
GC Assertions: Using the Garbage Collector to Check Heap
Properties

Edward E. Aftandilian Samuel Z. Guyer

Department of Computer Science
Tufts University

{eaftan,sguyer}@cs.tufts.edu

Abstract
This paper introducesGC assertions, a system interface that
programmers can use to check for errors, such as data struc-
ture invariant violations, and to diagnose performance prob-
lems, such as memory leaks. GC assertions are checked by
the garbage collector, which is in a unique position to gather
information and answer questions about the lifetime and
connectivity of objects in the heap. By piggybacking on ex-
isting garbage collector computations, our system is able to
check heap properties with very low overhead – around 3%
of total execution time – low enough for use in a deployed
setting.

We introduce several kinds of GC assertions and describe
how they are implemented in the collector. We also describe
our reporting mechanism, which provides a complete path
through the heap to the offending objects. We report results
on both the performance of our system and the experience
of using our assertions to find and repair errors in real-world
programs.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability, Sta-
tistical Methods

General Terms Reliability, Performance, Experimentation

Keywords Memory Leaks, Managed Languages, Garbage
collection

1. Introduction
Garbage collection provides many software engineering
benefits, most notably by eliminating a large class of insid-
ious programming errors associated with manual memory
management, such as dangling pointers and double frees.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

One downside of automatic memory management, however,
is that programmers are left with less control and less infor-
mation about the memory behavior of their programs. For
example, in the absence of explicit free operations, Java pro-
grammers have no way to answer even seemingly simple
questions, such as “Will this object be reclaimed during the
next garbage collection?”

In this paper we presentGC assertions, an introspective
interface that allows programmers to query the garbage col-
lector about the run-time heap structure and behavior of their
programs. Like ordinary assertions, programmers add GC
assertions to their code to express expected properties of ob-
jects and data structures. Unlike ordinary assertions, how-
ever, GC assertions are not checked immediately. Instead,
when GC assertions are executed they convey their informa-
tion to the garbage collector, which checks them during the
next collection cycle. The key to our technique is that we
piggyback these checks on the normal GC tracing process,
imposing little or no additional cost.

We describe a suite of GC assertions designed to help
identify bugs in Java data structures, including memory leaks
and improper structure sharing. Our selection of assertions
balances two competing goals. The first is to provide a rich
and expressive set of assertions that programmers find easy
to use and valuable. The second is to keep the run-time over-
head low enough that the system can be used to detect and
prevent errors in deployed software. To this end, we have
identified several categories of heap properties, including
lifetime and lifespan, allocation volume, and connectivity
and ownership, that can be checked during a single pass over
the heap. In addition, we minimize space overhead by limit-
ing our meta-data to the set of assertions to be checked and
extra bits stolen from object headers. Even with a significant
set of assertions to check during each garbage collection,
our technique increases collection time by less than 14% and
overall runtime by less than 3%.

Using the garbage collector to check programmer-written
heap assertions provides a combination of features not avail-
able with existing techniques:

• More precise than static analysis.Unlike static heap
checking, which operates on an abstract model of the
heap, our technique works on the actual concrete heap,
avoiding the need for conservative approximations. In
addition, our technique is unaffected by features that typ-
ically thwart static analysis, such as dynamic class load-
ing, reflection, and bytecode rewriting.

• More efficient than run-time invariant checking.Systems
that support true program invariants must check these
properties after any computation that might violate them,
imposing a substantial performance penalty – as much
as 10X to 100X slowdown [12]. By deferring checks
until garbage collection time, our system can batch them
together and leverage the existing collection computation
to eliminate much of the overhead. The price we pay is
that we can miss a transient error if it does not persist
across a GC cycle.

• More accurate than heuristics.Unlike tools based on
heuristics (such as “staleness”) or anomaly detection, GC
assertions capture information that is both precise and
application specific. Although adding assertions requires
extra effort on the part of programmers, the system gen-
erates no false positives because any violation represents
a mismatch between the programmer’s expectations and
the actual program behavior.

We describe our implementation of these assertions in the
JikesRVM virtual machine. We also explore different ways
that the virtual machine can react to triggered assertions and
the kinds of information it can provide to help the program-
mer diagnose the bug. Finally, we present results for real
programs, showing both the debugging experience and the
performance impact.

