Reprinted from the 2005 ACM SIGPLAN Workshop on ML

ML Module Mania: A Type-Safe,
Separately Compiled, Extensible Interpreter

Norman Ramsey

Division of Engineering and Applied Sciences
Harvard University

1 Introduction

ML provides unusually powerful mechanisms for building programs from
reusable modules. Such power is not available in other popular languages,
and programmers accustomed to those languages have wondered if a pow-
erful modules system is really necessary. This paper explores the power of
ML modules—including higher-order functors—via an extended programming
example. The example solves a problem in the construction of interpreters:
how to combine extensibility with separate compilation in a safe language.
We focus on a kind of interpreter for which extensibility and separate com-
pilation are especially important: the embedded interpreter. An embedded in-
terpreter implements a reusable scripting language that can be used to control
a complex application—Ilike a web server or an optimizing compiler—which is
written in a statically typed, compiled host language like ML. The interpreter
becomes part of the application, so the application can invoke the interpreter
and the interpreter can call code in the application. The idea was first demon-
strated by Ousterhout (1990) and has been widely imitated (Benson 1994;
Laumann and Bormann 1994; Ierusalimschy, de Figueiredo, and Celes 1996a;
Jenness and Cozens 2002; van Rossum 2002). Sometimes a host language can
also be used for scripting (Leijen and Meijer 2000), but often it is inconvenient
or even impossible to make a host-language compiler available at run time.
A scripting language and its interpreter must meet several requirements:

1. They must be extensible: the whole point is to add application-specific
data and code to the scripting language.

2. The interpreter should be compiled separately from the host application.
In particular, it should be possible to compile an application-specific ex-
tension without using or changing the interpreter’s source code. In other
words, the interpreter should be isolated in a library.

3. The combination of application and scripting language should be type-
safe, and this safety should be checked by the host-language compiler.

RAMSEY

This paper presents Lua-ML, which to my knowledge is the first embedded
interpreter to meet all three requirements. Lua-ML’s API makes it possible
to embed a Lua interpreter into an application written in Objective Caml.
Lua-ML uses Objective Caml’s modules language to compose the Lua-ML
interpreter with its extensions.

At present, the primary application of Lua-ML is to script and control
an optimizing compiler for the portable assembly language C-- (Ramsey and
Peyton Jones 2000). The compiler, which is roughly 25,000 lines of Objective
Caml, uses about 1,000 lines of Lua to configure back ends and to call front
ends, assemblers, linkers, and so on.

2 Background: Extensible interpreters

Prior work on extensible interpreters comes in two flavors. Work done us-
ing C has produced embedded interpreters that are extensible and separately
compiled but not type-safe: safety is lost because each host value is given a
“universal” type such as void * or char *, and application-specific code must
use unsafe casts between this type and the actual host-language type. Work
done using functional languages has produced interpreters that are extensible
and type-safe but not separately compiled. Because this work has informed
the design of Lua-ML, we begin by reviewing it.

Lua-ML is inspired partly by Steele’s (1994) beautiful paper on building
interpreters by composing pseudomonads. Steele follows an agenda set by
Wadler (1992), which is to use monads to express various language features
that may be implemented in an interpreter. An “extension” may include not
only a new type of value but also new syntax, new control flow, new rules for
evaluation, or other new language features. Lua-ML is much less ambitious:
as with Lua (Ierusalimschy 2003), an interpreter’s syntax, control flow, and
rules for evaluation cannot be extended; the only possible extensions are to
add new types and values. We are interested in the mechanism used to add
new types.

Steele’s interpreter is built using a “tower” of types. In such a tower, an
extension is defined using a type constructor of kind * x * = *. For example,
one might define an extension for arbitrary-precision rational arithmetic using
the type constructor arithx:

type (’value, ’next) arithx = Bignum of Big_int.big_int
| Ratio of ’value * ’value
|

Other of ’next

The type constructor arithx represents one level of the tower. The type pa-
rameter ’next represents the next level down, and the type parameter ’value
represents the (eventual) top of the tower. Thus, the extension above defines
a value at the arithx level to be either an arbitrary-precision integer, a ratio
of two values, or a value from the next level down.

176

RAMSEY

In any embedded interpreter, a critical issue is how to convert between na-
tive host-language values, such as Big_int.big int, and embedded-language
values, for which the type variable ’value stands. The conversion from host
value to embedded value is called embedding, and the conversion from embed-
ded value to host value is called projection.

In a tower of types, embedding and projection are implemented by com-
posing functions that move up and down the tower. Each such function is
simple; for example, a value from the level below arithx might be embedded
by the function fun v -> Other v, and a value from the arithx level might
be projected downward by the function

function Other v -> v | _ -> raise Projection.

Building a full tower of types requires linking multiple levels through the
’next parameter, then tying the knot with a recursive definition of value, in
which value is used as the ’value parameter. The use of a type parameter
to tie a recursive knot is called two-level types by Pasalic and Sheard (2004).

As an example, here is a very simple tower built with two levels: void (an
empty type) and arithx. Tying the knot requires a recursive definition of
value:

type void = Void of void (* no values x*)
type value = (value, void) arithx (* illegal *)

Unfortunately, in both ML and Haskell this definition of value is illegal: a
recursive type definition is permitted only if the type in question is an algebraic
data type, and this fact is not evident to the compiler. Steele solves this
problem by using a program simplifier, which reduces the tower of types to
a single recursive definition that is acceptable to a Haskell compiler. (The
simplifier also eliminates the indirection inherent in the use of such value
constructors as Other above.) Using a simplifier eliminates any possibility
of separate compilation, because the simplifier performs what amounts to a
whole-program analysis.

Liang, Hudak, and Jones (1995) also build interpreters by composing parts,
but they use monad transformers, not pseudomonads. Again we focus on the
definition of types. Liang, Hudak, and Jones use no type parameters.

e In place of Steele’s ’value parameter, they use mutually recursive type
definitions—there are no two-level types.

 In place of Steele’s *next parameter, they use a binary sum-type constructor
to build what they call extensible unions. This type constructor plays a role
analogous to that of a cons cell in ML: it is applied to types in a union and
is not part of either type. By contrast, Steele’s ’next parameter plays a
role analogous to that of a linked-list pointer stored inside a heap-allocated
structure in C: it is part of the definition of each type.

In Haskell 98, the sum constructor is known as Either (Peyton Jones 2003);

177

RAMSEY

in the earlier work it is called OR. In Objective Caml it could be written
type (’a, ’b) either = Left of ’a | Right of ’b

The sum constructor simplifies the definition of types at each level, because
value constructors like Other are no longer necessary.
The example above could be written

type value = (arithx, void) either
and arithx = Bignum of Big_int.big_int
| Ratio of value * value

and void Void of void

The ’value parameter has been dropped; instead the Ratio constructor refers
directly to the value type. Because mutually recursive types must be defined
in a single module, this design sacrifices separate compilation.

Liang, Hudak, and Jones define embedding and projection functions using
a multiparameter type class, which overloads the functions embed and project
(there called inj and prj). For types built with OR, suitable instance decla-
rations automate the composition of these functions.

