interesting part of the analysis isthiédleAvail trans-

A last node represents a control transfer; constructors include un-fer function in Figuré 4.

conditional, conditional, and indirect branches, as well as a call:

data CmmLast
= LastBranch BlockId
| LastCondBranch CmmExpr BlockId BlockId
| LastSwitch CmmExpr [Maybe BlockId]
| LastCall ... -- arguments omitted

5.2 Available variables: a forward analysis supporting pass 2

To understand the available-variables analysis, you must know that

each variabler is related to a stack slat,, which is used to save

the value ofc. (GHC represents the relation using Haskell functions

isStackSlot, var0fSlot, andisStackSlot0f£.) If the variable
and the stack slot hold the same value, that is # s., then it is
safeto insert a reload.

To sink a reload of a variable, we insert redundant reloads imme-
diately before uses at. It is profitableto insert a reload before a

use ofz only if, on every path to the use, the most recent definition

of z is a reload froms,. Safety and profitability are incompara-

ble; the dataflow fact computed by our analysis is the set we call

available variables, for which it is safand profitable to insert a

reload. Because the assertion of interest is an “all-paths” property,
the lattice-join operation is set intersection, and the bottom element

is the universal set containing all variables.

e Line|15 identifies an assignment that reloads local variable

from its stack slot. After such an assignment,= s,, and
the last definition ofr is a reload, sa is added to the set of
available variables.

Online 16, an assignment to a local variable means that the vari-
able need not be equal to the value in its stack slot, shdfis a

local variable, it is removed from the set of available variables.
The conditional removal is done by applyidgldvarsDefd

to delFromAvail; foldVarsDefd is an overloaded function
which, along with its dual, is used throughout the back end:

foldVarsUsed :: UserOfLocalVars a

=> (b -> LocalVar -> b) -> b -> a -> b
foldVarsDefd :: DefinerOfLocalVars a

=> (b -> LocalVar -> b) -> b -> a -> b
On line[16, if 1hs is a local variablefoldvVarsDefd calls
delFromAvail;if 1hs is global,foldVarsDefd does nothing.

There are three cases fMidStore nodes. Liné 17 matches

a node that spills a variableto the stack. After such a node,

X = 8y, butthe node is not a reload instruction xss not added

to the set of available variables. Line]18 matches a node that
writes anyother value to a stack slot, after which the variable
associated with that slot is no longer available. Line 19 matches

2009/8/1

a store to a location that is not a stack slot, which leaves the set
of available variables unchanged.

The transfer function for a last node checks to see if the node is
a function call (lind 21L); if so, the set of available variables at

the call's continuation is empty. Other last nodes do not change
values of variables or stack slots, so the set of available variables

0 -- marks graph as open at entry or exit

type

type C -- marks graph as closed at entry or exit
type GF m 1 entry exit -- graph or subgraph
type Graph m 1 = GFm 1 0 C

Figure 6. Types of graphs and subgraphs

remains unchanged. A first node has no effect on program state, so

its transfer function i€1ip const (line(13).

Given the lattice and the transfer functions, we can perform the
analysis by calling the Hoopl functiomdfSolveFwd (Figure!4,
lines 25-26). Except for the implementations of the set operations
on lineg 2—6, Figure 4 shows tleatire analysis.

5.3 Liveness: a backward analysis supporting passes 1 and 3

The assertion computed by a backward dataflow analysis applies to

acontinuationat a program point. The classic example is liveness
analysis; the assertion of interest is that at a particular program
point, the answer produced by the continuation does not depend
on the value of a particular variabte If so, z is said to bedeadat

that point. If the answer produced by the continuatiightdepend

on the value ofr, z is live[®

In a modern compiler, liveness analysis supports many program
transformations, including dead-assignment elimination, which re-
moves assighments to dead variables, and register allocation, whic
ensures that if two variables are live at the same time, they are not
assigned to the same register.

6.1 Representing graphs and subgraphs

As mentioned in Sectidn 3.2, a graph is a collection of basic blocks,
and a basic block is normally a first node followed by zero or more

middle nodes followed by a last node. But a graph may also contain
two special, incomplete blocks:

e A graph may begin with aantry sequenceero or more middle
nodes followed by a last node (i.e., a control transfer). Such a
graph isopen at the entry

¢ A graph may end with aexit sequencea first node followed
by zero or more middle nodes, bubt followed by a last node.
Such a graph ispen at the exifcontrol “falls off the end”).

Our general type of graph, callegF, therefore takegour type
parameters (Figure 6} is the type of a middle node; is the
type of a last nodesntry is either typed or typeC, depending on
whether the graph is open or closed at the entry;earid is type0

ror typecC, depending on whether the graph is open or closed at the

exit. The instantiations of type parametetgry andexit specify
the graph’sshape which we refer to in shorthand. For example,
a full Graph, which represents a function or procedure, is open at

The dataflow fact we use to represent liveness assertions is thethe entry and closed at the exit, or simply “open/closed.”

set of live variables (Figure] 5, line 1). The bottom element of the
lattice is the empty set, and the join operation is set union (Figure 5,
lines 2£6); a variable is deemed live after a node if it is liveaoy
edge leaving that node.

The transfer functions for liveness rely on two auxiliary functions
addUsed andremDefd (Figure 5, lines 13—16). A transfer function
is given a set of variables live on the edges going out of the node.

It removes from that set any variable defined by the node, then adds

any variable used by the node (Figure 5, lines 11/ and 12).

For a last node, functionastLiveOut consults the solution in
progress (parametenv on linel 18) to find out what variables are
live at thesuccessorsf a last node. For an unconditional branch,

Graphs are created using these functions:

mkLabel :: BlockId ->GFml1lCO
mkMiddle rrom ->GFml1l00O
mkLast HE > GFm1O0C
(<x>) :GFmlea ->GFmlaxzx

> GFmlezx
emptyGraph :: GraphClosure a => GF m 1 a a

The infix <x> function is graph concatenation; the exit of the first
argument must match the entry of the next (both open or both
closed). ThesmptyGraph is a left and right unit of concatenation;
the constrainGraphClosure a is satisfied only by typeg andc.

we look up the live set at the label branched to (line 19); for a A graph is normally represented by a triple: an optional entry
conditional branch, we look at both true and false edges (line 20), sequence, BlockEnv containing basic blocks, and an optional exit
and for a switch, we consider every possible target of the branch sequence. As a special case, a single sequence of middle nodes also

(linel21). The remaining case (line 22) is a call, and since a call
destroys the values of all local variables, no local variables are live
at its continuation.