The rest of this paper is organized as follows: in Section 2
we describe the kinds of assertions we support and their im-
plementation in the Jikes RVM research virtual machine. In
Section 3 we provide both quantitative performance results
and qualitative debugging results. We describe related work
in Section 4 and conclusions in Section 5.

2. GC Assertions
The goal of GC assertions is to provide a simple and low-
cost way for programmers to express and check properties
of their data structures. Assertions are a familiar construct
for program checks, and the kinds of assertions we support
involve program behavior that programmers want to know
about, but in many cases have no direct way to check. The
“assert dead” assertion, described below, checks that a given
object is reclaimed at the next garbage collection. In the
absence of explicit free operations, programmers have no
easy way of checking that reclamation occurs, particularly
at the granularity of individual object instances.

In this section we describe the specific GC assertions we
support, how they can be used by the programmer to detect

errors, and how the assertions are implemented in the Jikes
RVM research virtual machine. We also discuss different
ways that the system can react to assertion violations, since
they are not detected at the point the assertion is executed.

2.1 Adding assertions

Unlike other approaches, our technique is programmer-
driven: it requires extra effort on the part of the programmer
to add assertions. This design, however, has several advan-
tages over tools based on heuristics or anomaly detection.
First, GC assertions capture properties that programmers al-
ready know and want to be able to express. Second, these
properties often represent high-level information that can-
not be inferred from the program. Because this information
is precise and application-specific, any violation of a GC
assertion is an immediate and unambiguous error.

For example, we can use GC assertions to detect mem-
ory leaks in a way that is very different from previous tech-
niques. A number of systems have been designed to de-
tect memory leaks, both in managed and unmanaged lan-
guages. The challenge in managed languages is determining
what constitutes a leak, since leaked objects are still reach-
able. Without extra information, most leak detectors must
rely on heuristics to identify potential leaks. Some tools use
the notion of “staleness” to identify potential leaks: objects
that have not been accessed in a “long time” are proba-
bly memory leaks [14, 7]. Other tools use heap differenc-
ing to find objects that are probably responsible for heap
growth [3, 37, 35, 32, 27]. These techniques, however, can
only suggestpotential leaks, which the programmer must
then examine manually. Using GC assertions programmers
can tell our system exactly when particular objects should be
dead. Violations can be detected almost immediately, rather
than having to wait for objects to become stale or fill up the
heap. Our system provides detailed information about the
reason for the failure (for example, the path through the heap
that is keeping the object alive.)

2.2 Implementation overview

We implemented these assertions in Jikes RVM 3.0.0 using
the MarkSweep collector. We chose MarkSweep because it
is a full-heap collector, which will check all assertions at
every garbage collection. Our technique will work with any
tracing collector, such as generational mark/sweep. A gen-
erational collector, however, performs full-heap collections
infrequently, allowing some assertions to go unchecked for
long periods of time.

2.3 Lifetime assertions

Lifetime assertions allow the programmer to check that the
lifetime characteristics of objects conform to expectations.
These assertions generally work by marking the given ob-
jects at the call to the assertion and then reporting if they are
encountered during collection. Lifetime properties are easy
to express and extremely cheap for the collector to check,

but are almost impossible to obtain by any other means. We
have developed the following kinds of lifetime assertions:

2.3.1 assert-dead

assert-dead(p) is triggered at the next garbage collection
if the object pointed to byp is not reclaimed (i.e., found to
be still reachable.)

Usage. assert-deadallows the programmer to check that a
particular object is reclaimed at or soon after a specific point
in the program. For example, a common Java idiom is to
assign null to a reference when the object pointed to should
be reclaimed. However, if there are still other references to
the object, the object will not be reclaimed.assert-dead

can be used in this situation to verify that the object is
reclaimed.

Implementation. We implement assert-dead as follows.
During execution, when the JVM encounters this assertion,
it marks the object pointed to by p as “dead” using a spare
bit in the object’s header. At the next garbage collection, the
garbage collector checks whether any object encountered
during tracing has its “dead” bit set. If so, it prints a warning
along with debugging information to help the programmer
find the error that led to this “dead” object being reachable.