Lua-ML borrows ideas from all of these sources.

e Like embedded interpreters written in C, Lua-ML is a separately compiled
library.

e Like one of these interpreters, Lua, Lua-ML limits its extensibility to new
types and values; syntax and evaluation rules never change.

e Like Steele’s interpreters, Lua-ML uses two-level types to create a recursive
definition of value.

e Like Liang, Hudak, and Jones’s interpreters, Lua-ML uses an external con-
structor to combine building blocks of different types. But instead of using
a type constructor with type classes, Lua-ML uses an ML functor.

The rest of this paper describes what a Lua-ML extension looks like and
how extensions are composed with Lua-ML’s modules to produce a complete,
extended interpreter. An ambitious example appears in Section 4.

3 Extending Lua using libraries

Lua-ML is based on Lua, a language that is designed expressly for embed-
ding (Ierusalimschy, de Figueiredo, and Celes 1996a, 2001). Lua-ML imple-
ments the Lua language version 2.5, which is described by lerusalimschy, de
Figueiredo, and Celes (1996b). Version 2.5 is relatively old, but it is mature
and efficient, and it omits some complexities of later versions. The most recent
version is Lua 5.0; I mention differences where appropriate.

Lua is a dynamically typed language with six types: nil, string, number,
function, table, and userdata. Nil is a singleton type containing only the value

178

RAMSEY

nil. A table is a mutable hash table in which any value except nil may be used
as a key.

Userdata is a catchall type, the purpose of which is to enable an application
program to add new types to the interpreter. Such a type must be a pointer
type. To add a new type, an application allocates a unique tag (or in Lua 5.0,
a metatable) for the type and represents a value of the type as userdata with
this tag. This technique requires a small amount of unsafe code, but such code
can be isolated in a couple of C procedures. Lua-ML uses the same overall
model, but Lua-ML can extend userdata with any type, and it does so without
unsafe code—a requirement for an interpreter written in ML.

In both Lua and Lua-ML, the idiomatic unit of extension is the [ibrary.
Lua comes with libraries for mathematics, string manipulation, and 1/0O. Ap-
plication programmers can use these libraries as models when designing their
own extensions.

A library may perform up to three tasks:

1. Every library defines additional values (usually functions) that are in-
stalled in an interpreter at startup time. These values may be stored
in global variables, in tables that are global variables, and so on. They
become part of the initial basis of Lua. For example, the Lua I/O library
defines a function write, which performs output.

2. A library may define additional types of userdata. For example, the Lua
I/O library defines a type representing an “open file handle.”

3. A library may define additional mutable state for the interpreter. Such
state may be exposed through Lua variables, or it may be hidden behind
Lua functions. For example, the Lua I/O library defines a “current output
file,” which is an open file handle that write writes to.

In C, a Lua library is hidden behind a single function that installs Lua values
in an interpreter, acquires tags for userdata, and initializes mutable state. For
example, the Lua I/O library is hidden behind the function lua_iolibopen.

Lua-ML uses Lua’s model of libraries, but the program constructs used to
encapsulate a library are different: each library is defined using ML modules.
Relating the signatures of these modules to the tasks that libraries perform is
one of the fine points of the design.

3.1 Signatures for libraries

Every library adds new values to an interpreter (task 1), but adding new types
(task 2) and new state (task 3) are optional. Depending on which options are
exercised, there are four kinds of library. It is possible to give each kind of
library its own signature, but such designs have two defects:

e Four signatures is too many, especially if we want libraries to be composable:
the obvious composition scheme uses sixteen functors.

It is not obvious how libraries can share types or state.

179

RAMSEY

In a complex application, sharing types is commonplace. For example, our
optimizing compiler defines a type that represents a control-flow graph. This
type is shared among libraries for each back end, for the register allocator,
and for optimization. State, by contrast, is seldom used and rarely shared.
These issues are discussed in more detail in Section 5.

Instead of putting one library in one module and using a distinct signature
for each kind of library, Lua-ML splits a library into multiple modules.

e The definition of a new type (task 2) appears in a type module, which
matches the USERTYPE signature. A type module also includes a few as-
sociated functions, e.g., a function used to print a value of the new type.

¢ Definitions of new values, functions, or state (tasks 1 and 3) appear in a code
module, which matches the USERCODE or BARECODE signature (Section 3.4).
The most interesting component of such a signature is an init function,
which when applied to an interpreter’s state, extends the interpreter with
new values or functions.

e If a code module requires that the interpreter include a particular new type,
that module is represented as an ML functor; the functor takes as argument
a view of the required type and produces a result that matches USERCODE.
A view provides a type together with the ability to embed and project values
of the type; it matches signature TYPEVIEW (Section 3.4). If two or more
code modules share a type, the sharing is expressed by applying them to
the same view.

Because state is rarely shared, Lua-ML does not provide a view-like mecha-
nism for sharing state. Instead, if state is shared among two or more libraries,
that state must be stored in a global Lua variable, which makes it accessi-
ble to all libraries and to Lua code in general. Such state can be protected
from unwanted mutation by giving it an abstract type and by permitting only
certain libraries to depend on the type. If state is private to a single library,
which is the common case, it can be hidden behind one or more functions in
that library. In other words, it can appear as one or more free variables of
those library functions.

Type modules and code modules are examples of what Batory and
O’'Malley (1992) call symmetric components: type modules can be composed
to form a new type module, and code modules can be composed to form a
new code module. This compositional technique was also used to good effect
in the TCP/IP protocol stack developed for FoxNet (Biagioni et al. 1994).
By exploiting composition, we can, if we like, define a library to be a pair
consisting of one type module and one code module.

3.2 Linking

After being compiled separately, type modules and code modules are linked
to form an interpreter.

180

RAMSEY

1. Using Lua-ML’s Combine. T functors, type modules are composed into a
single module T. The module T includes a view of each of its constituent
type modules.

2. Each code module is specialized to T; for example, if a code module
depends on one or more type modules, it is applied to the relevant views
in T.
3. Using Lua-ML’s Combine.Cx functors, the specialized code modules are
composed into a single module C.
4. Modules T and C are linked with a parser to form an interpreter:
module I = MakeInterp (Parser.MakeStandard) (MakeEval (T) (C))

The Combine functors and the relevant signatures are described in the rest of
this section; an extended example appears in Section 4.

3.3 Elements of the design

Value and state

Both a Lua value and the state of a Lua interpreter are represented as
explicit values in the host language, Objective Caml. A Lua interpreter in-
cludes a submodule that matches the VALUE signature, an abbreviated version
of which is

module type VALUE = sig
type ’a userdata’
type srcloc (* a source-code location *)

type value = Nil
| Number of float
| String of string
| Function of srcloc * func
| Userdata of userdata
| Table of table
and func = value list -> value list
and table = (value, value) Luahash.t
and userdata = value userdata’
and state = { globals : table } (* other fields omitted *)

val eq : value -> value -> bool
val to_string : value -> string

end

The VALUE signature represents a family of signatures; a member of the fam-
ily is identified by giving a definition of userdata’. In an implementation,
userdata’ is defined by composing type modules. Constructor userdata’
is a two-level type; its type parameter represents a value, as you can see
from the definition of userdata, where the recursive knot is tied. Using this

181

RAMSEY

mechanism, the value type can be extended by libraries. The state type, by
contrast, cannot be extended.

One example of a type constructor that could be used as userdata’ is
Luaiolib.t (open file handle) from the Lua-ML I/O library:

type ’a t = In of in_channel | Out of out_channel

Because an open file handle does not contain a Lua value, the type parame-
ter ’a is not used.