Given the lattice and the transfer functions, we perform liveness
analysis by calling the dataflow-engine functiadfSolveBwd
(Figuré 5, line 25). Figure 5 shows teeatireanalysis.

6. Using dataflow facts to rewrite graphs

We compute dataflow facts in order to enable code-improving
transformations on control-flow graphs. A dataflow fact may enable
a rewrite function to replace a node byabgraph A subgraph is

a graph that may not define all the labels to which it refers. A valu-
able, novel property of our implementation is that it uses Haskell's
static type system to control which subgraphs may replace which
nodes. Before explaining how to transform graphs, we explain how
graphs and subgraphs are represented.

5Liveness cannot be decided accurately; it reduces to thimgaroblem.
As usual, we approximate liveness by reachability.

forms a graph open at both entry and exit.

This new representation improves significantly on our previous
work (Ramsey and Dias 2005):

e We can find the exit point of a graph in constant time.

¢ \WWe can concatenate data structures in near-constant amortized
time. Previously, we had to resort to Hughes'’s (1986) technique,
representing a graph as a function.

e Mostimportant, errors in concatenation are ruled out at compile-
compile time by Haskell's static type system. In earlier imple-
mentations, such errors were not detected until the compiler ran,
at which point Hoopl tried to compensate for the errors—but
the compensation code harbored subtle faults.

6.2 Reuwrite functions

Hoopl transforms its graphs by composing transfer functions (Sec-
tion 3.2) withrewrite functionswhose types are shown in Figlire 7.

A rewrite function is given a dataflow fact and a nodelt may
choose to replace node with a replacement grapty, in which

2009/8/1

type Rewrite m 1 e x = Maybe (GF m 1 e x)

data ForwardRewrites m 1 a = ForwardRewrites
{fr_first :: BlockId -> a -> Rewritem 1 C O,
fr_middle :: m -> a -> Rewritem 1 0 O,
fr_last 0 1 -> a -> Rewrite m 1 0 C}

data BackwardRewrites m 1 a = BackwardRewrites
{br_first :: BlockId -> a -> Rewritem 1 C O,
br_middle :: m -> a -> Rewritem 1 0 O,
br_last :: 1 -> (BlockId->a) -> Rewrite m 1 0 C}

Figure 7. Types of forward and backward rewrite functions.

case it returngust g, or it may do nothing, in which case it re-
turnsNothing. If it returns Just g, it must guarantee that given
the assertions represented by incoming dataflow facts, graph
observationally equivalent to node

A rewrite function may replace a node only with a graph of the
same shape:

¢ A first node must be rewritten to a closed/open graph.
¢ A middle node must be rewritten to an open/open graph.
¢ A last node must be rewritten to an open/closed graph.

e Rewriting is monadic. AFuelMonad holds resources needed
to rewrite nodes into subgraphs: a supply of fresh labels and a
supply ofoptimization fue(Section 7.1).

Function zdfRewriteFwd implements interleaved analysis and
transformation in two phases (Lerner, Grove, and Chambers 2002):

e In the first phase, when a rewrite function proposes to replace a
noden, the replacement graph is analyzed recursively, and the
results of that analysis are used as the new dataflow fact(s) flow-
ing out of noden. Then the replacement graphtisown away
only the facts remain. (In other words, rewritingsiseculative
If, on a later iteration, node is analyzed again, perhaps with a
different input fact, the rewrite function may propose a different
replacement or even no replacement at all.

The first phase is called thterator. It computes a fixed point
of the dataflow analysias if nodes were replaced, while never
actually replacing a node.

¢ When the iterator finishes, the resulting fixed point is sound,

and the facts in the fixed point are used by the second phase,
in which no dataflow facts change, but rewrites are not specu-
lative: each replacement proposed by a rewrite function is actu-

ally performed. This phase is therefore called @lctualizer

Facts computed by the iterator depend on graphs produced by
rewrite functions, which in turn depend on facts computed by the

These conditions, which are enforced by the static type systemiterator. How do we know this algorithm is sound, or even if it

(Figurd 7), are necessary and sufficient to ensure that evergeepla
ment graph can be spliced in place of the node it replaces.

6.3 Running the dataflow engine

To write a program transformation, you must

¢ Create a dataflow lattice and transfer functions for the support-
ing analysis, as described in Section 3.

e Create rewrite functions for first, middle, and last nodes.
You can then use Hoopl functiordfRewriteFuwd to transform

a control-flow graph (a backward transformation uses function
zdfRewriteBwd, which has a similar type):

zdfRewriteFwd

:: HavingSuccessors 1 -- Find successors of 1
=> RewritingDepth -- Rewrite recursively?
-> PassName -- Name of this pass

Lattice
Transfer functions

DataflowLattice a
ForwardTransfers m 1 a --

-> ForwardRewrites m 1 a -- Rewrite functions
-> a -- Input fact
-> Graph m 1 -- Graph or subgraph

FuelMonad (FwdFixedPoint m 1 a (Graph m 1))

FunctionzdfRewriteFwd is like zdfSolveFwd in Section 3.3, but
it uses and produces extra information:

¢ FunctionzdfRewriteFwd requires rewrite functions as well as
transfer functions.

e TheRewritingDepth parameter controls recursive rewriting;
if a graph produced by a rewrite function should not be further
rewritten, rewriting isshallow if a graph produced by a rewrite
function can be rewritten again, rewritingdsep

¢ In the result type, the fourth type parameter of type construc-
tor FudFixedPoint is a value contained in the fixed point.
The value is extracted using functiedfFpContents, which
has typeFwdFixedPoint m 1 a b -> b. Here the type param-
eterb is instantiated t@&raph m 1: the fixed point contains the
rewritten graph.

terminates? A proof requires its own POPL paper (Lerner, Grove,
and Chambers 2002), but we can give some intuition:

¢ The algorithm is sound because, given the incoming dataflow
facts, each rewrite must preserve the observable behavior of the
program. A sound analysis of the rewritten graph may generate
only dataflow facts that could have been generated by a more
complicated analysis of the original graph.

