
Submitted to the 2010 ACM Symposium on Principles of Programming Languages (POPL)

Hoopl: Dataflow Optimization Made Simple

Norman Ramsey
Tufts University
nr@cs.tufts.edu

Jõao Dias
Tufts University

dias@cs.tufts.edu

Simon Peyton Jones
Microsoft Research

simonpj@microsoft.com

Abstract
We present Hoopl, a Haskell library that makes it easy for compiler
writers to implement program transformations based on dataflow
analyses. The compiler writer must identify (a) logical assertions
on which the transformation will be based; (b) a representation
of such assertions, which should form a lattice of finite height;
(c) transfer functions that approximate weakest preconditions or
strongest postconditions over the assertions; and (d) rewrite func-
tions whose soundness is justified by the assertions. Hoopl uses
the algorithm of Lerner, Grove, and Chambers (2002), which
can compose very simple analyses and transformations in a way
that achieves the same precision as complex, handwritten “super-
analyses.” Hoopl will be the workhorse of a new back end for the
Glasgow Haskell Compiler (version 6.12, forthcoming).

Reviewers:code examples are indexed athttp://bit.ly/jkr3K

1. Introduction
If you write a compiler for an imperative language, you can ex-
ploit many years’ work on code improvement (“optimization”). The
work is typically presented as a long list of analyses and transfor-
mations, each with a different name. This presentation makes opti-
mization appear complex and difficult. Another source of complex-
ity is the need for synergistic combinations of optimizations; you
may have to write one “super-analysis” per combination.

But optimization doesn’t have to be complicated. Most optimiza-
tions work by applying well-understood techniques for reasoning
about programs: assertions about states, assertions about continua-
tions, and substitution of equals for equals. What makes optimiza-
tion different from classic reasoning techniques is that in dataflow
optimization, assertions are approximated, and all assertions are
computed automatically.

This paper presents Hoopl (higher-order optimization library),
a Haskell library that makes it easy to implement dataflow opti-
mizations. Our contributions are as follows:

• Hoopl defines a simple interface for implementing analyses and
transformations: you provide representations for assertions and
for functions that transform assertions, and Hoopl computes as-
sertions by setting up and solving recursion equations. Addi-
tional functions you provide use computed assertions to justify
program transformations. Analyses and transformations built
on Hoopl are small, simple, and easy to get right.

• Using the sophisticated algorithm of Lerner, Grove, and Cham-
bers (2002), Hoopl can perform super-analyses byinterleaving
simple analyses and transformations. Interleaving is tricky to
implement, but by using generalized algebraic data types and
continuation-passing style, our new implementation expresses
the algorithm with a clarity and a degree of static checking that
has not previously been achieved.

• Hoopl helps you write correct optimizations: it statically rules
out transformations that violate invariants of the control-flow
graph, and dynamically it can help find the first transformation
that introduces a fault in a test program (Whalley 1994).

• Hoopl’s polymorphic, higher-order design makes it reusable
with many languages. Hoopl is designed to help optimize im-
perative code with arbitrary control flow, including low-level
intermediate languages and machine languages. As Benitez and
Davidson (1988) have shown, all the classic scalar and loop op-
timizations can be performed over such codes.

We introduce dataflow optimization by analyzing and transforming
example code (Section 2), thinking about and justifying classic op-
timizations using Hoare logic and substitution of equals for equals.
To support our claim that Hoopl makes dataflow optimization easy,
we explain how to create new dataflow analyses and transforma-
tions (Section 3), and we show complete implementations of sig-
nificant analyses (Section 5) and transformations (Section 6) from
the Glasgow Haskell Compiler. We also sketch a new implementa-
tion of interleaving (Section 7).

2. Dataflow analysis & transformation by example
In dataflow optimization, code-improving transformations are jus-
tified by assertions about programs; such assertions are often com-
puted using strongest postconditions or weakest liberal precondi-
tions. Typical transformations are to insert assignments to unob-
served variables, to substitute equals for equals, and to remove as-
signments to unobserved variables. Insertion and removal can be
composed to achieve “code motion.” Hoopl expresses classic code
improvements by composing simple transformations.

2.1 Simple transformations

Here is a sequence of assignments separated by assertions. We com-
pute assertions by starting with the weakest assertion (true) and
computing strongest postconditions. Variables do not alias.

{ true }
x = 7;
{ x == 7 }

y = 8:
{ x == 7 && y == 8 }

z = x + y;

In the assignment toz, the assertionx == 7 justifies substituting 7
for x, leavingz = 7 + y. This transformation is traditionally called
“constant propagation.” We may also substitute 8 fory. Finally,
because7 + 8 == 15, we may again substitute equals for equals,
leaving the final assignment as

z = 15;

The final transformation, although it also substitutes equals for
equals, has a different name: “constant folding.”

1 2009/8/1

http://bit.ly/jkr3K

2.2 A complex transformation

The loop optimization known as “induction-variable elimination”
can be composed from simpler transformations. We begin by show-
ing a loop that sums red pixels from an array:

struct pixel { double r, g, b; };
double sum_r(struct pixel a[], int n) {
double x = 0.0;
int i;
for (i = 0; i < n; i++)
x += a[i].r;

return x;
}

To explain induction-variable elimination, we show the same code
at the machine level, using our low-level compiler-target lan-
guage, C-- (Ramsey and Peyton Jones 2000):

sum_r("address" bits32 a, bits32 n) {
bits64 x; bits32 i;
x = 0.0;
i = 0;

L1: if (i >= n) goto L2;
x = %fadd(x, bits64[a+i*24]);
i = i + 1;
goto L1;

L2: return x;
}

Induction-variable elimination replacesi with a new variablep,
helping us to remove the computationa+i*24 from the loop. Vari-
ablep is intended to satisfy the invariant

{ p == a + i * 24 }

Variablei is also used in the loop-termination test. To rewrite that
test, we introduce another new variablelim satisfying the invariant
lim == a + n * 24, so thati >= n if and only if p >= lim.

We implement the code improvement as a sequence of transfor-
mations. After each transformation, the observable behavior of the
program is unchanged. Our first transformation declaresp andlim
and inserts suitable assignments. New code isboxed.

sum_r("address" bits32 a, bits32 n) {
bits64 x; bits32 i; bits32 p, lim;
x = 0.0;
i = 0; p = a; lim = a + n * 24;

L1: if (i >= n) goto L2;
x = %fadd(x, bits64[a+i*24]);
i = i + 1; p = p + 24;
goto L1;

L2: return x;
}

As written, the assignments top and lim have no effect on the
program, but they establish the assertionsp == a + i * 24 and
(i >= n) == (p >= lim). On the basis of these assertions, the
compiler substitutes equals for equals, resulting in the new code
in boxes below:

sum_r("address" bits32 a, bits32 n) {
bits64 x; bits32 i; bits32 p, lim;
x = 0.0;
i = 0; p = a; lim = a + n * 24;

L1: if (p >= lim) goto L2;
x = %fadd(x, bits64[p]);
i = i + 1; p = p + 24;
goto L1;

L2: return x;
}

Here the compiler switches from reasoning about states to reason-
ing about continuations. In particular, we reason about whether the
value of a variable can be used by a continuation; this reasoning is
called “liveness analysis.” Naı̈ve analysis would show that although
i is not live at labelL2, it is nevertheless live immediately after the
assignmenti = i + 1 in the loop body, because the value ofi could
be used by the next iteration of the loop. But we use Lerner, Grove,
and Chambers’s (2002) algorithm tointerleaveliveness analysis
with “dead-assignment elimination.” Dead-assignment elimination
removes an assignment if the variable assigned to is not live, that is,
if it cannot be used by the assignment’s continuation. No sequential
composition of liveness analysis and dead-assignment elimination
can get rid of these assignments toi, but interleaving analysis with
transformation does the trick.1 Interleaving (Section 7) eliminates
the boxed assignments toi:

sum_r("address" bits32 a, bits32 n) {
bits64 x; bits32 i; bits32 p, lim;
x = 0.0;
i = 0; p = a; lim = a + n * 24;

L1: if (p >= lim) goto L2;
x = %fadd(x, bits64[p]);
i = i + 1; p = p + 24;
goto L1;

L2: return x;
}

After the insertion of assignments top andlim, the substitution of
equals for equals, and the removal of newly dead assignments toi,
we have “eliminated the induction variable:”

sum_r("address" bits32 a, bits32 n) {
bits64 x; bits32 p, lim;
x = 0.0;
p = a; lim = a + n * 24;

L1: if (p >= lim) goto L2;
x = %fadd(x, bits64[p]);
p = p + 24;
goto L1;

L2: return x;
}

3. Making dataflow simple
The goal of dataflow optimization is to compute valid assertions,
then use those assertions to justify code-improving transforma-
tions. Assertions are represented asdataflow facts. Dataflow facts
relate to traditional program logic:

• A dataflow fact is usually equivalent to an assertion about pro-
gram state or about a continuation. For example, in Section 2.1,
x == 7 is a dataflow fact that describes the program state.

• A set of dataflow facts forms a lattice. To ensure that analysis
terminates, it is enough if no fact has more than finitely many
distinct facts above it.

1 You might be tempted to modify the liveness analysis so thati = i + 1
is not considered a “use” ofi if i is itself dead. This modification is tanta-
mount to writing a single “super-analysis” thatcombinesliveness analysis
and dead-code elimination. In this case, writing a super-analysis is easy,
but the approach does not scale: most super-analyses are more complicated
than the examples shown here; the cost of writing a super-analysis does not
scale linearly with the number of analyses combined; super-analyses often
cannot be composed; and some super-analyses require nonstandard, hand-
written traversals of the control-flow graph. Lerner, Grove, and Chambers
(2002) discuss these issues in detail; Click and Cooper (1995) show both
the advantages of and the programming cost of combining analyses.