Embedding and projection
To convert from a Caml value to a Lua value (of Caml type value) requires

an embedding function; to convert from Lua to Caml requires projection. Em-
bedding and projection functions come in pairs, and to represent such a pair,
Lua-ML defines type (’a, ’b) ep: an embed function for converting a value
of type ’a into a value of type ’b and a project function for the opposite
conversion. For the special case where we are embedding into a Lua value,
we define type ’a map.

type (’a, ’b) ep = { embed : ’a -> ’b; project : ’b -> ’a }

type ’a map = (’a, value) ep
Unlike APIs such as Tcl or Lua, Lua-ML uses higher-order functions to provide
an unlimited supply of embedding/projection pairs: embedding and projection
are a type-indexed family of functions. The idea, which has been independently
discovered by Benton (2005), is inspired by Danvy (1996), who uses a similar
family to implement partial evaluation.® We build our type-indexed family
of functions as follows.

 For a base type, such as float, we provide a suitable embedding/projection
pair. Lua-ML includes pairs for float, int, bool, string, unit, userdata,
table, and value.

e For a type constructor that takes one argument, such as 1ist, we provide
a higher-order function that maps an embedding/projection pair to an em-
bedding/projection pair. Lua-ML includes such functions for the 1ist and
option type constructors.

e For a type constructor of two or more arguments, such as the function
arrow —>, we continue in a similar vein.

In Lua-ML, the functions that build embedding/projection pairs are part of
the VALUE signature; the details appear elsewhere (Ramsey 2003). What is
important here is that we need an embedding/projection pair for each type
module. These pairs are constructed by the functors used to build an inter-
preter.

A library may define its own embedding/projection pairs. For example,
the I/O library needs to convert from the type Luaiolib.t (open file handle)

L Danvy (1998) credits Andrzej Filinski and Zhe Yang with developing this technique.

182

RAMSEY

to the type in_channel (file open for input). The conversion is done by the
embedding/projection pair infile, which has type in_channel map. It uses
a pair t, which has type Luaiolib.t map. This pair is obtained from the view
of the type module for type Luaiolib.t.

let infile =
let fail v = raise (Projection (v, "input file")) in
{ embed = (fun f -> t.embed (In £))
; project = (fun v -> match t.project v with In £ -> f | _ -> fail v)
}

The exception Projection is raised whenever projection fails.

Registration

The process of initializing an interpreter includes registration. A li-
brary registers a value by storing it in a global Lua variable, table, or
other structure. Registration can be performed by directly manipulating
the globals table in a Lua state, but Lua-ML provides two convenience
functions: Function register_globals has type (string * value) list ->
state —-> unit; for each (s,v) pair on the list, it makes v the value of global
variable s in the state. Function register_module has type string ->
(string * value) list -> state -> unit; it embodies the common pro-
gramming convention of putting a group of related functions in different named
fields of a single, global table. If a value being registered is already present,
both register_globals and register_module raise an exception.

As an example, the Lua-ML /O library registers many functions at startup
time. Registration takes place when init is called, receiving interp, which
has type state.

let init interp =
let io = {currentin=stdin; currentout=stdout} in
(definitions of the 1/0 library functions)
register_globals

["open_in", efunc (string **->> infile) open_in
; "close_in", efunc (infile **->> unit) close_in
] interp

The I/0 library extends the interpreter with new, private state: the io record.
The mutable fields currentin and currentout maintain the current input and
output file, which are accessible only to the functions in the 1/O library.

Functions open_in and close_in are pervasives in Caml. The values
efunc, string, **->> and unit all relate to embedding; the code embeds
open_in, which has type string -> in_channel, and close_in, which has
type in_channel -> unit. Details can be found in a companion paper (Ram-
sey 2003). The init function registers many other functions which are not
shown, but which are defined in (definitions of the 1/0 library functions) so
they have access to currentin and currentout.

183

RAMSEY

3.4 Components of an interpreter

Because so many modules are required to build a Lua-ML interpreter, I sum-
marize their signatures and relationships in a figure. Figure 1 shows both a
graphical view, which uses bubbles and arrows; and an algebraic view, which
uses informal matching and subtype claims about modules and signatures.
Either view suffices to summarize the system, so you can focus on the one you
find more congenial.

Type modules are described in the upper left box and in the middle group of
algebraic claims. Code modules are described in the upper right box and in
the bottom group of algebraic claims. Other components of an interpreter
are described at the bottom of the graphical view and in the top group of
algebraic claims.

A module that is written by hand appears in the graphical view as a signa-
ture in a double-bordered oval and in the algebraic view as a phrase written
in italics. A module that is supplied with Lua-ML or is built by applying
a functor appears in the graphical view as a signature in a single-bordered
oval and in the algebraic view as a name written in typewriter font.

A possible functor application appears in the graphical view as a tiny circle
that is connected with arrows. In most cases, the incoming arrows come
from the functor’s arguments, and the outgoing arrow, which is labeled
with the functor’s name, points to its result. In some cases, however, one
incoming arrow comes from the functor and the other from its argument;
the outgoing arrow, which is labeled “functor application,” still points to
the functor’s result. Solid arrows represent a functor application in client
code; dotted arrows represent a functor application that is done “behind
the scenes” by one of Lua-ML’s higher-order functors.

A possible functor application appears in the algebraic view as an arrow
in a signature. An example that appears in both views is MakeEval: it
can be applied to a module matching USERTYPE and a module matching
USERCODE to produce a module matching EVALUATOR.

Figure 1 shows two forms of subtyping on signatures: “is-a” and “has-a.” As
an example of is-a subtyping, any module that matches COMBINED_TYPE also
matches USERTYPE. This relation appears in the graphical view as a dashed
arrow and in the algebraic view as the relation <. As an example of has-a
subtyping, any module that matches COMBINED_TYPE contains submodules
that match TYPEVIEW. This relation appears in the graphical view as a
dashed arrow and in the algebraic view as the relation <.

The final result of applying all Lua-ML’s functors is an interpreter, which
matches signature INTERP and is shown at the bottom of the graphical view.
Since an interpreter is our ultimate goal, we begin our explanation there.

184

RAMSEY

Type modules:
type definitions, equality,
embedding/projection, ...

COMBINED_TYPE

Combine.T2

INE
/

functor application

signature subtyping
(is-a or has-a)

application

functor

;

~

~
~
~

CEVALUATOR

Parser.MAKER

C
MakeInterp

Y

\
I
|
|

|

MakeEval

~ functor
- application

Library
(with init function)

INTERP

MakeInterp :
Parser.MakeStandard
MakeEval

Interpreter

Combine.T2
COMBINED_TYPE.,. < USERTYPE,
COMBINED_TYPE, ., < TYPEVIEW,

COMBINED._VIEWS < TYPEVIEW
Lift

Type modules

USERCODE = CORE — sig val init
WithType
Combine.C2

Code modules

type module for application-specific type T :

code module using application-specific type T
code module using no application-specific types

INTERP < EVALUATOR < CORE < VALUE
Parser.MAKER — EVALUATOR — INTERP
: Parser.MAKER

: USERTYPE — USERCODE — EVALUATOR

USERTYPE;

: USERTYPE,, — USERTYPE,, — COMBINED_TYPE, .,

: COMBINED.TYPE — TYPEVIEW — COMBINED_VIEWS

: TYPEVIEW, — USERCODE
: BARECODE
: state -> unit end

: USERTYPE — BARECODE — USERCODE
: USERCODE — USERCODE — USERCODE

Fig. 1. ML module mania: Components and construction of a Lua-ML interpreter

185

RAMSEY

An interpreter

An interpreter is built by applying the MakeInterp functor to an evalua-
tor and a parser. By supplying a nonstandard parser, a user can extend the
concrete syntax accepted by the interpreter. Such an extension must trans-
late into existing abstract syntax, as the abstract syntax of Lua-ML is not
extensible.