¢ No matter what the transfer functions and rewrite functions do,
the dataflow engine uses the dataflow lattice’s join operation to
ensure that facts at labels never decrease. As long as no fact
may increase infinitely many times, analysis terminates.

Thus to guarantee soundness and termination, client code must sup-
ply sound transfer functions, sound rewrite functions, and a lattice
with no infinite ascending chains. And unless client code specifies
shallow rewriting, rewrite functions must not return replacement
graphs which contain nodes that could be rewritten indefinitely.

Why use such a complex algorithm? Because interleaving analysis
with transformation makes it possible to implement useful trans-

formations using startlingly simple client code. In the rest of this

section we present two examples: Section 6.4 shows how to insert
a reload instruction just before each use of each spilled variable,
and Section 6.5 shows how to eliminate dead assignments. When
these two transformations are run in sequence, the effect is to sink
reloads and produce programs like the example shown in Segtion 5.

6.4 Sinking reloads: a forward transformation

We use the available-variables analysis of Section 5.2 to insert
reloads immediately before uses of variables. The transformation
is implemented by the rewrite functions on lines 8-5 of Figure 8.
A first node uses no variables and so is never rewritten. For mid-
dle and last nodesiaybe_reload_before (lines 6-9) computes
used, which is the set of variables used in the node that are both
safe and profitable to reload. If that set is not empty, function
reloadTail replacesnode with a new graph in whichhode is
preceded by a (redundant) reload for each variable in theseet

A reload node is created by functiarload (line[11), which has
typeLocalVar -> CmmMiddle.

2009/8/1

1: availRewrites :: ForwardRewrites CmmMiddle CmmLast AvailVars

2: availRewrites = ForwardRewrites first middle last

8: where first _ _ = Nothing

4: middle m avail = maybe_reload_before avail m (mkMiddle m)

5: last 1 avail = maybe_reload_before avail 1 (mkLast 1) Rewrite
6: maybe_reload_before avail node tail = .

7: let used = filterVarsUsed (elemAvail avail) node funCtlonS
8: in if isEmptyVarSet used then Nothing

9: else Just $ reloadTail used tail

10: reloadTail vars t = foldl rel t $ varSetTolList vars

11: where rel t r = mkMiddle (reload r) <*> t

12: insertLateReloads :: Graph CmmMiddle CmmLast -> FuelMonad (Graph CmmMiddle CmmLast) Late'reload
13: insertlLateReloads g = 1iftM zdfFpContents fp

14: where fp = zdfRewriteFwd RewriteShallow "insert late reloads" availVarsLattice insertion
15: availTransfers availRewrites (fact_bot availVarsLattice) g

Figure 8. Late-reload insertion, which relies on the analysis of Figure 4

1: deadRewrites = BackwardRewrites nothing middleRemoveDeads nothing

2 where nothing _ _ = Nothing .

3: middleRemoveDeads :: CmmMiddle -> VarSet -> Maybe (Graph CmmMiddle CmmLast) ReW”te
4: middleRemoveDeads (MidAssign (CmmLocal x) _) live .

5: | not (x ‘elemVarSet‘ live) = Just emptyGraph functions
6 middleRemoveDeads _ = Nothing

7: removeDeadAssignments :: Graph CmmMiddle CmmLast -> FuelMonad (Graph CmmMiddle CmmLast)

8: removeDeadAssignments g = 1liftM zdfFpContents fp Dead_code
9: where fp = zdfRewriteBwd RewriteDeep "dead-assignment elim" liveLattice L.)

0: liveTransfers deadRewrites emptyVarSet g ellmlnatlon

Figure 9. Dead-assignment elimination, which relies on the analysis of Figure 5

Our transformation is implemented by the calktdfRewriteFud 7.1 Throttling the dataflow engine using “optimization fuel”
on lines 14-15 of Figurle 8. Rewriting is shallow, so a graph con-
taining reload nodes is not itself rewritten. (Ifvitere rewritten, a
nonemptyused set would make the compiler insert an infinite se-
guence of reloads befomde.) Once the reloads are inserted, the
original reloads are dead, and they can be eliminated by our next
transformation, dead-assignment elimination.

We have extended Lerner, Grove, and Chambers’s optimization-
combining algorithm with Whalley’s (1994) algorithm for isolat-
ing faults. Whalley's algorithm is used to test a faulty optimizer;
it automatically finds the first rewrite that introduces a fault in a
test program. It works by giving the optimizer a finite supply of
optimization fuelEach time a rewrite function proposes to replace
6.5 Dead-assignment elimination: a backward transformation @ node, one unit of fuel is consumed. When the optimizer runs out
of fuel, further rewrites are suppressed. Because each rewritesleav
the observable behavior of the program unchanged, it is safe to sup-
press rewrites at any point. In normal operation, the optimizer has
unlimited fuel, but during debugging, a fault can be isolated quickly
by doing a binary search on the size of the fuel supply. The fuel
upply is stored in a state monad:é1Monad), which also holds a

supply of fresh labels. Fresh labels are used for making new blocks.