2 2009/8/1

Specified Implemented
Part of optimizer by by How many

Control-flow graphs US US One
Nodes in a
control-flow graph

YOU YOU Two datatypes per
intermediate language

Dataflow factF YOU YOU One datatype per logic
Lattice operations US YOU One set per logic

Transfer functions US YOU One set per analysis
Rewrite functions US YOU One set per transformation

Iterative solver
functions

US US Two (forward &
backward)

Solve-and-rewrite
functions

US US Two (forward &
backward)

Table 1. Parts of an optimizer built with Hoopl

• Each analysis or transformation may use a different lattice of
dataflow facts.

An assertion about a continuation is an assertion about pathsfroma
program point to the procedure exit; such assertions are established
by a backward dataflow analysis. An assertion about pathsto a
program point from the procedure entry is established by aforward
dataflow analysis. As an important special case, an assertion, such
asx == 7 above, may say simply that all paths to a point establish
a predicate which describes the program state at that point.

A program point is represented as an edge in acontrol-flow graph.
Edges connect nodes, each of which represents a label, an assign-
ment, or a control transfer.

To write a dataflowanalysis, you must

• Choose a representationF of dataflow facts and a logical inter-
pretation thereof.

• Implement lattice operations overF (Section 3.1).

• Write transfer functionsthat relate dataflow facts before and
after each type of node (Section 3.2).

To write atransformationbased on an analysis, you must also cre-
ate arewrite function, which is presented with a flow-graph node
and with the dataflow facts on the edges coming into that node (Sec-
tion 6.2). The function either proposes to replace the node with a
fresh subgraph, or it leaves the node alone. If the function proposes
a replacement, the replacement must preserve semantics; preserva-
tion may be justified by incoming facts. For example, in Section 2.1
the factx == 7 justifies replacingz = x + y with z = 7 + y.

Table 1 shows how Hoopl interacts with your client code. Hoopl
defines the types of control-flow graphs, lattice operations, transfer
functions, and rewrite functions. All these types are parameterized
by the types of nodes in the control-flow graph, whichyou get to
define, so you can use Hoopl with many intermediate languages
(Table 1). Function types are also parameterized by the type of
dataflow facts, so you can define different analyses, using different
types of facts, all operating over one type of graph.

To run an optimization, you pass lattice operations, transfer func-
tions, and rewrite functions to one of Hoopl’ssolver functionsor
rewrite functions—Hoopl’sdataflow engine. A solver function uses
a forward or backwardanalysisto compute a dataflow fact for each
program point (Section 3.3). A rewrite function uses a forward or
backwardtransformationto compute facts and to rewrite a control-
flow graph in light of those facts (Section 6).

data ChangeFlag = NoChange | SomeChange
data DataflowLattice a = DataflowLattice
{fact_bot :: a,
fact_add_to :: a -> a -> (a, ChangeFlag) }

Figure 2. Representation of a dataflow lattice

3.1 Dataflow lattices

As an example, we present a lattice of facts about constant propaga-
tion. At any program point, a standard constant-propagation analy-
sis computes exactly one of three facts about a variablex:

• The analysis shows thatx = k, wherek is a compile-time
constant of typeConst.

• The analysis shows thatx is not a compile-time constant.
We notate this fact asx = ⊤.

• The analysis shows nothing aboutx, which we notatex = ⊥.

The bottom element of the lattice isx = ⊥, and the join oper-
ation⊔ approximates disjunction, the logical operation that com-
bines facts flowing to a single label. A disjunction of two inconsis-
tent facts is represented byx = ⊤, so for examplex = 7 ∨ x = 8
is approximated byx = ⊤, losing information.2

The lattice used by the analysis is the Cartesian product of the
lattices for all the local variables. We represent this lattice as a finite
map from a variable to a value of typeMaybe Const. A variablex
is not in the domain of the map iffx = ⊥; x maps toNothing iff
x = ⊤; x maps toJust k iff x = k.

Hoopl’s dataflow engine uses joins in a stylized way. Joins occur at
labels. Iffid is the fact currently associated with the labelid , and if
a transfer function propagates a new factfnew into the labelid , the
dataflow engine replacesfid with the joinfnew ⊔fid . Furthermore,
the dataflow engine wants to know iffnew ⊔ fid = fid , because if
not, the analysis has not reached a fixed point.

When computing a join, it is often cheap to learn if the join is
equal to one of the arguments. We therefore use a nonstandard rep-
resentation of lattice operations, as shown in Figure 2. The join
operation⊔ and equality test= are represented by a single func-
tion calledfact_add_to. The termfact_add_to fnew fid is
equal to(fid , NoChange) if fnew ⊔ fid = fid and is equal to
(fnew ⊔ fid , SomeChange) otherwise. Thefact_bot value is the
bottom element.

3.2 Transfer functions

A transfer function is presented with dataflow facts on edges com-
ing into a node, and it computes dataflow facts on outgoing edges.
To understand transfer functions, we must understand how Hoopl
organizes the nodes and edges of a control-flow graph.

A control-flow graph is a collection ofbasic blocks, each labelled
with a BlockId. A basic block is a sequence beginning with a
first node, containing zero or moremiddle nodes, and ending in
a last node. (An optimizer also works withsubgraphs, which,
as discussed in Section 6.1, may omit an initial first node or a final
last node.) A first node is always aBlockId; a typical middle node
assigns to a register or memory location; and a typical last node is a
conditional, unconditional, or indirect branch. You choose the types
of middle and last nodes to suit your intermediate representation;
if these types arem andl, the type of a basic block isBlock m l.

2 Your client code determines how much information is lost. For example,
in a similar analysis for a functional language, you might track whether a
value is the result of applying a constructor from any finite set{Ci}.

3 2009/8/1

newtype LastOuts a = LastOuts [(BlockId, a)]
data ForwardTransfers m l a = ForwardTransfers
{ft_first_out :: BlockId -> a -> a,
ft_middle_out :: m -> a -> a,
ft_last_outs :: l -> a -> LastOuts a}

data BackTransfers m l a = BackTransfers
{bt_first_in :: BlockId -> a -> a,
bt_middle_in :: m -> a -> a,
bt_last_in :: l -> (BlockId -> a) -> a}

Figure 3. Transfer functions for forward and backward analyses.

First nodes are the only targets of control transfers; middle nodes
never perform control transfers; and last nodes always performcon-
trol transfers. So a first node has arbitrarily many predecessors and
exactly one successor; a middle node has exactly one predecessor
and one successor; and a last node has exactly one predecessor and
arbitrarily many successors.

These constraints on number of predecessors and successors deter-
mine the signatures of transfer functions, which are shown in Fig-
ure 3. For each type of node (first, middle, last) and for each kind
of analysis (forward, backward), there is a distinct transfer func-
tion. Functions are grouped by kind of analysis, and each group
is parameterized over a dataflow fact of typea and over the types
m andl of middle and last nodes.

A fact in a forward analysis typically represents an assertion about
program state, and because a label does not change program state,
the transfer functionft_first_out is oftenflip const—a vari-
ation on the identity function.3 For a middle node, the transfer func-
tion ft_middle_out is given a node and a precondition and re-
turns an approximation of the strongest postcondition. For a last
node, different postconditions may be propagated to different suc-
cessors; for example, the true and false successors of a conditional
branch may accumulate information implied by the truth or false-
hood of the condition. A collection of (successor, fact) pairs is rep-
resented by a value of typeLastOuts a (Figure 3).

In a forward analysis, the dataflow engine starts with the fact at the
beginning of a block and applies transfer functions to the nodes in
that block until eventually the transfer function for the last node
computes the facts that are propagated to the block’s successors.
For example, in the block

L1: x = 7;
y = 8;
z = x + y;
goto L2;

a forward analysis would propagate the factx = 7 ∧ y = 8, which
we will call fnew , along the edge toL2. The dataflow engine then
replacesthe current fact atL2 (fL2) with the lattice joinfnew ⊔ fL2.
The dataflow engine iterates over the blocks repeatedly, creating
new factsf and joining them with factsfid until f ⊔ fid = fid at
every labelid . When the facts at labels stop changing, the dataflow
engine has reached a fixed point.

3.3 Running the dataflow engine

Given lattice operations of typeDataflowLattice a (Figure 2)
together with transfer functions of typeForwardTransfers m l a
(Figure 3), you can run the corresponding analysis by calling Hoopl
function zdfSolveFwd, which is a part of our dataflow engine

3 Not every fact is about program state, so not every forward analysis can
ignore labels. For example, dominator analysis and other all-paths analyses
often compute a set of labels through which control may (or must)pass.

(a backward analysis calls functionzdfSolveBwd, which has a
similar type):

zdfSolveFwd
:: HavingSuccessors l -- Find successors of l
=> PassName -- Name of the analysis
-> DataflowLattice a -- Lattice
-> ForwardTransfers m l a -- Transfer functions
-> a -- Input fact
-> Graph m l -- Control-flow graph
-> FwdFixedPoint m l a ()

The function is polymorphic in the types of middle and last nodes
m andl and in the type of the dataflow facta. Polymorphism allows
Hoopl to work with any intermediate language, as long as the type
of last nodel satisfies the constraintHavingSuccessors l by
providing a functionsuccs of typel -> [BlockId], which gives
the labels of the blocks to which a last node of typel might transfer
control.