The signature INTERP and functor MakeInterp are declared as follows:

module type INTERP = sig
include EVALUATOR
module Parser : Luaparser.S with type chunk = Ast.chunk

val mk : unit -> state
val dostring : state -> string -> value list
end

module MakeInterp (MakeParser : Parser.MAKER) (E : EVALUATOR)
: INTERP with module Value = E.Value

Within a module matching INTERP, function mk creates a fresh, fully initialized
interpreter, and function dostring evaluates a string containing Lua source
code. We omit the parser signatures Luaparser.S and Parser.MAKER, which
are of little interest.

An evaluator
An evaluator is built using a type module and a code module. The signa-
ture of an evaluator is

module type EVALUATOR = sig
module Value : VALUE

module Ast : AST with module Value = Value

type state = Value.state

type value = Value.value

val pre_mk : unit -> state

type compiled = unit -> value list

val compile : Ast.chunk list -> state -> compiled
end

The evaluator provides definitions of values and terms using the submodules
Value and Ast. It provides pre_mk, which creates and initializes an interpreter,
and it provides compile, which translates abstract syntax into a form that can
be evaluated efficiently. It also provides many convenience functions, which
are not shown here.

To build an evaluator, one applies functor MakeEval to a type module T
and a code module C, each of which is typically a composition of similar mod-
ules. The type module provides type constructor T.t, which is used as the
definition of Value.userdata’. MakeEval ties the recursive knot as shown
in Section 3.3, by defining value to include userdata and userdata to be

186

RAMSEY

value T.t. The code module provides an initialization and registration func-
tion, which is called by pre_mk.
module MakeEval
(T : USERTYPE) (C : USERCODE with type ’a userdata’ = ’a T.t)
: EVALUATOR with type ’a Value.userdata’ = ’a T.t
Here the with type constraint on the module C ensures that the type module
and code module are consistent, which is required for type safety.

Defining and composing type modules
The basic building block of a type module is a user-defined type, which is
a module matching the USERTYPE signature.

module type USERTYPE = sig
type ’a t (x type parameter ’a will be Lua value *)

val eq : (Pa -> ’a -> bool) -> ’at -> ’a t -> bool
val to_string : (’a -> string) -> ’a t -> string

val tname : string (% type’s name, for errors *)

end

The type constructor ’a t, which appears as a subscript in Figure 1, is a
two-level type; when the recursive knot is tied by the definition of userdata,
the type parameter ’a will be value. The operations eq and to_string are
required because in Lua it must be possible to compare any two values for
equality and to convert any value to a string. Because comparing values
of type ’a t may require comparing values of type ’a, for example, these
operations are defined as higher-order functions. Finally, Lua-ML names each
type, so if projection fails it can issue an informative error message.

It might not be obvious how to extend Lua-ML with a type constructor
that is polymorphic. For example, what if you don’t like mutable tables and
prefer an immutable binary-search tree of type (’k, ’v) tree? You can
easily introduce the tree constructor into Lua-ML, but with a key limitation:
type variables *k and ’v may be instantiated only with types that are known
to Lua-ML. Because Lua is dynamically typed, the correct thing to do is
to instantiate both with value, but because value cannot be known at the
time the type module for trees is defined, the type module must use its type
parameter instead:

module TreeType : USERTYPE with type ’a t = (’a, ’a) tree = struct
type ’a t = (Pa, ’a) tree
fun eq eq’ t1 t2 = ...

fun to_string _ _ = "a binary-search tree"
val tname = "search tree"
end

A similar limitation applies to the introduction of polymorphic functions into
Lua-ML (Ramsey 2003).

187

RAMSEY

type ’a t =
’a TV1.combined =
’a TV2.combined

TV1.map TV2.map

type ’a TV1i.t type ’a TV2.t

Fig. 2. Views of combined types in COMBINED_TYPE

A type module adds just one type to Lua, but a sophisticated applica-
tion might need to add many types. To add many types, a programmer
combines multiple type modules into one type module, which is passed to
MakeEval. Type modules are combined using a functor like Combine.T2,
shown below, which takes two USERTYPE modules as arguments and returns
a COMBINED_TYPE module. The signature COMBINED_TYPE includes not only
USERTYPE but also an embedding/projection pair for each constituent type.
The embedding/projection pair is hidden inside a submodule that matches
the TYPEVIEW signature, which is defined approximately as follows:

module type TYPEVIEW = sig

type ’a combined

type ’a t (* the type of which this is a view *)

val map : (’a t, ’a combined) ep

end

The type ’a combined is the “combined type,” which is a sum of individual
types. The type ’a t is one of these individual types. To see all of the
individual types that make up a single combined type, one needs a “combined
type module.” Such a module is the composition of two type modules.
module type COMBINED_TYPE = sig
include USERTYPE
module type VIEW = TYPEVIEW with type ’a combined = ’a t
module TV1 : VIEW
module TV2 : VIEW
end

Each view’s combined type is equal to the type ’a t from the USERTYPE signa-
ture. The combination may be better understood graphically; Figure 2 shows
a single combined type and its relationships to its constituent types. Each
constituent type can be embedded in the combined type above it; the com-
bined type can be projected to either of the constituent types, but projection
might raise an exception.

The Combine module provides functor Combine.T2, which combines two
type modules and returns appropriate views. Because COMBINED_TYPE is a
subtype of USERTYPE, the results of applying Combined.T2 can themselves be
passed to Combine.T2:

188

RAMSEY

module Combine : sig
module T2 (T1 : USERTYPE) (T2 : USERTYPE)
: COMBINED_TYPE with type ’a TV1.t = ’a T1.t
with type ’a TV2.t = ’a T2.t

end

The views of the constituent types in the COMBINED_TYPE signature are essen-
tial for building libraries that use the types. The views provide the projection
functions that enable a library module to get from a value of combined type
(which is probably userdata) to a value of the constituent type of its choice.

The idea behind Combine.T2 is very similar to the idea behind the OR
type constructor of Liang, Hudak, and Jones (1995). Since Liang, Hudak, and
Jones are using Haskell, they define embedding and projection for OR types
by using type classes, not functors.

Defining and composing code modules

A code module is a library module that initializes an interpreter by regis-
tering values and functions. A code module must know what sort of interpreter
to initialize. Figure 1 shows that a final interpreter (INTERP) is produced from
an EVALUATOR, which contains a translator (compile) and libraries. There is
actually a stage before EVALUATOR: an interpreter core, which is shown in
Figure 1 as CORE, supertype of EVALUATOR.

module type CORE = sig
module V : VALUE

val register_globals : (string * V.value) list -> V.state -> unit
val register_module : string -> (string * V.value) list -> V.state -> unit
end

An interpreter core contains a submodule V that defines value. This defini-
tion includes a definition of userdata that is built using a type module. An
interpreter core also contains convenience functions, of which we show only
the most important: the registration functions mentioned above. These reg-
istration functions, along with the types V.value and V.state, are used by a
code module to help initialize an interpreter.