We use the liveness analysis of Sectfion 5.3 to identify assignments
to local variables that are not live. Sudead assignmentsan be
removed without changing the observable behavior of the program.
The removal is implemented by the rewrite functions on linés 2—6
of Figure[9. First and last nodes are not assignments and so ar
never rewritten. A middle node is rewritten to the empty graph if
and only if it is an assignment to a dead variable (linés 4-5). On
lines 9 and 10, we calldfRewriteBwd. That's the whole thing. 7.2 A monad for dataflow effects

) ; In addition to fuel, each analysis and transformation keeps track of
7. Hoopl's dataflow engine the values of dataflow facts. Facts and fuel are storecdataflow

In sections 3 through 6, we use Hoopl to create analyses and transmonad a state-transformer monad whose state includes a private
formations. Here we sketch the implementation of the main part of environmenmapping labels to facts, as well as the global supplies
Hoopl: the dataflow engine. While a full description of the imple- of fuel and fresh labels. A value in the dataflow monad has type
mentation is beyond the scope of this paper, a sketch demonstrate®FM a b, wherea is the type of a dataflow fact andis the type of

the new ideas that make this implementation simpler than the orig- the value returned by the monadic action.

inal: using pure functional code throughout; using an explicit state

monad to manage the computation of fixed points; giving each Operations on the datafiow monad include

type of graph node its own analysis function, which also performs getFact :: BlockId -> DFM a a
speculative rewriting; and using continuation-passing style to stitch setFact :: BlockId -> a -> DFM a ()
these functions together. We sketch the implementation from the getAl1Facts :: DFM a (BlockEnv a)
bottom up: Hoopl's fuel monad, the monad that holds dataflow setAllFacts :: BlockEnv a -> DFM a ()
facts, an iterator, and an actualizer. useOneFuel :: DFM a ()

9 2009/8/1

1: type FactKont a b = a -> DFM a b
2: type LOFsKont a b = LastOuts a -> DFM a b
3: type Kont ab-= DFM a b
4: fud_iter :: forall m 1 e x a . HavingSuccessors 1 => (forall b . Maybe b -> DFM a (Maybe b))
5: -> RewritingDepth -> PassName -> BlockEnv a -> ForwardTransfers m 1 a
6: -> ForwardRewrites m 1 a -> ZMaybe e a -> GF m 1 e x -> DFM a (ZMaybe x a)
7: fwd_iter with_fuel depth name start_facts transfers rewrites in_fact g =
8: do { setAllFacts start_facts ; iter_ex g in_fact }
9: where iter_ex :: GFm1le x -> ZMaybe e a -> DFM a (ZMaybe x a)
10: iter_first :: BlockId -> FactKont a b -> Kont ab
11: iter_mid rim -> FactKont a b -> FactKont a b
12: iter_last :: 1 -> LOFsKont a b -> FactKont a b
13: iter_block :: BlockId -> [m] -> 1 -> LOFsKont a b -> Kont ab
14: iter_block f ms 1 = iter_first f . flip (foldr iter_mid) ms . iter_last 1
15: set_last :: LOFsKont a ()
16: set_last (LastOuts 1) = mapM_ (uncurry setFact) 1
17: iter_mid m k in’ =
18: (with_fuel $ fr_middle rewrites in’ m) >>= \x -> case x of
19: Nothing -> k (ft_middle_out transfers in’ m)
20: Just g -> do { a <- subAnalysis $ case depth of
21: RewriteDeep -> iter_00 g return in’
22: RewriteShallow -> anal_f_00 g in’
23: ; kalt
Figure 10. Excerpts from the forward iterator
fuelExhausted :: DFM a Bool the block. The outflowing facts are joined with the facts previously
subAnalysis :: DFM ab ->DFM a b stored in the environment, and when the facts in the environment
withDuplicateFuel :: DFM a b -> DFM a b stop changing, the iterator terminates.

H i -> ->
runDFM :: DataflowLattice a -> DFM a b -> FuelMonad b 1pq jiarator interleaves analysis and speculative rewriting (Lerner,

A computation in the dataflow monad has two significant side Grove, and Chambers 2002). At a nodehe iterator passesand
effects: it mayincrease stored fac{@ccording to a lattice ordering) ~ any incoming dataflow factfs to a rewriting function. If node:
and it mayconsume fuelThe two most interesting operations inthe is rewritten to a graply, the iterator continues with the same

monad are used to control those effects: dataflow factsfs flowing into graphg. After graphg is analyzed, it

. is discarded; only the facts flowing out gfpersist.
e ComputationsubAnalysis ¢ computes the same results as))]
and consumes the same fue|casbut it does not Change any Flgurd 10 shows excerptS from the forward iterated_iter.

stored dataflow facts. e Thewith_fuel parameter is called on the result of each rewrit-
e ComputationwithDuplicateFuel ¢ computes the same re- ing function (e.g. line 18). It consumes fuel; or if no fuel is

sults asc and changes the same stored facts asut it con- available, it prevents any nodes from being rewritten.

sumes fuel from @opyof the fuel supply. The inner computa- e Analysis of a subgraph starts with known facts, not bottom

tionc may run out of fuel, but afterward,ithDuplicateFuel facts; they are passed asart_facts and set on ||nb 8.
restores the original fuel supply. Using thDuplicateFuel

has enabled us to eliminate fuel from arguments and results,
making an implementation which is less error-prone amtth
easier to read than the one by Ramsey and Dias (2005).

e A forward analysis requires an entry faiat_fact if and only
if the graph being analyzed is open at the entry. Similarly, the
analysis produces an output fact if and only if the graph being
analyzed is open at the exit. We express these constraints using

Function runDFM runs a single analysis or transformation, then the generalized algebraic data tygdaybe (Figure 10, line 6):
abandons the dataflow facts and returns the result in the fuel monad. data ZMaybe ex a where

Only FuelMonad is exposed to the client; the dataflow monad is ZJust 1 a -> ZMaybe 0 a

private to Hoopl. Using the dataflow monad, Hoopl's iterators and ZNothing :: ZMaybe C a

actualizers are significantly simpler than those in our previous work
(Ramsey and Dias 2005). In Sections 7.3[and 7.4, we show parts of
the forward iterator and actualizer.

Using ZMaybe to construct the types of the input and output
facts has simplified our implementation of the dataflow engine
and has eliminated dynamic tests of the shapes of subgraphs.

7.3 The forward iterator The functioniter_ex (type on lineé 9, implementation not shown),
solves a graph or subgragh Where the graph is opetiter_ex
convertsZMaybe facts to actual facts—the static type system pre-
cludes the possibility of a missing or superfluous fact.