After the type constraint, the first three arguments tozdfSolveFwd
characterize the analysis. The next argument is the dataflow fact
that holds on entry to the graph; because a procedure’s caller may
establish some facts about parameters or about the stack, this fact
is not always⊥. The last argument tozdfSolveFwd is the graph,
and the result is a fixed point.

TheFwdFixedPoint data structure, whose final type parameter()
is explained in Section 6.3, is a big bag of information about a
solution. The most significant information is a finite map from each
block label to the dataflow fact that holds at the label, which is
extracted using functionzdfFpFacts:

type BlockEnv a = Data.Map BlockId a
zdfFpFacts :: FwdFixedPoint m l a g -> BlockEnv a

4. Related work
While dataflow analysis and optimization are covered by a vast
literature,designof optimizers, the topic of this paper, is covered
relatively sparsely. We therefore focus on foundations.

When transfer functions are monotone and lattices are finite in
height, iterative dataflow analysis converges to a fixed point (Kam
and Ullman 1976). If the lattice’s join operation distributes over
transfer functions, this fixed point is equivalent to a join-over-all-
paths solution to the recursive dataflow equations (Kildall 1973).4

Kam and Ullman (1977) generalize to some monotone functions.
Each client of Hoopl must guarantee monotonicity, but for trans-
fer functions that approximate weakest preconditions or strongest
postconditions, monotonicity falls out naturally.

Cousot and Cousot (1977) introduce abstract interpretation as a
technique for developing lattices for program analysis. Schmidt
(1998) shows that an all-paths dataflow problem can be viewed as
model checking an abstract interpretation.

The soundness of interleaving analysis and transformation, even
when some speculative transformations are not performed on later
iterations, was shown by Lerner, Grove, and Chambers (2002).

5. Example analysis passes
Hoopl makes it easy to write compiler passes based on dataflow. To
showhow easy, we present two analyses; related transformations
appear in Section 6. The examples help solve a real problem in the
Glasgow Haskell Compiler: because most calls are tail calls, GHC

4 Kildall uses meets, not joins. Lattice orientation is conventional, and
conventions have changed. We use Dana Scott’s orientation,in which higher
elements carry more information.

4 2009/8/1

1: data AvailVars = UniverseMinus VarSet | AvailVars VarSet
2: extendAvail :: AvailVars -> LocalVar -> AvailVars -- add var to set
3: delFromAvail :: AvailVars -> LocalVar -> AvailVars -- remove var from set
4: elemAvail :: AvailVars -> LocalVar -> Bool -- set membership
5: interAvail :: AvailVars -> AvailVars -> AvailVars -- set intersection
6: smallerAvail :: AvailVars -> AvailVars -> Bool -- compare sizes

Dataflow fact
and operations

7: availVarsLattice :: DataflowLattice AvailVars
8: availVarsLattice = DataflowLattice empty add
9: where empty = UniverseMinus emptyVarSet

10: add new old = let join = interAvail new old in
11: (if join ‘smallerAvail‘ old then SomeChange else NoChange, join)

Lattice

12: availTransfers :: ForwardTransfers CmmMiddle CmmLast AvailVars
13: availTransfers = ForwardTransfers (flip const) middleAvail lastAvail

14: middleAvail :: CmmMiddle -> AvailVars -> AvailVars
15: middleAvail (MidAssign (CmmLocal x) (CmmLoad l) avail | l ‘isStackSlotOf‘ x = extendAvail avail x
16: middleAvail (MidAssign lhs _expr) avail = foldVarsDefd delFromAvail avail lhs
17: middleAvail (MidStore l (CmmVar (CmmLocal x))) avail | l ‘isStackSlotOf‘ x = avail
18: middleAvail (MidStore l _) avail | isStackSlot l = delFromAvail avail (varOfSlot l)
19: middleAvail (MidStore _ _) avail = avail

20: lastAvail :: CmmLast -> AvailVars -> LastOuts AvailVars
21: lastAvail (LastCall _ (Just k) _ _) _ = LastOuts [(k, AvailVars emptyVarSet)]
22: lastAvail l avail = LastOuts $ map (\id -> (id, avail)) $ succs l

Transfer
functions

23: cmmAvailableVars :: Graph CmmMiddle CmmLast -> BlockEnv AvailVars
24: cmmAvailableVars g = zdfFpFacts fp
25: where fp = zdfSolveFwd "available variables" availVarsLattice
26: availTransfers (fact_bot availVarsLattice) g

Available-variables
analysis

Figure 4. Dataflow analysis pass to compute available variables

uses no callee-saves registers. Therefore, at each (rare) non-tail call,
all live variables must be spilled to the stack.

To illustrate the results of the example analyses and transforma-
tions, here is a contrived example program in the style of Section 2:

f (bits32 a) {
bits32 w, x, y, z; // local variables
x = a * a;
w = a + a + a;
y = g(w); // call; x must be spilled
z = y + y;
if (y > 0) {
return z;

} else {
return z + x;

}
}

A spill and a reload should be inserted as follows:

f (bits32 a) {
bits32 w, x, y, z;
x = a * a;
SPILL x;
w = a + a + a; // no register pressure from x
y = g(w);
z = y + y; // no register pressure from x
if (y > 0) {
return z; // x does not need reloading

} else {
RELOAD x;
return z + x;

}
}

Although theSPILL andRELOAD operations are introduced because
of the call tog(a), they are moved as far from the call as possi-
ble: x is spilled immediately after being assigneda * a, andx is
reloaded not immediately after the call tog, but just before its
use in the expressionz + x. On the control-flow path toreturn z,
x needn’t be reloaded at all.

Spills and reloads are inserted by a sequence of dataflow passes:

1. A backward analysis computes liveness to identify the variables
that should be spilled at call sites (Section 5.3 and Figure 5).
An accompanying transformation (not shown) inserts reloads
immediately after each call site and inserts spills not immedi-
ately before call sites, but rather immediately after the reaching
definitions.

2. A forward analysis finds “available variables” which have been
reloaded from the stack (Section 5.2 and Figure 4), and an
accompanying transformation inserts redundant reloads before
their uses (Section 6.4 and Figure 8). By keeping variables on
the stack longer, this pass reduces register pressure.

3. A backward analysis (the same as in pass 1) computes liveness,
and an accompanying transformation (Figure 9 in Section 6.5),
dead-assignment elimination, removes redundant reloads.

Passes 2 and 3 cooperate to “sink” reloads away from the call site.

5.1 Choosing node types for GHC

To show that Hoopl works at scale, we present examples that have
been implemented and tested in GHC. GHC’s low-level interme-
diate code, calledCmm, is a subset of the portable assembly lan-
guage C-- (Ramsey and Peyton Jones 2000). We specialize Hoopl
to GHC by instantiating type parametersm andl with GHC’s types
CmmMiddle andCmmLast.

5 2009/8/1

1: type Live = VarSet Dataflow fact
2: liveLattice :: DataflowLattice Live
3: liveLattice = DataflowLattice emptyVarSet add
4: where add new old =
5: let join = unionVarSets new old in
6: (if sizeVarSet join > sizeVarSet old then SomeChange else NoChange, join)

Lattice

7: liveTransfers :: BackTransfers CmmMiddle CmmLast Live
8: liveTransfers = BackTransfers (flip const) middleLiveness lastLiveness

9: middleLiveness :: CmmMiddle -> Live -> Live
10: lastLiveness :: CmmLast -> (BlockId -> Live) -> Live
11: middleLiveness m = addUsed m . remDefd m
12: lastLiveness l = addUsed l . remDefd l . lastLiveOut l

13: addUsed :: UserOfLocalVars a => a -> Live -> Live
14: remDefd :: DefinerOfLocalVars a => a -> Live -> Live
15: addUsed a live = foldVarsUsed extendVarSet live a
16: remDefd a live = foldVarsDefd delFromVarSet live a

17: lastLiveOut :: CmmLast -> (BlockId -> Live) -> Live
18: lastLiveOut l env = last l
19: where last (LastBranch id) = env id
20: last (LastCondBranch _ t f) = unionVarSets (env t) (env f)
21: last (LastSwitch _ tbl) = unionManyVarSets $ map env (catMaybes tbl)
22: last (LastCall { }) = emptyVarSet

Transfer
functions

23: cmmLiveness :: Graph CmmMiddle CmmLast -> BlockEnv Live
24: cmmLiveness g = zdfFpFacts fp
25: where fp = zdfSolveBwd "liveness" liveLattice liveTransfers emptyVarSet g

Liveness
analysis

Figure 5. Dataflow analysis pass to compute liveness

A middle node stores the value of an expression:

data CmmMiddle
= MidAssign CmmVar CmmExpr -- store in variable
| MidStore CmmExpr CmmExpr -- store in memory

TypeCmmVar represents a variable, which may be local (CmmLocal
LocalVar) or global (CmmGlobal GlobalVar). Type CmmExpr
represents a pure expression; among its constructors areCmmLoad
(a value from memory) andCmmVar (the value of a variable).

A last node represents a control transfer; constructors include un-
conditional, conditional, and indirect branches, as well as a call:

data CmmLast
= LastBranch BlockId
| LastCondBranch CmmExpr BlockId BlockId
| LastSwitch CmmExpr [Maybe BlockId]
| LastCall ... -- arguments omitted

5.2 Available variables: a forward analysis supporting pass 2

To understand the available-variables analysis, you must know that
each variablex is related to a stack slotsx, which is used to save
the value ofx. (GHC represents the relation using Haskell functions
isStackSlot, varOfSlot, andisStackSlotOf.) If the variable
and the stack slot hold the same value, that is ifx = sx, then it is
safeto insert a reload.