The idea of a code module is simple: it is a functor that takes an interpreter
core and produces an initialization function. The simplest kind of code module
is from a library that adds no new types and therefore does not depend on
any application-specific types.

module type BARECODE =
functor (C : CORE) -> sig val init : C.V.state -> unit end

A code module of type BARECODE can be used with any module matching
CORE. But if the code module depends on one or more application-specific
types, there are two additional requirements:

189

RAMSEY

e It must have suitable embedding and projection functions, which is to
say wiews, with which it can map between userdata and values of the
application-specific types.

e To ensure type safety, it can be used only with an interpreter core that pro-
vides a suitable definition of the userdata’ type constructor. A definition
is suitable if it is consistent with the embedding and projection functions.
In other words, we would really like to describe a family of signatures, like
BARECODE, but parameterized over the userdata’ type constructor in the
functor parameter C.

We address the second requirement first.

The standard way to parameterize a family of signatures over a constructor
like userdata’ is to make userdata’ abstract and then specialize it using
the with type constraint (Harper and Pierce 2005, §8.7). Unfortunately,
the signatures language of Objective Caml provides no way for a with type
constraint to name a functor’s parameter. To work around this limitation, we
introduce another level of nesting and a new type constructor userdata’, the
purpose of which is to be nameable in a with type constraint.?

module type USERCODE = sig
type ’a userdata’ (x type on which 1ib depends *)
module M : functor (C : CORE with type ’a V.userdata’ = ’a userdata’)
-> sig val init : C.V.state -> unit end
end

Given this definition, we can write a signature such as USERCODE with type
’a userdata’ = ... and be sure of properly constraining the functor param-
eter C. Such a constraint appears in the declaration of the MakeEval functor,
which we repeat here:
module MakeEval
(T : USERTYPE) (C : USERCODE with type ’a userdata’ = ’a T.t)
: EVALUATOR with type ’a Value.userdata’ = ’a T.t

A hand-written code module is unlikely to implement USERCODE directly.
Instead, it is likely to depend on particular views. Because such a module
takes one or more views and returns a module matching USERCODE, we call it
a “pre-USERCODE” module. Applying a pre-USERCODE code module establishes
two type identities:

e The view’s application-specific type, ’a t, is equal to the type on which the
code module depends.

e The view’s combined type constructor is equal to the userdata’ type con-
structor in the USERCODE module that results from the application.

2 To remove this limitation, along with several others, Ramsey, Fisher, and Govereau (2005)
have proposed some extensions to Caml’s signatures language.

190

RAMSEY

As an example, here is a synopsis of the interface to the Lua-ML I/O library.
It provides an application-specific type ’a t, a type module T, and a pre-
USERCODE code module Make.
type ’a t = In of in_channel | Out of out_channel
module T : USERTYPE with type ’a t = ’a t
module Make (TV : TYPEVIEW with type ’a t = ’a t)
: USERCODE with type ’a userdata’ = ’a TV.combined

Like type modules, code modules can be composed:

module Combine : sig

module C2 (C1 : USERCODE)
(C2 : USERCODE with type ’a userdata’
: USERCODE with type ’a userdata’

’a Cl.userdata’)
’a Cl.userdata’

end

Code modules can be composed only if they share one definition of userdata’.

4 Putting it all together

Lua-ML’s library support may look daunting, but because library modules
are combined in stylized ways, it is not difficult to write libraries and build
interpreters. Each library defines its application-specific types in type mod-
ules matching signature USERTYPE. FKach library defines its code in a code
module, which is normally either a structure matching BARECODE or a functor
that accepts arguments matching TYPEVIEW and produces a result matching
USERCODE. Both type modules and code modules can be compiled separately.

Once libraries are written, it is often easiest to write a single “linking
module” that combines libraries and builds an interpreter. Such a module has
a stylized structure:

1. Combine type modules using Combine.T2, and call the result T. For inter-
preters that use more than two type modules, Lua-ML actually provides
Combine. T functors in arities up to 10, which has two benefits: in source
code, less notation is needed to combine multiple types, and at run time,
there is less allocation and pointer-chasing in the implementations of em-
bedding and projection.

2. From T, which matches COMBINED_TYPE, extract and rename each sub-
module matching TYPEVIEW. This step is not strictly necessary, but the
submodules have names like T.TV4, and renaming them enables subse-
quent code to use more readable names.

3. Arrange for code modules to agree among themselves (and with T.t) on
the definition of userdata’. Agreement is arranged by specializing each
code module to work with T:
¢ A code module that is pre-USERCODE is applied to the relevant views

from step 2.

191

RAMSEY

¢ A code module matching BARECODE is associated with T by having the
functor WithType (T) applied to it:

module WithType (T : USERTYPE) (C : BARECODE)
: USERCODE with type ’a userdata’ = ’a T.t

4. Once code modules are specialized, combine them using Combine.C2, and
call the resulting combination C. As for type modules, Lua-ML provides
Combine.Cx functors in arities up to 10.

5. Apply MakeEval and MakeInterp:
module I = MakeInterp (Parser.MakeStandard) (MakeEval (T) (C))

The I module contains everything a client needs to create an interpreter and
evaluate Lua code with respect to the interpreter’s state.

As an example, here are some excerpts from our C-- compiler. The com-
piler defines many type modules. Here is one for the type Ast2ir.proc, which
represents the intermediate form of a procedure and includes the procedure’s
control-flow graph.

module ProcType : USERTYPE with type ’a t = Ast2ir.proc = struct

type ’a t = Ast2ir.proc

let tname = "proc"

let eq _ =funxy->x=y

let to_string _ = fun t -> "<proc " ~ t.Proc.name "~ ">"
end

The type modules AsmType and TargetType represent the types of an assem-
bler and a target machine, respectively.

module AsmType : USERTYPE with type ...
module TargetType : USERTYPE with type ...

There are many other type modules.
The compiler also defines code modules. Most parts of the compiler are
exported to Lua in a single, pre-USERCODE code module called MakeLib.
module MakeLib
(Asmv : TYPEVIEW with type ’a t
(ProcV : TYPEVIEW with type ’a t
and type ’a combined

’a AsmType.t)
’a ProcType.t
’a AsmV.combined)

(TargetV : TYPEVIEW with type ’a t = ’a TargetType.t
and type ’a combined ’a AsmV.combined)

: USERCODE with type ’a userdata’ = ’a AsmV.combined =
struct
type ’a userdata’ = ’a AsmV.combined
module M (C : CORE with type ’a V.userdata’ = ’a userdata’) =
struct

module V = C.V
) =

let (**x=> V. (*x%x=>)

192

RAMSEY

let (**->>) t t’ = t *x-> V.result t’

(definitions of many embedding/projection pairs)

let init interp =
C.register_module "Asm"
["x86" , V.efunc (outchan **->> asm) (X86asm.make Cfg.emit)
; "mips", V.efunc (outchan **->> asm) (Mipsasm.make Cfg.emit)

] interp;
C.register_module "Stack"
["freeze", V.efunc (proc **-> block *x->> V.unit) Stack.freeze
; "procname", V.efunc (proc *x->> V.string) (fun p -> p.Proc.name)
] interp;
C.register_module "Targets"
["x86", target.V.embed X86.target
; "mips", target.V.embed Mips.target
; "alpha", target.V.embed Alpha.target
] interp;
end (*Mx)

end (*MakeLib*)

The init function defined by the code module registers many functions, each
of which is embedded using V.efunc. Just a few examples are shown here. It
also embeds a few non-function values, such as those in the Targets table.