An iterator does dataflow analysis with speculative rewriting.
Analysis begins an dataflow monad whose environment maps all
labels to bottom facts. For each block in the control-flow graph, the
iterator begins with the dataflow facts flowing into one end of the The iterator is composed of functions written in continuation-
block (in a forward analysis, the first node; in a backward analysis, passing style: the result of analyzing part of a graph is a function
the last node), then uses the transfer functions and rewrite func-from continuations to continuations. The types of the continuations
tions to compute the dataflow facts flowing out the other end of are shown on lines 1-3 of Figure 10.

10 2009/8/1

1:

type GraphFactKont m 1 e xab=GFmle

x -> a ->DFM a b

2: type GraphKont mlexab=GFmlex -> DFM a b

3: ar_first :: BlockId -> GraphFactKont m 1 e 0 a b -> GraphKont mleCab
4: ar_mid i m -> GraphFactKont m 1 e 0 a b -> GraphFactKkont m 1 e 0 a b
5: ar_last :: 1 -> GraphKont mleCab -> GraphFactkont m 1 e 0 a b
6: ar_mid m k head in’ =

7: (with_fuel $ fr_middle rewrites in’ m) >>= \x -> case x of

8: Nothing -> k (head <*> mkMiddle m) (ft_middle_out transfers in’ m)

9: Just g -> do { (g, a) <~ subAnalysis §$

10: case depth of

11: RewriteDeep -> iar_00 g (curry return) in’

12: RewriteShallow -> do { a <- anal_f_00 g in’; return (g, a) }
13: ; k (head <*> g) a }

14: iar 00 :: GFm 1 0 0 -> GraphFactKont m 1 0 0 a b -> FactKont a b

Figure 11. Excerpts from the forward actualizer

TypeFactKont a b describes a context following a first node
or middle node: in a forward analysis, the context expects a
fact of typea to flow out of the node. The rest of the analysis
consumes that fact and produces a computation in the dataflow

1. If we are doingleeprewriting, then ag is analyzed, it may be

rewritten further. Becausg replaces a middle node, it is open
at entry and exit, so it is analyzed and rewritten on line 21 by
a recursive call taiter_00 (implementation not shown; type

monad DFM a) with an answer of type.

TypeLOFsKont a b describes a context following a last node.
The type is dictated by the type of the transfer function
ft_last_outs in Figure[3: since as many facts flow out of

a last node as there are control-flow edges leaving that node,
the context expects those facts to have typetOuts a.

Type Kont a b describes a contexieforea first node (or a
basic block). The dataflow fact flowing into the note is not
passed as a parameter; it is extracted from the dataflow monad’s
environment by calling the monadic operatig#tFact.

GFm 100 ->FactKont a b -> FactKont a b). The recursive
call gets continuatiometurn, and the resultinfactKont a a

is given the input fact. The output fact is computed in a sub-
analysis and bound on line 20. FunctienbAnalysis rolls
back the facts mutated byter_00, but subAnalysis does
account for fuel consumed hijter_00.

2. If we are doingshallow rewriting, the new graplg must not
be rewritten, but we must still find a fixed point of the trans-
fer equations. We compute that fixed point usiigl_f_00
(line 22). Functionanal_f_00 (not shown) recursively calls
fwd_iter using with_fuel =\ _-> return Nothing, and
so it does no rewriting and consumes no fuel.

Declarations of continuation-passing iterator functions for nodes
are shown on lines 10-12 of Figure|10. Functicter_last on
line[12 maps d.0FsKont to aFactKont; iter_mid on line 11
maps aFactKont to anotherFactKont; and iter_first on
line 10 maps &actKont to aKont. To analyze a basic block, pynctionzafsolveFwd is implemented by callingwd_iter with

with speculative rewriting, we compose these three functions, as the transfer functions given, with undefined rewrite functions, and
shown in functioniter_block on lines 13 and 14. with parametetrith_fuel = \ _ -> return Nothing.

Whether rewriting is shallow or deep, the application on line 23
solves the rest of the graph by applying the continuation

In code not shown here, functiobter_block is applied to
continuation set_last (lines[15 and_16), which updates the
environment of facts stored in the dataflow monad. The value
iter_block set_last iS a computation of typeont a (),
which isDFM a (). This computation reads the stored fact flow-
ing into a block, propagates facts through the block using transfer
functions and speculative rewriting, and finally updates the stored
facts flowing out to the block's successors. Iterator functions for The forward actualizer closely resembles the forward iterator, but
graphs and subgraphs, likeer_ex, perform such a computation ~ because the actualizer passes a rewritten graph as an accumulating
for every block, then repeat until stored facts stop changing. Each parameter, the continuations have different types, as shown on lines
iteration runs underithDuplicateFuel, Sofwd_iter simulates 1 and 2 of Figure 11. When the actualizer runs, the dataflow monad
the effects of a fuel limit, but it does not actually consume fuel. already contains a fixed point, so there is no need to propagate facts
out of a block, and so no continuation analogousBsKont.

7.4 The forward actualizer

An iterator returns dataflow facts, leaving the graph unchanged.
An actualizertakes facts and a graph, and in a single pass uses
rewrite functions to create a new graph. The actualizer also uses
transfer functions to materialize facts on edges within basic blocks.

Computations infwd_iter, such asiter_block, are compo-
sitions of iter_first, iter_mid, and iter_last. Because The functions that actualize rewrites are again in continuation-
these three functions so resemble one another, we show only onepassing style; linds 3+5 of Figure |11 give the types of the base-
iter_mid, on lines 17-23 of Figute 10. On line[18, a rewrite func- case functions. We show ond_mid (lines/6-13). It is much like

tion gets an input facin’ and a middle node. If the rewrite func- functioniter_mid on lines 17-23 of Figute 10. Line 6 shows the
tion proposes no replacement graph, or if no fuel is available, the additional parametekiead, which contains the (rewritten) graph
application ofwith_fuel returnsreturn Nothing, and contin- preceding middle noda. When no rewrite is proposed, the only
uationk is given the output fact (computed Ht_middle_out change to the code is that continuationiakes the additional pa-

on line 19). The interesting case occurs on lings 20-23, when rametehead <*> mkMiddle m, which is the graph formed by con-
the rewrite function proposes a replacement grgphrunction catenating graplhead and nodem. When a rewrite is proposed,
with_fuel decrements the fuel supply and produges the sub-analysis computes not just an output fact but also a possi-
bly rewritten graph (lines 9—12). Rewriting proceeds with the new
graphhead <*> g (line/13).