To sink a reload of a variablex, we insert redundant reloads imme-
diately before uses ofx. It is profitableto insert a reload before a
use ofx only if, on every path to the use, the most recent definition
of x is a reload fromsx. Safety and profitability are incompara-
ble; the dataflow fact computed by our analysis is the set we call
availablevariables, for which it is safeand profitable to insert a
reload. Because the assertion of interest is an “all-paths” property,
the lattice-join operation is set intersection, and the bottom element
is the universal set containing all variables.

Instead of the usual mutable bit vectors, we use a purely func-
tional representation of sets—one in which we can represent
the set of all variables without enumerating them. A set is ei-
ther UniverseMinus s, which stands for all variables except
those in the sets, or AvailVars s, which stands for the vari-
ables in the sets (Figure 4, line 1). The bottom element is
UniverseMinus emptyVarSet. To manipulate these sets, we pro-
vide the functions declared in lines 2–6 of Figure 4.

The most interesting part of the analysis is themiddleAvail trans-
fer function in Figure 4.

• Line 15 identifies an assignment that reloads local variablex
from its stack slot. After such an assignment,x = sx, and
the last definition ofx is a reload, sox is added to the set of
available variables.

• On line 16, an assignment to a local variable means that the vari-
able need not be equal to the value in its stack slot, so iflhs is a
local variable, it is removed from the set of available variables.
The conditional removal is done by applyingfoldVarsDefd
to delFromAvail; foldVarsDefd is an overloaded function
which, along with its dual, is used throughout the back end:

foldVarsUsed :: UserOfLocalVars a
=> (b -> LocalVar -> b) -> b -> a -> b

foldVarsDefd :: DefinerOfLocalVars a
=> (b -> LocalVar -> b) -> b -> a -> b

On line 16, if lhs is a local variable,foldVarsDefd calls
delFromAvail; if lhs is global,foldVarsDefd does nothing.

• There are three cases forMidStore nodes. Line 17 matches
a node that spills a variablex to the stack. After such a node,
x = sx, but the node is not a reload instruction, sox is not added
to the set of available variables. Line 18 matches a node that
writes anyother value to a stack slot, after which the variable
associated with that slot is no longer available. Line 19 matches

6 2009/8/1

a store to a location that is not a stack slot, which leaves the set
of available variables unchanged.

The transfer function for a last node checks to see if the node is
a function call (line 21); if so, the set of available variables at
the call’s continuation is empty. Other last nodes do not change
values of variables or stack slots, so the set of available variables
remains unchanged. A first node has no effect on program state, so
its transfer function isflip const (line 13).

Given the lattice and the transfer functions, we can perform the
analysis by calling the Hoopl functionzdfSolveFwd (Figure 4,
lines 25–26). Except for the implementations of the set operations
on lines 2–6, Figure 4 shows theentireanalysis.

5.3 Liveness: a backward analysis supporting passes 1 and 3

The assertion computed by a backward dataflow analysis applies to
a continuationat a program point. The classic example is liveness
analysis; the assertion of interest is that at a particular program
point, the answer produced by the continuation does not depend
on the value of a particular variablex. If so,x is said to bedeadat
that point. If the answer produced by the continuationmightdepend
on the value ofx, x is live.5

In a modern compiler, liveness analysis supports many program
transformations, including dead-assignment elimination, which re-
moves assignments to dead variables, and register allocation, which
ensures that if two variables are live at the same time, they are not
assigned to the same register.

The dataflow fact we use to represent liveness assertions is the
set of live variables (Figure 5, line 1). The bottom element of the
lattice is the empty set, and the join operation is set union (Figure 5,
lines 2–6); a variable is deemed live after a node if it is live onany
edge leaving that node.

The transfer functions for liveness rely on two auxiliary functions
addUsed andremDefd (Figure 5, lines 13–16). A transfer function
is given a set of variables live on the edges going out of the node.
It removes from that set any variable defined by the node, then adds
any variable used by the node (Figure 5, lines 11 and 12).

For a last node, functionlastLiveOut consults the solution in
progress (parameterenv on line 18) to find out what variables are
live at thesuccessorsof a last node. For an unconditional branch,
we look up the live set at the label branched to (line 19); for a
conditional branch, we look at both true and false edges (line 20),
and for a switch, we consider every possible target of the branch
(line 21). The remaining case (line 22) is a call, and since a call
destroys the values of all local variables, no local variables are live
at its continuation.

Given the lattice and the transfer functions, we perform liveness
analysis by calling the dataflow-engine functionzdfSolveBwd
(Figure 5, line 25). Figure 5 shows theentireanalysis.

6. Using dataflow facts to rewrite graphs
We compute dataflow facts in order to enable code-improving
transformations on control-flow graphs. A dataflow fact may enable
a rewrite function to replace a node by asubgraph. A subgraph is
a graph that may not define all the labels to which it refers. A valu-
able, novel property of our implementation is that it uses Haskell’s
static type system to control which subgraphs may replace which
nodes. Before explaining how to transform graphs, we explain how
graphs and subgraphs are represented.

5 Liveness cannot be decided accurately; it reduces to the halting problem.
As usual, we approximate liveness by reachability.

type O -- marks graph as open at entry or exit
type C -- marks graph as closed at entry or exit
type GF m l entry exit -- graph or subgraph
type Graph m l = GF m l O C

Figure 6. Types of graphs and subgraphs

6.1 Representing graphs and subgraphs

As mentioned in Section 3.2, a graph is a collection of basic blocks,
and a basic block is normally a first node followed by zero or more
middle nodes followed by a last node. But a graph may also contain
two special, incomplete blocks:

• A graph may begin with anentry sequence: zero or more middle
nodes followed by a last node (i.e., a control transfer). Such a
graph isopen at the entry.

• A graph may end with anexit sequence: a first node followed
by zero or more middle nodes, butnot followed by a last node.
Such a graph isopen at the exit(control “falls off the end”).

Our general type of graph, calledGF, therefore takesfour type
parameters (Figure 6):m is the type of a middle node;l is the
type of a last node;entry is either typeO or typeC, depending on
whether the graph is open or closed at the entry; andexit is typeO
or typeC, depending on whether the graph is open or closed at the
exit. The instantiations of type parametersentry andexit specify
the graph’sshape, which we refer to in shorthand. For example,
a full Graph, which represents a function or procedure, is open at
the entry and closed at the exit, or simply “open/closed.”

Graphs are created using these functions:

mkLabel :: BlockId -> GF m l C O
mkMiddle :: m -> GF m l O O
mkLast :: l -> GF m l O C
(<*>) :: GF m l e a -> GF m l a x

-> GF m l e x
emptyGraph :: GraphClosure a => GF m l a a

The infix <*> function is graph concatenation; the exit of the first
argument must match the entry of the next (both open or both
closed). TheemptyGraph is a left and right unit of concatenation;
the constraintGraphClosure a is satisfied only by typesO andC.

A graph is normally represented by a triple: an optional entry
sequence, aBlockEnv containing basic blocks, and an optional exit
sequence. As a special case, a single sequence of middle nodes also
forms a graph open at both entry and exit.

This new representation improves significantly on our previous
work (Ramsey and Dias 2005):

• We can find the exit point of a graph in constant time.

• We can concatenate data structures in near-constant amortized
time. Previously, we had to resort to Hughes’s (1986) technique,
representing a graph as a function.

• Most important, errors in concatenation are ruled out at compile-
compile time by Haskell’s static type system. In earlier imple-
mentations, such errors were not detected until the compiler ran,
at which point Hoopl tried to compensate for the errors—but
the compensation code harbored subtle faults.

6.2 Rewrite functions

Hoopl transforms its graphs by composing transfer functions (Sec-
tion 3.2) withrewrite functions, whose types are shown in Figure 7.
A rewrite function is given a dataflow fact and a noden. It may
choose to replace noden with a replacement graphg, in which

7 2009/8/1

type Rewrite m l e x = Maybe (GF m l e x)
data ForwardRewrites m l a = ForwardRewrites
{fr_first :: BlockId -> a -> Rewrite m l C O,
fr_middle :: m -> a -> Rewrite m l O O,
fr_last :: l -> a -> Rewrite m l O C}

data BackwardRewrites m l a = BackwardRewrites
{br_first :: BlockId -> a -> Rewrite m l C O,
br_middle :: m -> a -> Rewrite m l O O,
br_last :: l -> (BlockId->a) -> Rewrite m l O C}

Figure 7. Types of forward and backward rewrite functions.

case it returnsJust g, or it may do nothing, in which case it re-
turnsNothing. If it returnsJust g, it must guarantee that given
the assertions represented by incoming dataflow facts, graphg is
observationally equivalent to noden.

A rewrite function may replace a node only with a graph of the
same shape:

• A first node must be rewritten to a closed/open graph.

• A middle node must be rewritten to an open/open graph.

• A last node must be rewritten to an open/closed graph.

These conditions, which are enforced by the static type system
(Figure 7), are necessary and sufficient to ensure that every replace-
ment graph can be spliced in place of the node it replaces.

6.3 Running the dataflow engine

To write a program transformation, you must

• Create a dataflow lattice and transfer functions for the support-
ing analysis, as described in Section 3.

• Create rewrite functions for first, middle, and last nodes.