Because we use spare bits in object headers to store infor-
mation about which objects are expected to be dead, there is
no space overhead for this assertion. Time overhead is lim-
ited to checking the state of a bit in the object’s header when
it is encountered during GC. Because the object’s header
must be read (and possibly written) anyway as part of the
GC tracing process, the data is already in cache and the slow-
down is minimal.

2.3.2 assert-alldead

assert-alldead() is used in conjunction with a separate
start-region() call: the assertion is triggered if any ob-
ject allocated afterstart-region() is not reclaimed at
the assert-alldead(). This allows the programmer to
bracket a particular region of code, for example a particu-
lar method or loop body, and ensure that it is memory-stable.
The region is confined to a single thread (i.e. each thread can
independently be either in or out of a region).

Usage. This assertion is useful to ensure that certain regions
of code do not “leak” memory into other parts of the ap-
plication. For example, in a server application, one might
bracket the connection servicing code withstart-region
andassert-alldead assertions to ensure that, when the
server has finished servicing the connection, all memory re-
lated to that connection is released.

Regions are widely used in the C/C++ world [4, 41],
particularly by the Apache HTTP Server [18] and other
projects that use the Apache Portable Runtime [20]. Rather
than enforce region behavior to improve performance, our

assertionscheck for region behavior in order to validate
programmer expectations.

Implementation. We implementassert-alldead as fol-
lows. Each thread in Jikes RVM has a boolean flag to indi-
cate whether it is currently in analldead region, as well
as a queue to store a list of objects that have been allo-
cated while in the current region. When the programmer in-
vokes thestart-region assertion, the flag in the thread is
switched to indicate that we are now in a region. Every al-
location checks the flag to determine if it occurred within a
region, and if it is, the allocated object is added to the queue.
When theassert-alldead call occurs, the region flag is
reset and the queue is processed, callingassert-dead on
each object in the queue.

The space overhead for this assertion depends on whether
a region is currently active in the given thread. If not, the
space overhead is a boolean and a queue reference for each
thread. Otherwise, the space overhead consists of a boolean
and a queue for each region that is currently active, plus a
word for each object that has been allocate while the region
has been active. When the region ends, the queue will be
flushed, and we will reclaim the one-word-per-object space
needed for the region metadata.

The time overhead consists of checking the thread’s re-
gion flag on every allocation, plus, if we are in an active
region, adding the newly allocated object to the thread’s re-
gion object list. By usingassert-dead to mark the objects
at the end of the region, we do not incur an extra time or
space penalty to check that objects are deallocated at the end
of the region.

2.4 Volume assertions

Volume assertions express constraints on the number or total
volume of particular categories of objects. These assertions
are implemented by accumulating the information during
heap scanning, and checking against the constraints when
finished.

2.4.1 assert-instances

assert-instances(T, I) is triggered when the total
number of objects of typeT exceedsI at the next collec-
tion. By passing 0 forI, programmers can check that no
instances of a particular class exist.

Usage. This assertion is most useful for checking that either
0 or 1 instances of a certain class exist. For example, one
might use this assertion to check that the singleton patternis
being correctly followed. For a variety of reasons, including
subclassing and serialization, this design pattern is difficult
to implement correctly [22]. With GC assertions, we can eas-
ily check for correctness by asserting that only one instance
of the class exists at a time. Note, however, that we cannot
enforcethe singleton pattern using GC assertions.

Another potential use is in situations where the number
of objects of a certain type should be limited for best perfor-
mance, but it is not strictlyan error if the limit is exceeded.
We discuss such a situation in Section 3.2.2.

Implementation. Our implementation of assert-instances is
different from that of the previous two assertions since this
assertion is tied not to object instances but to types. In
Jikes RVM, the RVMClass class corresponds to a Java class,
so we modify RVMClass to maintain two extra pieces of
information: the instance limit and the instance count for this
class.

When the virtual machine encounters anassert-instances

call, we set the instance limit for the type and add the type
to a list of types for which we are tracking instances. During
GC, every time we encounter an object of a tracked type, we
increment the corresponding RVMClass’s instance count. At
the end of GC, we iterate through our list of tracked types,
checking whether the instance limit has been violated. If so,
we print a warning for the user.