6To simplify the example, we conceal Hoopl's representatioblocks.

11 2009/8/1

The recursive iterate-and-actualize-rewrites functian_o0 (type the node it replaces (Sectidns 6.1 and 6.2); and by simplifying
on line_14, implementation not shown) has no counterpart in the our implementation using continuation-passing style (Sections
iterator. It calls the iterator to set the dataflow facts to a fixed [7.3 and 7.4).

point (using a duplicate fuel supply), then calls actualize-rewrite
functions to rewrite the graph based on those facts (using the shared
fuel supply). Similar functions apply to graphs of other shapes; for
exampleiar_0C is used to implementdfRewriteFwd.

¢ Hoopl is polymorphic in the representations of assignments and
control-flow operations. By forcing us to separate concerns,
introducing polymorphism made the code simpler, easier to
understand, and easier to maintain. In particular, it forced us to

. make explicitexactlywhat Hoopl must know about flow-graph

8. Conclusions nodes: it must be able to find targets of control-flow operations

Compiler textbooks make dataflow optimization appear difficult (constraintiavingSuccessors 1, Section 3.3).

and complicated. In this paper, we show how to engineer a library, Using Hoopl, you can create a new code improvement in three
Hoopl, which makes it easy to build analyses and transformations steps: create a lattice representation for the assertions you want to
based on dataflow. Hoopl makes dataflow simple not by using express; create transfer functions that approximate weakestpreco
a single magic ingredient, but by applying ideas that are well ditions or strongest postconditions; and create rewrite functions that
understood by the programming-language community. use your assertions to justify program transformations. You can get
quickly to the real intellectual work of code improvement: identify-

¢ We acknowledge only one program-analysis technique: the so- 1=~ ; . 8 A
J y brog y d ing interesting transformations and the assertions that justify them.

lution of recursion equations over assertions. We solve the equa-
tions by iterating to a fixed point.

e We consider only two ways of relating assertions: weakest References

liberal precondition and strongest postcondition, which corre- Manuel E. Benitez and Jack W. Davidson. 1988 (July). A pdetgtobal

spond to “backward” and “forward” dataflow problems. optimizer and linkerProceedings of the ACM SIGPLAN '88 Conference
. . . on Programming Language Design and ImplementationSIGPLAN
Although our implementation allows graph nodes to be rewrit- Notices 23(7):329-338.

ten in any Wafy that_ presela/e_s semantlcs_, we defscrlbel thfreeCIiff Click and Keith D. Cooper. 1995 (March). Combining aysés, com-
program-transformation techniques: substitution of equals for " pning optimizations. ACM Transactions on Programming Languages

equals, insertion of assignments to unobserved variables, and and Systems7(2):181-196.

remov_al .Of assignments to unobserved .Var!a}bles (Seﬁlon_ 2). Patrick Cousot and Radhia Cousot. 1977 (January). Absiri@cpretation:
Substitution of equals for equals is often justified by properties A nified lattice model for static analysis of programs by congton
of program states; for exam_ple, if variableis a|Way5f 7, we or approximation of fixpoints. Ir€onference Record of the 4th ACM
may substitute 7 for. Insertion and removal of assignments Symposium on Principles of Programming Languagegjes 238—252.

are often justified by properties of paths through programs; for ggrarq Huet. 1997 (September). The Zippedournal of Functional
example, if an assignment’s continuation does not use the vari- programming 7(5):549-554.

able assigned to, that assignment may be removed. R. John Muir Hughes. 1986 (March). A novel representatiofist§ and
Complex program transformations should be composed from its application to the function “reversefhformation Processing Letters
simple transformations. For example, both “code motion” and ~ 22(3):141-144.

“induction-variable elimination” can be implemented in three John B. Kam and Jeffrey D. Ullman. 1976. Global data flow anslgad
stages: insert new assignments; substitute equals for equals; iterative algorithmsJournal of the ACM23(1):158-171.

remove unneeded assignments (Section 2.2). John B. Kam and Jeffrey D. Ullman. 1977. Monotone data flowysigl

« Because each rewrite leaves the semantics of the program un- fAmeworks.Acta Informatica 7:305-317.
changed, we can use “optimization fuel” to limit the number Gary A. Kildall. 1973 (October). A unified approach to glopabgram op-
of rewrites. When we isolate a fault (Section 7.1), we have to timization. In_Conference Record of the ACM Symposium on Principles
debug just a single rewrite, not a complex transformation. of Programming Languagepages 194-206.
. Sorin Lerner, David Grove, and Craig Chambers. 2002 (Jahu&Zypm-
We also build on proven implementation techniques in a way that posing dataflow analyses and transformatio@onference Record of
makes it easy to implement classic code improvements. the 29th Annual ACM Symposium on Principles of Programmisg- L

¢ We use the algorithm of Lerner, Grove, and Chambers (2002) to guagesin SIGPLAN Not.lce,531(1):270—282. o
compose analyses and transformations. This algorithm makes itNorman Ramsey and do Dias. 2005 (September). An applicative control-
easy to compose complex transformations from simple ones. flow graph based on Huet's zipper. ACM SIGPLAN Workshop on ML

. :) i)) pages 101-122.
Using continuation-passing style and generalized algebraic datay,...an Ramsey and Simon L. Peyton Jones. 2000 (May). A single in-

types, we have created a new implementation, which works 4o meqiate language that supports multiple implementatiorexcép-

by composing three relatively simple functions (Section 7.3). tjons. Proceedings of the ACM SIGPLAN '00 Conference on Program-
The functions are simple because the static type of a node ming Language Design and Implementation SIGPLAN Notices35
constrains the number of predecessors and successors it may (5):285-298.

have. And because we can compare our code with a standardpavid A. Schmidt. 1998. Data flow analysis is model checking lof a
continuation semantics, we have more confidence in this new stract interpretations. In ACM, edito€onference Record of the 25th
implementation than in any previous implementation. Annual ACM Symposium on Principles of Programming Langsage

Our code is pure. Inspired by Huet's (1997) zipper, we use an p_ages 38-48. o .]
applicative representation of control-flow graphs (Ramsey and David B. Whalley. 1994 (September). Automatic isolation of cderp
Dias 2005). We improve on our prior work by storing changing egrplrzagcgﬁfs'ggansactlons on Programming Languages and Systbins
dataflow facts in an explicit dataflow monad, which makes it ®): B :

especially easy to implement such operations as sub-analysis

of a replacement graph (Sectibn 7.2); by using static types to

guarantee that each replacement graph can be spliced in place of

12 2009/8/1

A. Index of defined identifiers

This appendix lists every nontrivial identifier used in the body

of the paper. For each identifier, we list the page on which that
identifier is defined or discussed—or when appropriate, the figure
(with line number where possible). For those few identifiers not
defined or discussed in text, we give the type signature and the pag

on which the identifier is first referred to.