You can then use Hoopl functionzdfRewriteFwd to transform
a control-flow graph (a backward transformation uses function
zdfRewriteBwd, which has a similar type):

zdfRewriteFwd
:: HavingSuccessors l -- Find successors of l
=> RewritingDepth -- Rewrite recursively?
-> PassName -- Name of this pass
-> DataflowLattice a -- Lattice
-> ForwardTransfers m l a -- Transfer functions
-> ForwardRewrites m l a -- Rewrite functions
-> a -- Input fact
-> Graph m l -- Graph or subgraph
-> FuelMonad (FwdFixedPoint m l a (Graph m l))

FunctionzdfRewriteFwd is like zdfSolveFwd in Section 3.3, but
it uses and produces extra information:

• FunctionzdfRewriteFwd requires rewrite functions as well as
transfer functions.

• TheRewritingDepth parameter controls recursive rewriting;
if a graph produced by a rewrite function should not be further
rewritten, rewriting isshallow; if a graph produced by a rewrite
function can be rewritten again, rewriting isdeep.

• In the result type, the fourth type parameter of type construc-
tor FwdFixedPoint is a value contained in the fixed point.
The value is extracted using functionzdfFpContents, which
has typeFwdFixedPoint m l a b -> b. Here the type param-
eterb is instantiated toGraph m l: the fixed point contains the
rewritten graph.

• Rewriting is monadic. AFuelMonad holds resources needed
to rewrite nodes into subgraphs: a supply of fresh labels and a
supply ofoptimization fuel(Section 7.1).

Function zdfRewriteFwd implements interleaved analysis and
transformation in two phases (Lerner, Grove, and Chambers 2002):

• In the first phase, when a rewrite function proposes to replace a
noden, the replacement graph is analyzed recursively, and the
results of that analysis are used as the new dataflow fact(s) flow-
ing out of noden. Then the replacement graph isthrown away;
only the facts remain. (In other words, rewriting isspeculative.)
If, on a later iteration, noden is analyzed again, perhaps with a
different input fact, the rewrite function may propose a different
replacement or even no replacement at all.

The first phase is called theiterator. It computes a fixed point
of the dataflow analysisas if nodes were replaced, while never
actually replacing a node.

• When the iterator finishes, the resulting fixed point is sound,
and the facts in the fixed point are used by the second phase,
in which no dataflow facts change, but rewrites are not specu-
lative: each replacement proposed by a rewrite function is actu-
ally performed. This phase is therefore called theactualizer.

Facts computed by the iterator depend on graphs produced by
rewrite functions, which in turn depend on facts computed by the
iterator. How do we know this algorithm is sound, or even if it
terminates? A proof requires its own POPL paper (Lerner, Grove,
and Chambers 2002), but we can give some intuition:

• The algorithm is sound because, given the incoming dataflow
facts, each rewrite must preserve the observable behavior of the
program. A sound analysis of the rewritten graph may generate
only dataflow facts that could have been generated by a more
complicated analysis of the original graph.

• No matter what the transfer functions and rewrite functions do,
the dataflow engine uses the dataflow lattice’s join operation to
ensure that facts at labels never decrease. As long as no fact
may increase infinitely many times, analysis terminates.

Thus to guarantee soundness and termination, client code must sup-
ply sound transfer functions, sound rewrite functions, and a lattice
with no infinite ascending chains. And unless client code specifies
shallow rewriting, rewrite functions must not return replacement
graphs which contain nodes that could be rewritten indefinitely.

Why use such a complex algorithm? Because interleaving analysis
with transformation makes it possible to implement useful trans-
formations using startlingly simple client code. In the rest of this
section we present two examples: Section 6.4 shows how to insert
a reload instruction just before each use of each spilled variable,
and Section 6.5 shows how to eliminate dead assignments. When
these two transformations are run in sequence, the effect is to sink
reloads and produce programs like the example shown in Section 5.

6.4 Sinking reloads: a forward transformation

We use the available-variables analysis of Section 5.2 to insert
reloads immediately before uses of variables. The transformation
is implemented by the rewrite functions on lines 3–5 of Figure 8.
A first node uses no variables and so is never rewritten. For mid-
dle and last nodes,maybe_reload_before (lines 6–9) computes
used, which is the set of variables used in the node that are both
safe and profitable to reload. If that set is not empty, function
reloadTail replacesnode with a new graph in whichnode is
preceded by a (redundant) reload for each variable in the setused.
A reload node is created by functionreload (line 11), which has
typeLocalVar -> CmmMiddle.

8 2009/8/1

1: availRewrites :: ForwardRewrites CmmMiddle CmmLast AvailVars
2: availRewrites = ForwardRewrites first middle last
3: where first _ _ = Nothing
4: middle m avail = maybe_reload_before avail m (mkMiddle m)
5: last l avail = maybe_reload_before avail l (mkLast l)
6: maybe_reload_before avail node tail =
7: let used = filterVarsUsed (elemAvail avail) node
8: in if isEmptyVarSet used then Nothing
9: else Just $ reloadTail used tail

10: reloadTail vars t = foldl rel t $ varSetToList vars
11: where rel t r = mkMiddle (reload r) <*> t

Rewrite
functions

12: insertLateReloads :: Graph CmmMiddle CmmLast -> FuelMonad (Graph CmmMiddle CmmLast)
13: insertLateReloads g = liftM zdfFpContents fp
14: where fp = zdfRewriteFwd RewriteShallow "insert late reloads" availVarsLattice
15: availTransfers availRewrites (fact_bot availVarsLattice) g

Late-reload
insertion

Figure 8. Late-reload insertion, which relies on the analysis of Figure 4

1: deadRewrites = BackwardRewrites nothing middleRemoveDeads nothing
2: where nothing _ _ = Nothing
3: middleRemoveDeads :: CmmMiddle -> VarSet -> Maybe (Graph CmmMiddle CmmLast)
4: middleRemoveDeads (MidAssign (CmmLocal x) _) live
5: | not (x ‘elemVarSet‘ live) = Just emptyGraph
6: middleRemoveDeads _ _ = Nothing

Rewrite
functions

7: removeDeadAssignments :: Graph CmmMiddle CmmLast -> FuelMonad (Graph CmmMiddle CmmLast)
8: removeDeadAssignments g = liftM zdfFpContents fp
9: where fp = zdfRewriteBwd RewriteDeep "dead-assignment elim" liveLattice

10: liveTransfers deadRewrites emptyVarSet g

Dead-code
elimination

Figure 9. Dead-assignment elimination, which relies on the analysis of Figure 5

Our transformation is implemented by the call tozdfRewriteFwd
on lines 14–15 of Figure 8. Rewriting is shallow, so a graph con-
taining reload nodes is not itself rewritten. (If itwererewritten, a
nonemptyused set would make the compiler insert an infinite se-
quence of reloads beforenode.) Once the reloads are inserted, the
original reloads are dead, and they can be eliminated by our next
transformation, dead-assignment elimination.

6.5 Dead-assignment elimination: a backward transformation

We use the liveness analysis of Section 5.3 to identify assignments
to local variables that are not live. Suchdead assignmentscan be
removed without changing the observable behavior of the program.
The removal is implemented by the rewrite functions on lines 2–6
of Figure 9. First and last nodes are not assignments and so are
never rewritten. A middle node is rewritten to the empty graph if
and only if it is an assignment to a dead variable (lines 4–5). On
lines 9 and 10, we callzdfRewriteBwd. That’s the whole thing.

7. Hoopl’s dataflow engine
In sections 3 through 6, we use Hoopl to create analyses and trans-
formations. Here we sketch the implementation of the main part of
Hoopl: the dataflow engine. While a full description of the imple-
mentation is beyond the scope of this paper, a sketch demonstrates
the new ideas that make this implementation simpler than the orig-
inal: using pure functional code throughout; using an explicit state
monad to manage the computation of fixed points; giving each
type of graph node its own analysis function, which also performs
speculative rewriting; and using continuation-passing style to stitch
these functions together. We sketch the implementation from the
bottom up: Hoopl’s fuel monad, the monad that holds dataflow
facts, an iterator, and an actualizer.

7.1 Throttling the dataflow engine using “optimization fuel”

We have extended Lerner, Grove, and Chambers’s optimization-
combining algorithm with Whalley’s (1994) algorithm for isolat-
ing faults. Whalley’s algorithm is used to test a faulty optimizer;
it automatically finds the first rewrite that introduces a fault in a
test program. It works by giving the optimizer a finite supply of
optimization fuel. Each time a rewrite function proposes to replace
a node, one unit of fuel is consumed. When the optimizer runs out
of fuel, further rewrites are suppressed. Because each rewrite leaves
the observable behavior of the program unchanged, it is safe to sup-
press rewrites at any point. In normal operation, the optimizer has
unlimited fuel, but during debugging, a fault can be isolated quickly
by doing a binary search on the size of the fuel supply. The fuel
supply is stored in a state monad (FuelMonad), which also holds a
supply of fresh labels. Fresh labels are used for making new blocks.

7.2 A monad for dataflow effects

In addition to fuel, each analysis and transformation keeps track of
the values of dataflow facts. Facts and fuel are stored in adataflow
monad, a state-transformer monad whose state includes a private
environmentmapping labels to facts, as well as the global supplies
of fuel and fresh labels. A value in the dataflow monad has type
DFM a b, wherea is the type of a dataflow fact andb is the type of
the value returned by the monadic action.