Given a collection of type modules and code modules, we can write a
linking module by following the five steps above. For step 1, we combine type
modules. To illustrate nested composition of type modules, we combine types
in two stages.

module T1 =
Combine.T5
(DocType) (x T1.TV1 =)
(Luaiolib.T) (* T1.TV2 %)
(AsmType) (x T1.TV3 *)
(AstType) (* T1.TV4 %)
(Colorgraph.T) (x T1.TV5 *)
module T =
Combine.T6
(TD) (x T.TV1 *)
(Backplane.T) (x T.TV2 *)
(EnvType) (* T.TV3 *)
(ProcType) (x T.TV4 *)
(TargetType) (* T.TV5 *)
(BlockType) (x T.TV6 *)

In step 2, we extract and rename the relevant views. The nested applica-
tions of Combine. T* functors create a slight complication: module T1 provides
views that map between a child type and its parent type T1.t, but what are

193

RAMSEY

needed are views that map between a child type and its grandparent type T.t.
We can get these views by composing the combined parent type with the view
mapping that type to the grandparent. The composition is implemented by a

functor called Lift.
module Lift

(T : COMBINED_TYPE) (View :
: COMBINED_VIEWS with type
with type
with type

with type

The result of Lift matches COMBINED_VIEWS, which is just like COMBINED_TYPE
except it does not include USERTYPE.

Given Lift, the renaming is straightforward.

module T1’ = Lift (T1) (T.

module DocTV =
module LuaioTV
module AsmTV

module AstTV =
module ColorgraphTV =

T17.
T1’.
T17.
T1’.
T1’.

TYPEVIEW with type ’a t

’a t = ’a View.combined
’a TVli.t = ’a T.TV1.¢t

’a TV2.t = ’a T.TV2.t

’a TV10.t = ’a T.TV10.t

TV1)

TV1 module BackplaneTV
TV2 module EnvTV

TV3 module ProcTV

TV4 module TargetTV
TV5 module BlockTV

’a T.t)

T.TV2
T.TV3

= T.Tv4

T.TVb
T.TV6

In steps 3 and 4, we specialize code modules and combine the results using
Combine.C7. These steps are best done together in one big functor application:

module C =
Combine.C7

(Luaiolib.Make (LuaioTV))
(WithType (T) (Luastrlib.M))
(WithType (T) (Luamathlib.M))
(MakeLib (AsmTV) (AstTV) (EnvTV) (ProcTV) (TargetTV) (DocTV)
(LuaioTV) (BlockTV))
(Colorgraph.MakeLua (BackplaneTV) (ColorgraphTV) (ProcTV))
(WithType (T) (Luautil.MakeLib))
(Backplane.MakeLua (BackplaneTV) (ProcTV))

Finally, in step 5, we build an interpreter.
module I = MakeInterp (Parser.MakeStandard) (MakeEval (T) (C))

5 Discussion

Although Lua-ML’s library support looks complex, it is not clear that anything

significantly simpler will do, at least if we are using ML modules.

Composition of types

The main source of complexity in Lua-ML is the need to compose sepa-
rately compiled libraries. The composition of libraries determines the set of

194

RAMSEY

types included in an interpreter’s value type. But if it is to be compiled sepa-
rately, each library must be independent of value and of the set of types that
make up value. Lua-ML solves this problem using Steele’s (1994) technique of
type parameterization, also called two-level types: a type constructor defined
in a library takes a type parameter that is ultimately instantiated with value.
By using a type parameter, one can define a data structure that can contain
any value and can be compiled separately even when the full definition of
value is unknown.

To define value once libraries have been chosen, Lua-ML uses an external
sum constructor similar to that used by Liang, Hudak, and Jones (1995). The
external sum is more convenient than Steele’s tower of types, and it requires
fewer pointer indirections at run time. Again, to be compiled separately, a
library must be able to get values out of a sum without knowing the definition
of the sum. Like the interpreters of Liang, Hudak, and Jones, Lua-ML solves
this problem by using embedding and projection functions. Liang, Hudak,
and Jones define the sum as a type constructor, and they use Haskell’s type
classes to define embedding and projection. Given an application of the type
constructor, the Haskell compiler automatically composes the embedding and
projection functions. In ML, we define the sum constructor as a functor (e.g.,
Combine.T2), not as a type constructor, and we compose embedding and
projection functions manually, by functor application; otherwise the designs
are similar. Whether you view manual composition as a cost or a benefit
depends on your views about implicit computation and on your skills with
Haskell’s automatic mechanism.

In summary, composing libraries requires that we compose types, and to
compose types we must make two independent choices:

e To combine types, we may use an external sum constructor or we may build
a tower using an additional type parameter. Both choices are consistent
with separate compilation.

e To include a Lua value in a user-defined extension, we may use two-level
types or we may provide a definition of value that is mutually recursive
with the definitions of the constituent types, including extensions. Only
two-level types are consistent with separate compilation.

These observations have guided the design of Lua-ML, but they do not de-
termine it. We should ask if we could simplify Lua-ML significantly either by
using another design or other language features to compose libraries.

Alternative designs

Lua-ML splits each library into zero or more type modules plus a code
module. A design that seems simpler is to write every Lua library as a single
ML module. But there are four different kinds of library: one that adds a new
type, new state, both, or neither. Because there are four kinds, the obvious

195

RAMSEY

“one library, one module” designs do not work out very well; the difficulty is
what signature each kind of library should have.

* Gue each kind of library a different signature. The design works well for
describing individual libraries, but combining libraries is problematic: there
are too many combinations of signatures.

e Give each kind of library the most general signature. In other words, pretend
each library adds both a type and a state. This design seems reasonable at
first, particularly if one provides functors analogous to WithType, so that a
library can be coerced to a more general signature. But there is a problem:
it is impossible to share types among multiple libraries. This problem is
significant if, for example, multiple libraries want to use the same control-
flow graph.

To share types among libraries is the primary reason that Lua-ML splits each
library into multiple modules.

Another design that seems simpler is to treat both kinds of extensions, type
and state, in the same way. But the mechanisms needed to share and compose
types are complex, and similar mechanisms for sharing and composing state
would be unnecessary, because in practice, types and state are used very
differently:

e Although most Lua libraries add neither a new type nor new state, it is
still common for a library to add a new type. Moreover, added types are
often shared; typical shared types include both general-purpose types like
file descriptor and application-specific types like control-flow graph.

e A Lua library rarely adds state, and I have never observed such state to be
shared with another library.

e ML library modules are similar to Lua libraries in their use of types and
state. For example, a quick look at library modules distributed with Objec-
tive Caml shows that somewhat fewer than half define a distinct, new type.
Only one appears to define new mutable state: the random-number gen-
erator Random. Some others provide access to existing mutable state: the
thread library Thread, the bytecode loader Dynlink, and the windowing
toolkit Tk. In all cases the mutable state is private to its module.