&

ex let- or \-bound on pagle 10.

exit let- or A-bound in Figuré 6 on page 7.

_expr let- or \-bound on line 16 of Figurel4 on pdge 5.
extendAvail defined on liné 2 of Figurfe 4 on page 5.
extendVarSet :: VarSet -> LocalVar -> VarSet hot
shown (but see page 6).

act_add_to defined in Figure 2 on page 3.

fact_bot defined in Figurg 2 on page 3.

Some identifiers used in the text are defined in the Haskell Prelude;FactKont defined on line 1 of Figure 10 on pdge 10.

for those readers less familiar with Haskell, these identifiers are fact_name ::

listed in Appendix B.

<x> defined on pagel7.

add let- or \-bound in Figuré 4 on page 5.

addUsed defined in Figurg 5 on page 6.

anal_f_00 defined on page 11.

ar_first defined on liné B of Figure 11 on page 11.
ar_last defined on line 5 of Figure 11 on pdge 11.

ar mid defined on line b of Figure 11 on pdge 11.
avail let- or \-bound on liné 15 of Figufe 4 on page 5.
availRewrites defined in Figure 8 on page 9.
availTransfers defined on liné 13 of Figure 4 on pagk 5.
AvailVars defined on liné 1 of Figure 4 on page 5.
availVarsLattice defined in Figuré 4 on page 5.
BackTransfers defined in Figure 3 on page 4.
BackwardRewrites defined in Figure 7 on page 8.
Block defined on pagde 3.

BlockEnv defined on pagel4.

BlockId defined on page 3.

br_first defined in Figure 7 on page 8.

br_last defined in Figure 7 on page 8.

br_middle defined in Figure]7 on page 8.

bt_first_in defined in Figure 3 on page 4.

bt_last_in defined in Figure 3 on page 4.
bt_middle_in defined in Figuré 3 on page 4.

¢ defined in Figure 6 on page 7.

catMaybes :: [Maybe al -> [a] not shown (but see Figure 5
on page 6).

ChangeFlag defined in Figure 2 on page 3.

Cmm defined on page/5.

cmmAvailableVars defined in Figure 4 on page 5.
CmmExpr defined on pagde 6.

CmmGlobal defined on page 6.

CmmLast defined on pagde 6.

cmmLiveness defined in Figure 5 on page 6.

CmmLoad defined on pade 6.

CmmLocal defined on pagdel6.

CmmMiddle defined on page 6.

CmmVar defined on pagel6.

DataflowLattice defined in Figuré 2 on page 3.
deadRewrites defined in Figurg 9 on page 9.
DefinerOfLocalVars defined on pade 6.
delFromAvail defined in Figurg 4 on page 5.
delFromVarSet :: VarSet -> LocalVar -> VarSet not
shown (but see page 6).

depth let- or A\-bound on lin¢ 7 of Figure 10 on pagel10.
DFM defined on page/9.

elemAvail defined in Figure 4 on page 5.

elemVarSet :: LocalVar -> VarSet -> Bool not shown
(but see pade 6).

empty let- or \-bound in Figuré 4 on page 5.
emptyBlockEnv :: BlockEnv a not shown (but see page 4).
emptyGraph defined on page 7.

emptyVarSet :: VarSet not shown (but see page 6).
entry let- or \-bound in Figuré 6 on page 7.

env let- or \-bound on lingé 18 of Figurfe 5 on page 6.

13

DataflowLattice a -> String notshown
(but see pade 3).

filterVarsUsed :: UserOfLocalVars e => (LocalVar
-> Bool) -> e -> VarSet not shown (but see page 8).
first let- or \-bound on liné 3 of Figure 8 on page 9.
foldVarsDefd defined on pagde 6.

foldVarsUsed defined on page 6.

ForwardRewrites defined in Figure]7 on page 8.
ForwardTransfers defined in Figure 3 on page 4.

£p let- or A-bound on liné 25 of Figute 4 on page 5.
fr_first defined in Figurge 7 on page 8.

fr_last defined in Figurg 7 on page 8.

fr_middle defined in Figure 7 on page 8.

ft_first_out defined in Figure 3 on page 4.
ft_last_outs defined in Figurg 3 on page 4.
ft_middle_out defined in Figurg 3 on page 4.
fuelExhausted defined on page 10.

FuelMonad defined on page 8.

FwdFixedPoint defined on page/4.

fwd_iter defined on line 4 of Figure 10 on page 10.
getAllFacts defined on page 10.

getFact defined on page 10.

GF defined in Figure 6 on page 7.

GlobalVar defined on page 6.

Graph defined in Figure 6 on page 7.

GraphClosure defined on page 7.