Operations on the dataflow monad include

getFact :: BlockId -> DFM a a
setFact :: BlockId -> a -> DFM a ()
getAllFacts :: DFM a (BlockEnv a)
setAllFacts :: BlockEnv a -> DFM a ()
useOneFuel :: DFM a ()

9 2009/8/1

1: type FactKont a b = a -> DFM a b
2: type LOFsKont a b = LastOuts a -> DFM a b
3: type Kont a b = DFM a b

4: fwd_iter :: forall m l e x a . HavingSuccessors l => (forall b . Maybe b -> DFM a (Maybe b))
5: -> RewritingDepth -> PassName -> BlockEnv a -> ForwardTransfers m l a
6: -> ForwardRewrites m l a -> ZMaybe e a -> GF m l e x -> DFM a (ZMaybe x a)
7: fwd_iter with_fuel depth name start_facts transfers rewrites in_fact g =
8: do { setAllFacts start_facts ; iter_ex g in_fact }
9: where iter_ex :: GF m l e x -> ZMaybe e a -> DFM a (ZMaybe x a)

10: iter_first :: BlockId -> FactKont a b -> Kont a b
11: iter_mid :: m -> FactKont a b -> FactKont a b
12: iter_last :: l -> LOFsKont a b -> FactKont a b

13: iter_block :: BlockId -> [m] -> l -> LOFsKont a b -> Kont a b
14: iter_block f ms l = iter_first f . flip (foldr iter_mid) ms . iter_last l

15: set_last :: LOFsKont a ()
16: set_last (LastOuts l) = mapM_ (uncurry setFact) l

17: iter_mid m k in’ =
18: (with_fuel $ fr_middle rewrites in’ m) >>= \x -> case x of
19: Nothing -> k (ft_middle_out transfers in’ m)
20: Just g -> do { a <- subAnalysis $ case depth of
21: RewriteDeep -> iter_OO g return in’
22: RewriteShallow -> anal_f_OO g in’
23: ; k a }

Figure 10. Excerpts from the forward iterator

fuelExhausted :: DFM a Bool
subAnalysis :: DFM a b -> DFM a b
withDuplicateFuel :: DFM a b -> DFM a b
runDFM :: DataflowLattice a -> DFM a b -> FuelMonad b

A computation in the dataflow monad has two significant side
effects: it mayincrease stored facts(according to a lattice ordering)
and it mayconsume fuel. The two most interesting operations in the
monad are used to control those effects:

• ComputationsubAnalysis c computes the same results asc
and consumes the same fuel asc, but it does not change any
stored dataflow facts.

• ComputationwithDuplicateFuel c computes the same re-
sults asc and changes the same stored facts asc, but it con-
sumes fuel from acopyof the fuel supply. The inner computa-
tionc may run out of fuel, but afterward,withDuplicateFuel
restores the original fuel supply. UsingwithDuplicateFuel
has enabled us to eliminate fuel from arguments and results,
making an implementation which is less error-prone andmuch
easier to read than the one by Ramsey and Dias (2005).

FunctionrunDFM runs a single analysis or transformation, then
abandons the dataflow facts and returns the result in the fuel monad.
Only FuelMonad is exposed to the client; the dataflow monad is
private to Hoopl. Using the dataflow monad, Hoopl’s iterators and
actualizers are significantly simpler than those in our previous work
(Ramsey and Dias 2005). In Sections 7.3 and 7.4, we show parts of
the forward iterator and actualizer.

7.3 The forward iterator

An iterator does dataflow analysis with speculative rewriting.
Analysis begins an dataflow monad whose environment maps all
labels to bottom facts. For each block in the control-flow graph, the
iterator begins with the dataflow facts flowing into one end of the
block (in a forward analysis, the first node; in a backward analysis,
the last node), then uses the transfer functions and rewrite func-
tions to compute the dataflow facts flowing out the other end of

the block. The outflowing facts are joined with the facts previously
stored in the environment, and when the facts in the environment
stop changing, the iterator terminates.

The iterator interleaves analysis and speculative rewriting (Lerner,
Grove, and Chambers 2002). At a noden, the iterator passesn and
any incoming dataflow factsfs to a rewriting function. If noden
is rewritten to a graphg, the iterator continues with the same
dataflow factsfs flowing into graphg. After graphg is analyzed, it
is discarded; only the facts flowing out ofg persist.

Figure 10 shows excerpts from the forward iteratorfwd_iter.

• Thewith_fuel parameter is called on the result of each rewrit-
ing function (e.g. line 18). It consumes fuel; or if no fuel is
available, it prevents any nodes from being rewritten.

• Analysis of a subgraph starts with known facts, not bottom
facts; they are passed asstart_facts and set on line 8.

• A forward analysis requires an entry factin_fact if and only
if the graph being analyzed is open at the entry. Similarly, the
analysis produces an output fact if and only if the graph being
analyzed is open at the exit. We express these constraints using
the generalized algebraic data typeZMaybe (Figure 10, line 6):

data ZMaybe ex a where
ZJust :: a -> ZMaybe O a
ZNothing :: ZMaybe C a

Using ZMaybe to construct the types of the input and output
facts has simplified our implementation of the dataflow engine
and has eliminated dynamic tests of the shapes of subgraphs.

The functioniter_ex (type on line 9, implementation not shown),
solves a graph or subgraphg. Where the graph is open,iter_ex
convertsZMaybe facts to actual facts—the static type system pre-
cludes the possibility of a missing or superfluous fact.

The iterator is composed of functions written in continuation-
passing style: the result of analyzing part of a graph is a function
from continuations to continuations. The types of the continuations
are shown on lines 1–3 of Figure 10.

10 2009/8/1

1: type GraphFactKont m l e x a b = GF m l e x -> a -> DFM a b
2: type GraphKont m l e x a b = GF m l e x -> DFM a b

3: ar_first :: BlockId -> GraphFactKont m l e O a b -> GraphKont m l e C a b
4: ar_mid :: m -> GraphFactKont m l e O a b -> GraphFactKont m l e O a b
5: ar_last :: l -> GraphKont m l e C a b -> GraphFactKont m l e O a b

6: ar_mid m k head in’ =
7: (with_fuel $ fr_middle rewrites in’ m) >>= \x -> case x of
8: Nothing -> k (head <*> mkMiddle m) (ft_middle_out transfers in’ m)
9: Just g -> do { (g, a) <- subAnalysis $

10: case depth of
11: RewriteDeep -> iar_OO g (curry return) in’
12: RewriteShallow -> do { a <- anal_f_OO g in’; return (g, a) }
13: ; k (head <*> g) a }

14: iar_OO :: GF m l O O -> GraphFactKont m l O O a b -> FactKont a b

Figure 11. Excerpts from the forward actualizer

• TypeFactKont a b describes a context following a first node
or middle node: in a forward analysis, the context expects a
fact of typea to flow out of the node. The rest of the analysis
consumes that fact and produces a computation in the dataflow
monad (DFM a) with an answer of typeb.

• TypeLOFsKont a b describes a context following a last node.
The type is dictated by the type of the transfer function
ft_last_outs in Figure 3: since as many facts flow out of
a last node as there are control-flow edges leaving that node,
the context expects those facts to have typeLastOuts a.

• Type Kont a b describes a contextbefore a first node (or a
basic block). The dataflow fact flowing into the note is not
passed as a parameter; it is extracted from the dataflow monad’s
environment by calling the monadic operationgetFact.

Declarations of continuation-passing iterator functions for nodes
are shown on lines 10–12 of Figure 10. Functioniter_last on
line 12 maps aLOFsKont to a FactKont; iter_mid on line 11
maps aFactKont to anotherFactKont; and iter_first on
line 10 maps aFactKont to a Kont. To analyze a basic block,
with speculative rewriting, we compose these three functions, as
shown in functioniter_block on lines 13 and 14.6

In code not shown here, functioniter_block is applied to
continuation set_last (lines 15 and 16), which updates the
environment of facts stored in the dataflow monad. The value
iter_block set_last is a computation of typeKont a (),
which is DFM a (). This computation reads the stored fact flow-
ing into a block, propagates facts through the block using transfer
functions and speculative rewriting, and finally updates the stored
facts flowing out to the block’s successors. Iterator functions for
graphs and subgraphs, likeiter_ex, perform such a computation
for every block, then repeat until stored facts stop changing. Each
iteration runs underwithDuplicateFuel, sofwd_iter simulates
the effects of a fuel limit, but it does not actually consume fuel.

Computations infwd_iter, such asiter_block, are compo-
sitions of iter_first, iter_mid, and iter_last. Because
these three functions so resemble one another, we show only one:
iter_mid, on lines 17–23 of Figure 10. On line 18, a rewrite func-
tion gets an input factin’ and a middle nodem. If the rewrite func-
tion proposes no replacement graph, or if no fuel is available, the
application ofwith_fuel returnsreturn Nothing, and contin-
uationk is given the output fact (computed byft_middle_out
on line 19). The interesting case occurs on lines 20–23, when
the rewrite function proposes a replacement graphg. Function
with_fuel decrements the fuel supply and producesg.

6 To simplify the example, we conceal Hoopl’s representation ofblocks.

1. If we are doingdeeprewriting, then asg is analyzed, it may be
rewritten further. Becauseg replaces a middle node, it is open
at entry and exit, so it is analyzed and rewritten on line 21 by
a recursive call toiter_OO (implementation not shown; type
GF m l O O -> FactKont a b -> FactKont a b). The recursive
call gets continuationreturn, and the resultingFactKont a a
is given the input fact. The output fact is computed in a sub-
analysis and bound on line 20. FunctionsubAnalysis rolls
back the facts mutated byiter_OO, but subAnalysis does
account for fuel consumed byiter_OO.

2. If we are doingshallow rewriting, the new graphg must not
be rewritten, but we must still find a fixed point of the trans-
fer equations. We compute that fixed point usinganal_f_OO
(line 22). Functionanal_f_OO (not shown) recursively calls
fwd_iter using with_fuel = \ _-> return Nothing, and
so it does no rewriting and consumes no fuel.