These practices justify Lua-ML’s design, in which type extensions and state
extensions are treated quite differently. Type extensions enjoy the full power
of the modules system, and the presence of a needed type is checked at compile
time. State extensions, by contrast, are second-class citizens. If you want some
piece of shared state, your only option is to put it in a global variable, and
you need to perform a dynamic check just to know it is there.® The benefit of

3 Lua versions 4.0 and later provide a “registry,” which is an unnamed table that is shared
among all libraries. A similar registry could be added to Lua-ML.

196

RAMSEY

this design is that the treatment of state is irrelevant to a library’s signature,
and the mechanisms for composing libraries are simplified thereby:.

Alternative language mechanisms

The complexity of composing libraries is apparent in the number of dif-

ferent kinds of functors that must be composed to build an interpreter in
Lua-ML. Perhaps it would be simpler to use a different language mechanism.
There are several candidates:

Unsafe cast. One could define userdata to be any pointer type, then use
an unsafe cast to embed or project a particular extension. This solution,
which is essentially the solution used in C for both Lua and Tcl, could also
be used in ML. But it relies on the programmer to guarantee type safety.
Such unsafe code tastes bad to an ML programmer.

Type dynamic. One could define userdata to be the type “dynamic” and
use the operations on that type to implement embedding and projection
of each extension. Type dynamic is a frequently provided extension to a
functional language, and in common languages it can be simulated: in ML,
one can simulate dynamic by extending the exn type, and in Haskell, one
can simulate dynamic using universal and existential type qualifiers (Baars
and Swierstra 2002).

Objects. One could define userdata to be an object type and each exten-
sion to be a subtype. Embedding comes “for free” via subsumption, but
projection requires that the language include a safe, downward cast, which
involves a run-time check. No such cast is available in Objective Caml; a
value of object type may be cast only to a supertype. Standard ML and
Haskell, of course, lack objects entirely.

Eaxtensible datatypes. One might define userdata as an extensible datatype
in the style of EML (Millstein, Bleckner, and Chambers 2002). Because
EML can distinguish among multiple extensible types, and because it can
check for exhaustive pattern matching over an extensible type, its mecha-
nism looks more attractive than simply extending ML’s exn type, but the
mechanism is not available in widely deployed functional languages. It also
has the limitation that only one definition of userdata may appear in any
application that uses the embedded interpreter; in other words, one cannot
embed two instances of the interpreter that use different userdata types.

Cross-module recursive types. Given a language that allows the definition of
a recursive type to extend across module boundaries, such as the extension
defined by Russo (2001), one could define userdata directly using this ex-
tension instead of indirectly using functors and type parameters. Like the
previous mechanism, this mechanism limits a program to a single instance
of userdata.

197

RAMSEY

» Polymorphic variants. One could define userdata’ using polymorphic vari-
ants, which allow multiple cases to be combined into a single union without
an explicit type declaration (Garrigue 1998). The implementation would
be very similar to the implementation using functors, but there would be
a few different tradeoffs. Extensions would be combined at the term level
(Garrigue 2000); linking would involve defining eq, to_string, and tname.
There would be no predefined limit on the number of types that could be
combined, and embedding and projection would be simpler. But because
the code would depend on the names of the variants, it could not be written
once and reused, as it is in Lua-ML. On the whole, polymorphic variants
would require a bit less work from the implementor of Lua-ML and a bit
more work from clients.

Each of these mechanisms enables a solution in which extensions can be in-
dependent and in which types need not be composed explicitly, which might
be a worthwhile simplification. But it would be a mistake to think that li-
braries can be composed simply by composing their types: to implement Lua’s
semantics, it is also necessary to compose eq functions. Of the mechanisms
enumerated above, only objects with a downward cast would provide a conve-
nient way of attaching an eq operation to a type. Since no ML-like language
provides such a mechanism, we would need to compose the eq functions in
some other way. The eq functions would have to be defined and composed
in a similar way to the USERTYPE structures in Lua-ML. We might hope to
write the code differently, say by moving the composition from the modules
language into the core language, but it seems unlikely that the result would
be any simpler than Lua-ML.

The expression problem

Type safety, separate compilation, and extensibility are elements of what
Wadler (1998) has called the expression problem. The expression problem
demands two kinds of extensibility: it should be possible to add new operations
on existing unions, as functional languages are good at, and it should also be
possible to add new cases to existing unions, as object-oriented languages are
good at. The expression problem is discussed by many authors; I found Zenger
and Odersky (2005) especially helpful.

Although Lua-ML does make it possible to use a functional language to
add new cases to an existing union (value), Lua-ML does not solve the ex-
pression problem: it is not possible to add a new operation on values without
recompiling existing code.

ML module mania

Lua-ML’s use of Objective Caml modules is aggressive—perhaps even ma-
niacal. In particular, Lua-ML uses higher-order functors, which may return a
functor, take a functor as an argument, or be a component of a structure.

198

RAMSEY

e A pre-USERCODE code module is a higher-order functor with a signature of
the form S; — (S — S3). Signature S; describes an application-dependent
type, where signatures Sy and S3 belong to the Lua-ML interface; Sy — S3
is approximately the signature of a code module (USERCODE), at least in
spirit. If a functor could not return a functor, we would have to use a
signature of the form S; x Sy — S3. In this form, there is no independent
signature that describes a code module, and the argument signature S x S,
does not describe an independently useful component. On these aesthetic
grounds, I prefer the Curried form, but it is not essential.

* The MakeEval functor is a higher-order functor with a signature of the form
(Sy — S3) — S,. Here USERCODE is the argument functor, and the higher
order enables MakeEval to hide the details of building a suitable CORE mod-
ule to which a USERCODE functor can then be applied. We could avoid an
arrow on the left of an arrow by making the linking module do more work:
it would have to build CORE explicitly—for which purpose it would need ad-
ditional API functors—and then apply each USERCODE functor to this CORE.
The notational burden would be modest, but the disruption to the API is
troubling; Leroy (1995, §2.4) has also observed that hoisting applications
outside of functors can disrupt the modular structure of a program. The
higher-order functor, although still not essential, is even more valuable than
in the previous case.

e The USERCODE signature requires nesting a functor within a module. This
nesting is only a device to enable us to constrain the functor’s argument
using with type, but such constraints are essential to get the separately
compiled code to type-check.

This evidence shows that although higher-order functors can help express
pleasing modular structures, they are not needed to build a type-safe, sep-
arately compiled, extensible interpreter.

e Although higher-order functors enable a cleaner API, we can imagine build-
ing an extensible interpreter with only first-order, top-level functors, pro-
vided we have a signatures language that allows us to constrain a functor’s
argument using with type.

e We could even do without functors entirely—the problem that they solve
is safely composing types and functions (such as eq) that are defined in
separately compiled modules. Without functors, we could compose types
using a mechanism such as polymorphic variants or type dynamic, and we
could compose functions using the core language. These mechanisms don’t
suffice to ensure that each type is associated with exactly one eq function,
but a language designer could introduce other mechanisms for that purpose.
An obvious candidate would be Haskell’s type classes.

199

RAMSEY

So what can we learn from Lua-ML, a modest-sized program that uses
higher-order functors aggressively? To me, the most surprising result is that
the only higher-order functor that would be difficult to get rid of—in the def-
inition of USERCODE—is there purely as a workaround for a defect in the sig-
natures language. For the rest, I am forced to conclude that Lua-ML doesn’t
really need higher-order functors. While at first I found this conclusion dis-
couraging, on reflection I am neither discouraged nor surprised; after all, al-
though I normally use higher-order functions heavily, I manage without them
when I program in C. And like higher-order functions, higher-order functors
make programming a lot more fun. I hope that designers of future functional
languages will include them in their powerful modules systems.