GraphFactKont defined on liné 1 of Figure 11 on pdge 11.
GraphKont defined on liné 2 of Figure 11 on pdge 11.
HavingSuccessors defined on pagel4.

iar_0C defined on pade 12.

iar_00 defined on liné 14 of Figufe 11 on page 11.

in’ let- or \-bound on lineé 17 of Figure 10 on page 10.
in_fact let- or \-bound on liné 7 of Figurie 10 on page 10.
insertLateReloads defined in Figuré 8 on page 9.
interAvail defined in Figure 4 on page 5.

isEmptyVarSet :: VarSet -> Bool notshown (but see
page 6).
isStackSlot :: CmmExpr -> Bool not shown (but see
page 6).
isStackSlot0Of :: CmmExpr -> LocalVar -> Bool not

shown (but see page 6).

iter_block defined on liné 14 of Figure 10 on pdge 10.
iter_ex defined on liné 9 of Figuffe 10 on page 10.
iter_first defined on liné 10 of Figure 10 on pdge 10.
iter_last defined on line 12 of Figure 10 on page 10.
iter mid defined on line 17 of Figure 10 on page 10.
iter_00 defined on page 11.

join let- or A-bound in Figure 4 on page 5.

Kont defined on line 3 of Figure 10 on pdge 10.

1 let- or \-bound in Figure 3 on page 4.

last let- or A-bound on line 5 of Figure 5 on palge 6.
lastAvail defined in Figure 4 on page 5.

LastBranch defined on page 6.

LastCall defined on pagel6.

LastCondBranch defined on page 6.

lastLiveness defined on line 12 of Figurel5 on pdge 6.

2009/8/1

lastLiveOut defined on line 18 of Figure 5 on pagk 6.
LastOuts defined in Figure 3 on page 4.

LastSwitch defined on pagde 6.

1hs let- or A-bound on lineé 16 of Figurfe 4 on page 5.
Live defined on liné 1 of Figure 5 on page 6.

live let- or A-bound in Figuré 5 on page 6.
liveLattice defined on liné 2 of Figuffe 5 on page 6.
liveTransfers defined in Figure 5 on page 6.
LocalVar defined on padel6.

LOFsKont defined in Figure 10 on page 10.

m let- or A-bound in Figuré 3 on page 4.

maybe_reload before defined on liné 6 of Figurfe 8 on page 9.
MidAssign defined on page 6.

middle let- or \-bound in Figuré 8 on page 9.
middleAvail defined in Figure 4 on page 5.
middleLiveness defined on liné 111 of Figure 5 on pagke 6.
middleRemoveDeads defined in Figure 9 on page 9.
MidStore defined on pagdel6.

mkLabel defined on pade 7.

mkLast defined on pagel7.

mkMiddle defined on padel7.

ms let- or A\-bound on liné 14 of Figure 10 on page 10.
name let- or \-bound on line 7 of Figure 10 on page 10.
new let- or A\-bound in Figuré 4 on page 5.

NoChange defined in Figure 2 on page 3.

node let- or \-bound on line b of Figurie 8 on page 9.
nothing let- or A-bound on line 2 of Figure 9 on page 9.
0 defined in Figuré 6 on page 7.

old let- or \-bound in Figure 4 on page 5.

PassName defined on pagdel4.

rel let- or \-bound on line 111 of Figute 8 on page 9.
reload defined on page!8.

reloadTail defined in Figure 8 on page 9.

remDefd defined on line 16 of Figurel 5 on pdge 6.
removeDeadAssignments defined in Figure 9 on page 9.
Rewrite defined in Figurg 7 on page 8.

RewriteDeep defined on page/8.

rewrites let- or \-bound on lineé 7 of Figure 10 on page 10.
RewriteShallow defined on page 8.

RewritingDepth defined on page 8.

runDFM defined on page 10.

setAllFacts defined on page 10.

setFact defined on page 10.

set_last defined on lineé 16 of Figure 10 on page 10.
sizeVarSet :: VarSet -> Int not shown (but see page 6).
smallerAvail defined on line 6 of Figufe 4 on page 5.
SomeChange defined in Figure 2 on page 3.

start_facts let- or \-bound on liné 7 of Figure 10 on pagel10.

subAnalysis defined on page 10.

succs defined on pade 4.

tbl let- or A-bound on lineé 211 of Figurffe 5 on page 6.
transfers let- or \-bound on line 7 of Figure 10 on page 10.

unionManyVarSets :: [VarSet] -> VarSet notshown (but
see page 6).
unionVarSets :: VarSet -> VarSet -> VarSet not shown

(but see pade 6).

UniverseMinus defined on liné 1 of Figure/4 on page 5.
used let- or \-bound in Figuré 8 on page 9.

useOneFuel defined on page 10.

UserOfLocalVars defined on page 6.

var0fSlot :: CmmExpr -> LocalVar not shown (but see
page 6).

vars let- or \-bound in Figure 8 on page 9.

VarSet (a type) not shown (but see page 6).

14

varSetToList :: VarSet -> [LocalVar] not shown (but see
Figure 8 on page 9).
withDuplicateFuel defined on page 10.
with_fuel defined on page 10.
zdfFpContents defined on pagel8.
zdfFpFacts defined on pade 4.
zdfRewriteBwd defined on page/8.
zdfRewriteFwd defined on page/8.
zdfSolveBwd defined on page 4.
zdfSolveFwd defined on page 4.

zJust defined on page 10.

ZMaybe defined on page 10.

ZNothing defined on page 10.

B. Identifiers defined in Haskell Prelude

1,8, &, &&, %, +,++, -, ., /,==,>,>=,>> >>= Bool, const,
curry, Data.Map, False, f1ip, foldl, foldr, fst, head, id,
Int, Just, 1iftM, map, mapM_, Maybe, not, Nothing, return,
snd, String, tail, True, uncurry, undefined .

2009/8/1

	Introduction
	Dataflow analysis & transformation by toexample
	Simple transformations
	A complex transformation

	Making dataflow simple
	Dataflow lattices
	Transfer functions
	Running the dataflow engine

	Related work
	Example analysis passes
	Choosing node types for GHC
	Available variables: a forward analysis supporting pass 2
	Liveness: a backward analysis supporting passes 1 and 3

	Using dataflow facts to rewrite graphs
	Representing graphs and subgraphs
	Rewrite functions
	Running the dataflow engine
	Sinking reloads: a forward transformation
	Dead-assignment elimination: a backward totransformation

	Hoopl's dataflow engine
	Throttling the dataflow engine using ``optimization fuel''
	A monad for dataflow effects
	The forward iterator
	The forward actualizer

	Conclusions
	Index of defined identifiers
	Identifiers defined in Haskell Prelude