Whether rewriting is shallow or deep, the application on line 23
solves the rest of the graph by applying the continuationk.

FunctionzdfSolveFwd is implemented by callingfwd_iter with
the transfer functions given, with undefined rewrite functions, and
with parameterwith_fuel = \ _ -> return Nothing.

7.4 The forward actualizer

An iterator returns dataflow facts, leaving the graph unchanged.
An actualizer takes facts and a graph, and in a single pass uses
rewrite functions to create a new graph. The actualizer also uses
transfer functions to materialize facts on edges within basic blocks.

The forward actualizer closely resembles the forward iterator, but
because the actualizer passes a rewritten graph as an accumulating
parameter, the continuations have different types, as shown on lines
1 and 2 of Figure 11. When the actualizer runs, the dataflow monad
already contains a fixed point, so there is no need to propagate facts
out of a block, and so no continuation analogous toLOFsKont.

The functions that actualize rewrites are again in continuation-
passing style; lines 3–5 of Figure 11 give the types of the base-
case functions. We show onlyar_mid (lines 6–13). It is much like
functioniter_mid on lines 17–23 of Figure 10. Line 6 shows the
additional parameterhead, which contains the (rewritten) graph
preceding middle nodem. When no rewrite is proposed, the only
change to the code is that continuationk takes the additional pa-
rameterhead <*> mkMiddle m, which is the graph formed by con-
catenating graphhead and nodem. When a rewrite is proposed,
the sub-analysis computes not just an output fact but also a possi-
bly rewritten graph (lines 9–12). Rewriting proceeds with the new
graphhead <*> g (line 13).

11 2009/8/1

The recursive iterate-and-actualize-rewrites functioniar_OO (type
on line 14, implementation not shown) has no counterpart in the
iterator. It calls the iterator to set the dataflow facts to a fixed
point (using a duplicate fuel supply), then calls actualize-rewrite
functions to rewrite the graph based on those facts (using the shared
fuel supply). Similar functions apply to graphs of other shapes; for
example,iar_OC is used to implementzdfRewriteFwd.

8. Conclusions
Compiler textbooks make dataflow optimization appear difficult
and complicated. In this paper, we show how to engineer a library,
Hoopl, which makes it easy to build analyses and transformations
based on dataflow. Hoopl makes dataflow simple not by using
a single magic ingredient, but by applying ideas that are well
understood by the programming-language community.

• We acknowledge only one program-analysis technique: the so-
lution of recursion equations over assertions. We solve the equa-
tions by iterating to a fixed point.

• We consider only two ways of relating assertions: weakest
liberal precondition and strongest postcondition, which corre-
spond to “backward” and “forward” dataflow problems.

• Although our implementation allows graph nodes to be rewrit-
ten in any way that preserves semantics, we describe three
program-transformation techniques: substitution of equals for
equals, insertion of assignments to unobserved variables, and
removal of assignments to unobserved variables (Section 2).
Substitution of equals for equals is often justified by properties
of program states; for example, if variablex is always 7, we
may substitute 7 forx. Insertion and removal of assignments
are often justified by properties of paths through programs; for
example, if an assignment’s continuation does not use the vari-
able assigned to, that assignment may be removed.

• Complex program transformations should be composed from
simple transformations. For example, both “code motion” and
“induction-variable elimination” can be implemented in three
stages: insert new assignments; substitute equals for equals;
remove unneeded assignments (Section 2.2).

• Because each rewrite leaves the semantics of the program un-
changed, we can use “optimization fuel” to limit the number
of rewrites. When we isolate a fault (Section 7.1), we have to
debug just a single rewrite, not a complex transformation.

We also build on proven implementation techniques in a way that
makes it easy to implement classic code improvements.

• We use the algorithm of Lerner, Grove, and Chambers (2002) to
compose analyses and transformations. This algorithm makes it
easy to compose complex transformations from simple ones.

Using continuation-passing style and generalized algebraic data
types, we have created a new implementation, which works
by composing three relatively simple functions (Section 7.3).
The functions are simple because the static type of a node
constrains the number of predecessors and successors it may
have. And because we can compare our code with a standard
continuation semantics, we have more confidence in this new
implementation than in any previous implementation.

• Our code is pure. Inspired by Huet’s (1997) zipper, we use an
applicative representation of control-flow graphs (Ramsey and
Dias 2005). We improve on our prior work by storing changing
dataflow facts in an explicit dataflow monad, which makes it
especially easy to implement such operations as sub-analysis
of a replacement graph (Section 7.2); by using static types to
guarantee that each replacement graph can be spliced in place of

the node it replaces (Sections 6.1 and 6.2); and by simplifying
our implementation using continuation-passing style (Sections
7.3 and 7.4).

• Hoopl is polymorphic in the representations of assignments and
control-flow operations. By forcing us to separate concerns,
introducing polymorphism made the code simpler, easier to
understand, and easier to maintain. In particular, it forced us to
make explicitexactlywhat Hoopl must know about flow-graph
nodes: it must be able to find targets of control-flow operations
(constraintHavingSuccessors l, Section 3.3).

Using Hoopl, you can create a new code improvement in three
steps: create a lattice representation for the assertions you want to
express; create transfer functions that approximate weakest precon-
ditions or strongest postconditions; and create rewrite functions that
use your assertions to justify program transformations. You can get
quickly to the real intellectual work of code improvement: identify-
ing interesting transformations and the assertions that justify them.

References
Manuel E. Benitez and Jack W. Davidson. 1988 (July). A portable global

optimizer and linker.Proceedings of the ACM SIGPLAN ’88 Conference
on Programming Language Design and Implementation,in SIGPLAN
Notices, 23(7):329–338.

Cliff Click and Keith D. Cooper. 1995 (March). Combining analyses, com-
bining optimizations.ACM Transactions on Programming Languages
and Systems, 17(2):181–196.

Patrick Cousot and Radhia Cousot. 1977 (January). Abstractinterpretation:
A unified lattice model for static analysis of programs by construction
or approximation of fixpoints. InConference Record of the 4th ACM
Symposium on Principles of Programming Languages, pages 238–252.

Gérard Huet. 1997 (September). The Zipper.Journal of Functional
Programming, 7(5):549–554.

R. John Muir Hughes. 1986 (March). A novel representation oflists and
its application to the function “reverse”.Information Processing Letters,
22(3):141–144.

John B. Kam and Jeffrey D. Ullman. 1976. Global data flow analysis and
iterative algorithms.Journal of the ACM, 23(1):158–171.

John B. Kam and Jeffrey D. Ullman. 1977. Monotone data flow analysis
frameworks.Acta Informatica, 7:305–317.

Gary A. Kildall. 1973 (October). A unified approach to globalprogram op-
timization. InConference Record of the ACM Symposium on Principles
of Programming Languages, pages 194–206.

Sorin Lerner, David Grove, and Craig Chambers. 2002 (January). Com-
posing dataflow analyses and transformations.Conference Record of
the 29th Annual ACM Symposium on Principles of Programming Lan-
guages,in SIGPLAN Notices, 31(1):270–282.

Norman Ramsey and João Dias. 2005 (September). An applicative control-
flow graph based on Huet’s zipper. InACM SIGPLAN Workshop on ML,
pages 101–122.

Norman Ramsey and Simon L. Peyton Jones. 2000 (May). A single in-
termediate language that supports multiple implementations ofexcep-
tions. Proceedings of the ACM SIGPLAN ’00 Conference on Program-
ming Language Design and Implementation,in SIGPLAN Notices, 35
(5):285–298.

David A. Schmidt. 1998. Data flow analysis is model checking of ab-
stract interpretations. In ACM, editor,Conference Record of the 25th
Annual ACM Symposium on Principles of Programming Languages,
pages 38–48.

David B. Whalley. 1994 (September). Automatic isolation of compiler
errors.ACM Transactions on Programming Languages and Systems, 16
(5):1648–1659.

12 2009/8/1

A. Index of defined identifiers
This appendix lists every nontrivial identifier used in the body
of the paper. For each identifier, we list the page on which that
identifier is defined or discussed—or when appropriate, the figure
(with line number where possible). For those few identifiers not
defined or discussed in text, we give the type signature and the page
on which the identifier is first referred to.

Some identifiers used in the text are defined in the Haskell Prelude;
for those readers less familiar with Haskell, these identifiers are
listed in Appendix B.