Acknowledgement

Joao Dias, Simon Peyton Jones, and Sukyoung Ryu helped smooth some
rough spots in the manuscript. The referees for the workshop were unusually
thorough and energetic in suggesting improvements and related work. Todd
Millstein kindly explained some of the fine points of his work. Matthew Fluet
and Aleks Nanevski carefully read a very late draft.

This work is part of the C-- project and was supported by NSF
grants CCR-~0096069, CCR-0311482, ITR-0325460; by a Sloan Research Fel-
lowship; and by a gift from Microsoft. Code can be downloaded from
WWW.cminusminus.org.

References

Arthur I. Baars and S. Doaitse Swierstra. 2002. Typing dynamic typing.
In Proceedings of the Seventh ACM SIGPLAN International Conference on
Functional Programming (ICFP’02), pages 157-166.

Don Batory and Sean O’Malley. 1992 (October). The design and implemen-
tation of hierarchical software systems with reusable components. ACM
Transactions on Software Engineering and Methodology, 1(4):355-398.

Brent W. Benson. 1994 (October). Libscheme: Scheme as a C library. In
Proceedings of the USENIX Symposium on Very High Level Languages,
pages 7-19.

Nick Benton. 2005 (July). Embedded interpreters. Journal of Functional
Programmaing, pages 503-542.

Edoardo Biagioni, Robert Harper, Peter Lee, and Brian G. Milnes. 1994
(June). Signatures for a network protocol stack: A systems application of
Standard ML. In Proceedings of the 1994 ACM Conference on LISP and
Functional Programming, pages 55—-64. ACM Press.

200

www.cminusminus.org

RAMSEY

Olivier Danvy. 1996. Type-directed partial evaluation. In Conference Record of
the 23rd Annual ACM Symposium on Principles of Programming Languages,
pages 242-257.

Olivier Danvy. 1998. A simple solution to type specialization. In Proceedings
of the 25th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), number 1443 in Lecture Notes in Computer Science,
pages 908-917. Springer-Verlag.

Jacques Garrigue. 1998 (September). Programming with polymorphic vari-
ants. In ACM SIGPLAN Workshop on ML.

Jacques Garrigue. 2000 (November). Code reuse through polymorphic
variants. In Workshop on Foundations of Software Engineering (FOSE),
Sasaguri, Japan.

Robert Harper and Benjamin C. Pierce. 2005. Design considerations for ML-
style module systems. In Benjamin C. Pierce, editor, Advanced Topics in
Types and Programming Languages, chapter 8. MIT Press.

Roberto lerusalimschy. 2003 (December). Programming in Lua. Lua.org.
ISBN 85-903798-1-7.

Roberto lerusalimschy, Luiz H. de Figueiredo, and Waldemar Celes. 1996
(June)a. Lua — an extensible extension language. Software—Practice &
Ezperience, 26(6):635-652.

Roberto lerusalimschy, Luiz H. de Figueiredo, and Waldemar Celes. 1996

(November)b. Reference Manual of the Programming Language Lua 2.5.
TeCGraf, PUC-Rio. Available from the author.

Roberto lerusalimschy, Luiz H. de Figueiredo, and Waldemar Celes. 2001
(May). The evolution of an extension language: A history of Lua. In
V' Brazilian Symposium on Programming Languages, pages B14-B28. (In-
vited paper).

Tim Jenness and Simon Cozens. 2002 (July). Extending and Embedding Perl.
Manning Publications Company.

Oliver Laumann and Carsten Bormann. 1994 (Fall). Elk: The Extension
Language Kit. Computing Systems, 7(4):419-449.
Daan Leijen and Erik Meijer. 2000 (January). Domain-specific embedded com-

pilers. Proceedings of the 2nd Conference on Domain-Specific Languages, in
SIGPLAN Notices, 35(1):109-122.

Xavier Leroy. 1995. Applicative functors and fully transparent higher-order
modules. In Conference Record of the 22nd Annual ACM Symposium on
Principles of Programming Languages, pages 142-153.

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad transformers and
modular interpreters. In Conference Record of the 22nd Annual ACM Sym-
posium on Principles of Programming Languages, pages 333—343.

201

RAMSEY

Todd Millstein, Colin Bleckner, and Craig Chambers. 2002. Modular type-
checking for hierarchically extensible datatypes and functions. In Proceed-
ings of the Seventh ACM SIGPLAN International Conference on Functional
Programming (ICFP’02), pages 110-122.

John K. Ousterhout. 1990 (January). Tcl: An embeddable command lan-
guage. In Proceedings of the Winter USENIX Conference, pages 133-146.

Emir Pasalic and Tim Sheard. 2004 (September). Two-level types and pa-
rameterized modules. Journal of Functional Programming, 14(5):547-587.

Simon Peyton Jones, editor. 2003. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press. Also a special issue of the
Journal of Functional Programming, 13(1):1-255, January 2003.

Norman Ramsey. 2003 (June). Embedding an interpreted language using
higher-order functions and types. In Proceedings of the ACM Workshop
on Interpreters, Virtual Machines, and Emulators, pages 6-14. A revised
version of this paper will appear in the Journal of Functional Programming.

Norman Ramsey, Kathleen Fisher, and Paul Govereau. 2005 (September). An
expressive language of signatures. In Proceedings of the Tenth ACM SIG-
PLAN International Conference on Functional Programming (ICFP’05),
pages 27-40.

Norman Ramsey and Simon L. Peyton Jones. 2000 (May). A single interme-
diate language that supports multiple implementations of exceptions. Pro-
ceedings of the ACM SIGPLAN 00 Conference on Programming Language
Design and Implementation, in SIGPLAN Notices, 35(5):285-298.

Claudio V. Russo. 2001 (October). Recursive structures for Standard ML.
Proceedings of the Sizth ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’01), in SIGPLAN Notices, 36(10):50-61.

Guy Lewis Steele, Jr. 1994. Building interpreters by composing monads. In
Conference Record of the 21st Annual ACM Symposium on Principles of
Programming Languages, pages 472-492.

Guido van Rossum. 2002. Eztending and Embedding the Python Interpreter.
Release 2.2.2.

Philip Wadler. 1992 (January). The essence of functional programming (in-
vited talk). In Conference Record of the 19th Annual ACM Symposium on
Principles of Programming Languages, pages 1-14.

Philip Wadler. 1998 (November). The expression problem. Unpublished
note on the java-genericity mailing list, November 12, 1998; archived at
http://www.daimi.au.dk/~madst/tool/papers/expression.txt.

Matthias Zenger and Martin Odersky. 2005 (January). Independently ex-
tensible solutions to the expression problem. In The Twelth International
Workshop on Foundations of Object-Oriented Languages (FOOL). See
http://homepages.inf.ed.ac.uk/wadler/fool/program/10.html.

202

java-genericity
http://www.daimi.au.dk/~madst/tool/papers/expression.txt
http://homepages.inf.ed.ac.uk/wadler/fool/program/10.html

	Introduction
	Background: Extensible interpreters
	Extending Lua using libraries
	Signatures for libraries
	Linking
	Elements of the design
	Components of an interpreter

	Putting it all together
	Discussion
	Acknowledgement