<*> defined on page 7.
add let- orλ-bound in Figure 4 on page 5.
addUsed defined in Figure 5 on page 6.
anal f OO defined on page 11.
ar first defined on line 3 of Figure 11 on page 11.
ar last defined on line 5 of Figure 11 on page 11.
ar mid defined on line 6 of Figure 11 on page 11.
avail let- orλ-bound on line 15 of Figure 4 on page 5.
availRewrites defined in Figure 8 on page 9.
availTransfers defined on line 13 of Figure 4 on page 5.
AvailVars defined on line 1 of Figure 4 on page 5.
availVarsLattice defined in Figure 4 on page 5.
BackTransfers defined in Figure 3 on page 4.
BackwardRewrites defined in Figure 7 on page 8.
Block defined on page 3.
BlockEnv defined on page 4.
BlockId defined on page 3.
br first defined in Figure 7 on page 8.
br last defined in Figure 7 on page 8.
br middle defined in Figure 7 on page 8.
bt first in defined in Figure 3 on page 4.
bt last in defined in Figure 3 on page 4.
bt middle in defined in Figure 3 on page 4.
C defined in Figure 6 on page 7.
catMaybes :: [Maybe a] -> [a] not shown (but see Figure 5
on page 6).
ChangeFlag defined in Figure 2 on page 3.
Cmm defined on page 5.
cmmAvailableVars defined in Figure 4 on page 5.
CmmExpr defined on page 6.
CmmGlobal defined on page 6.
CmmLast defined on page 6.
cmmLiveness defined in Figure 5 on page 6.
CmmLoad defined on page 6.
CmmLocal defined on page 6.
CmmMiddle defined on page 6.
CmmVar defined on page 6.
DataflowLattice defined in Figure 2 on page 3.
deadRewrites defined in Figure 9 on page 9.
DefinerOfLocalVars defined on page 6.
delFromAvail defined in Figure 4 on page 5.
delFromVarSet :: VarSet -> LocalVar -> VarSet not
shown (but see page 6).
depth let- orλ-bound on line 7 of Figure 10 on page 10.
DFM defined on page 9.
elemAvail defined in Figure 4 on page 5.
elemVarSet :: LocalVar -> VarSet -> Bool not shown
(but see page 6).
empty let- orλ-bound in Figure 4 on page 5.
emptyBlockEnv :: BlockEnv a not shown (but see page 4).
emptyGraph defined on page 7.
emptyVarSet :: VarSet not shown (but see page 6).
entry let- orλ-bound in Figure 6 on page 7.
env let- orλ-bound on line 18 of Figure 5 on page 6.

ex let- orλ-bound on page 10.
exit let- orλ-bound in Figure 6 on page 7.
expr let- orλ-bound on line 16 of Figure 4 on page 5.
extendAvail defined on line 2 of Figure 4 on page 5.
extendVarSet :: VarSet -> LocalVar -> VarSet not
shown (but see page 6).
fact add to defined in Figure 2 on page 3.
fact bot defined in Figure 2 on page 3.
FactKont defined on line 1 of Figure 10 on page 10.
fact name :: DataflowLattice a -> String not shown
(but see page 3).
filterVarsUsed :: UserOfLocalVars e => (LocalVar
-> Bool) -> e -> VarSet not shown (but see page 8).
first let- orλ-bound on line 3 of Figure 8 on page 9.
foldVarsDefd defined on page 6.
foldVarsUsed defined on page 6.
ForwardRewrites defined in Figure 7 on page 8.
ForwardTransfers defined in Figure 3 on page 4.
fp let- orλ-bound on line 25 of Figure 4 on page 5.
fr first defined in Figure 7 on page 8.
fr last defined in Figure 7 on page 8.
fr middle defined in Figure 7 on page 8.
ft first out defined in Figure 3 on page 4.
ft last outs defined in Figure 3 on page 4.
ft middle out defined in Figure 3 on page 4.
fuelExhausted defined on page 10.
FuelMonad defined on page 8.
FwdFixedPoint defined on page 4.
fwd iter defined on line 4 of Figure 10 on page 10.
getAllFacts defined on page 10.
getFact defined on page 10.
GF defined in Figure 6 on page 7.
GlobalVar defined on page 6.
Graph defined in Figure 6 on page 7.
GraphClosure defined on page 7.
GraphFactKont defined on line 1 of Figure 11 on page 11.
GraphKont defined on line 2 of Figure 11 on page 11.
HavingSuccessors defined on page 4.
iar OC defined on page 12.
iar OO defined on line 14 of Figure 11 on page 11.
in’ let- orλ-bound on line 17 of Figure 10 on page 10.
in fact let- orλ-bound on line 7 of Figure 10 on page 10.
insertLateReloads defined in Figure 8 on page 9.
interAvail defined in Figure 4 on page 5.
isEmptyVarSet :: VarSet -> Bool not shown (but see
page 6).
isStackSlot :: CmmExpr -> Bool not shown (but see
page 6).
isStackSlotOf :: CmmExpr -> LocalVar -> Bool not
shown (but see page 6).
iter block defined on line 14 of Figure 10 on page 10.
iter ex defined on line 9 of Figure 10 on page 10.
iter first defined on line 10 of Figure 10 on page 10.
iter last defined on line 12 of Figure 10 on page 10.
iter mid defined on line 17 of Figure 10 on page 10.
iter OO defined on page 11.
join let- orλ-bound in Figure 4 on page 5.
Kont defined on line 3 of Figure 10 on page 10.
l let- orλ-bound in Figure 3 on page 4.
last let- orλ-bound on line 5 of Figure 5 on page 6.
lastAvail defined in Figure 4 on page 5.
LastBranch defined on page 6.
LastCall defined on page 6.
LastCondBranch defined on page 6.
lastLiveness defined on line 12 of Figure 5 on page 6.

13 2009/8/1

lastLiveOut defined on line 18 of Figure 5 on page 6.
LastOuts defined in Figure 3 on page 4.
LastSwitch defined on page 6.
lhs let- orλ-bound on line 16 of Figure 4 on page 5.
Live defined on line 1 of Figure 5 on page 6.
live let- orλ-bound in Figure 5 on page 6.
liveLattice defined on line 2 of Figure 5 on page 6.
liveTransfers defined in Figure 5 on page 6.
LocalVar defined on page 6.
LOFsKont defined in Figure 10 on page 10.
m let- orλ-bound in Figure 3 on page 4.
maybe reload before defined on line 6 of Figure 8 on page 9.
MidAssign defined on page 6.
middle let- orλ-bound in Figure 8 on page 9.
middleAvail defined in Figure 4 on page 5.
middleLiveness defined on line 11 of Figure 5 on page 6.
middleRemoveDeads defined in Figure 9 on page 9.
MidStore defined on page 6.
mkLabel defined on page 7.
mkLast defined on page 7.
mkMiddle defined on page 7.
ms let- orλ-bound on line 14 of Figure 10 on page 10.
name let- orλ-bound on line 7 of Figure 10 on page 10.
new let- orλ-bound in Figure 4 on page 5.
NoChange defined in Figure 2 on page 3.
node let- orλ-bound on line 6 of Figure 8 on page 9.
nothing let- orλ-bound on line 2 of Figure 9 on page 9.
O defined in Figure 6 on page 7.
old let- orλ-bound in Figure 4 on page 5.
PassName defined on page 4.
rel let- orλ-bound on line 11 of Figure 8 on page 9.
reload defined on page 8.
reloadTail defined in Figure 8 on page 9.
remDefd defined on line 16 of Figure 5 on page 6.
removeDeadAssignments defined in Figure 9 on page 9.
Rewrite defined in Figure 7 on page 8.
RewriteDeep defined on page 8.
rewrites let- orλ-bound on line 7 of Figure 10 on page 10.
RewriteShallow defined on page 8.
RewritingDepth defined on page 8.
runDFM defined on page 10.
setAllFacts defined on page 10.
setFact defined on page 10.
set last defined on line 16 of Figure 10 on page 10.
sizeVarSet :: VarSet -> Int not shown (but see page 6).
smallerAvail defined on line 6 of Figure 4 on page 5.
SomeChange defined in Figure 2 on page 3.
start facts let- orλ-bound on line 7 of Figure 10 on page 10.
subAnalysis defined on page 10.
succs defined on page 4.
tbl let- orλ-bound on line 21 of Figure 5 on page 6.
transfers let- orλ-bound on line 7 of Figure 10 on page 10.
unionManyVarSets :: [VarSet] -> VarSet not shown (but
see page 6).
unionVarSets :: VarSet -> VarSet -> VarSet not shown
(but see page 6).
UniverseMinus defined on line 1 of Figure 4 on page 5.
used let- orλ-bound in Figure 8 on page 9.
useOneFuel defined on page 10.
UserOfLocalVars defined on page 6.
varOfSlot :: CmmExpr -> LocalVar not shown (but see
page 6).
vars let- orλ-bound in Figure 8 on page 9.
VarSet (a type) not shown (but see page 6).

varSetToList :: VarSet -> [LocalVar] not shown (but see
Figure 8 on page 9).
withDuplicateFuel defined on page 10.
with fuel defined on page 10.
zdfFpContents defined on page 8.
zdfFpFacts defined on page 4.
zdfRewriteBwd defined on page 8.
zdfRewriteFwd defined on page 8.
zdfSolveBwd defined on page 4.
zdfSolveFwd defined on page 4.
ZJust defined on page 10.
ZMaybe defined on page 10.
ZNothing defined on page 10.

B. Identifiers defined in Haskell Prelude
!, $, &, &&, *, +, ++, -, ., /, ==, >, >=, >>, >>=, Bool, const,
curry, Data.Map, False, flip, foldl, foldr, fst, head, id,
Int, Just, liftM, map, mapM , Maybe, not, Nothing, return,
snd, String, tail, True, uncurry, undefined .

14 2009/8/1

	Introduction
	Dataflow analysis & transformation by toexample
	Simple transformations
	A complex transformation

	Making dataflow simple
	Dataflow lattices
	Transfer functions
	Running the dataflow engine

	Related work
	Example analysis passes
	Choosing node types for GHC
	Available variables: a forward analysis supporting pass 2
	Liveness: a backward analysis supporting passes 1 and 3

	Using dataflow facts to rewrite graphs
	Representing graphs and subgraphs
	Rewrite functions
	Running the dataflow engine
	Sinking reloads: a forward transformation
	Dead-assignment elimination: a backward totransformation

	Hoopl's dataflow engine
	Throttling the dataflow engine using ``optimization fuel''
	A monad for dataflow effects
	The forward iterator
	The forward actualizer

	Conclusions
	Index of defined identifiers
	Identifiers defined in Haskell Prelude