This implementation incurs a space overhead of two
words per loaded class (for the instance limit and instance
count), as well as one word per tracked type (i.e. a type that
has had an instance limit asserted) for the array of tracked
types. We also incur a small time overhead by checking the
RVMClass of every object during tracing, plus increment-
ing the instance count if necessary and checking the list of
tracked types for violations at the end of GC.

2.5 Ownership assertions

Ownership assertions allow programmers to check the con-
nectivity properties of individual objects or data structures.
The garbage collector is in a unique position to check such
properties, since it traverses all reachable objects in theheap,
regardless of their type or access control qualifiers.

2.5.1 assert-unshared

assert-unshared(p) is triggered if the given object has
more than one incoming pointer. It is a simple test to ensure
than an object has no more than one direct parent.

Usage. This assertion can be used to check simple connec-
tivity properties of data structures. For example, one can use
assert-unshared to verify that a tree data structure has
not inadvertently become a DAG.

Implementation. Our implementation ofassert-unshared
is similar to that ofassert-dead. Once again, the program-
mer must assert in the program code that a object should be
unshared after a certain point. The JVM marks the object as
“unshared” by setting a spare bit in the object header. Dur-
ing garbage collection, the garbage collector checks objects
that are encountered more than once (i.e. whose mark bits
are already set) for this “unshared” bit. If such an object

is encountered, we print a warning along with debugging
information.

There is no space overhead for this assertion since we use
a spare bit in the object header, and the time overhead is just
the cost of checking the bit in each object’s header during
GC tracing.

2.5.2 assert-ownedby

assert-ownedby(p,q) is triggered if the object pointed to
by q is not owned by the object pointed to byp.

There are several different ways to define what it means
for one object (theowner) to own another object (the
ownee) [15, 10]. Initially, our ownership assertion required
that all paths through the heap from the roots (local and
global variables) to the ownee must pass through the owner.
This definition, however, is too restrictive to be practical:
common constructs, such as iterators, violate the assertions
and make them useless. Instead we provide a notion of own-
ership that focuses on detecting unexpected structure shar-
ing, particularly when it impacts object lifetimes. Our defini-
tion is as follows: once ownership is asserted, the set of paths
through the heap to the ownee must includeat least one path
that passes through the owner. The idea is that an ownee may
be referenced by other objects, but it should never outlive its
owner. This property is checked for each owner/ownee pair
at every garbage collection.

As we show in Section 3, this assertion is often a more
natural way to find memory leaks than usingassert-dead(p).
Instead of identifying the point at which an object is no
longer needed, the programmer just identifies the larger data
structure that governs its lifetime. For example, considera
data structure in which elements are stored in a main con-
tainer and also cached in a hash table. We can assert that the
container owns the elements; if the system ever finds ele-
ments that are only reachable from the hash table, it reports
an error.

We impose some restrictions on ownership in order to
keep the cost low: the regions of the heap governed by
different owner objects may not overlap. That is, the path
from an owner to its ownee should not pass though any other
owner (or its ownees). We discuss this restriction further
below.

Usage. We expectassert-ownedby to be most useful when
an object’s lifetime is correlated to the lifetime of its owner
collection. That is, when an object should not outlive its
owner collection or survive when removed from that collec-
tion. For example, an order processing program might store
orders in a collection, and when those orders have been pro-
cessed, they are removed from the table and should be deal-
located. Usingassert-ownedby to assert that the orders are
owned by their collection would help the programmer detect
memory leaks caused by outstanding references to these or-
der objects.

Implementation. assert-ownedBy is the most compli-
cated assertion to implement. Our goal is to check this asser-
tion with no extra GC work and without storing extraneous
path information during collection.

With assert-ownedBy, the user expresses owner/ownee
pairs. There may be an unbounded number of owners and
ownees, and we wish to check them all in a single GC pass.
In its most general form, this problem incurs a significant
overhead in space and time. Consider the following gen-
eral algorithm for checking ownership assertions: during GC
tracing, if the collector encounters an ownee, it checks to
see if that ownee’s owner is on this path. If so, the ownee is
marked as “owned.” The other possibility is that the collec-
tor encounters the owner and then a previously marked ob-
ject. We need to know whether the ownee is reachable from
this previously marked object, but we do not want to repeat
the tracing work. One way around this would be to bubble
ownee information up the path when an ownee is encoun-
tered. In the general case, this results in each object being
tagged with all ownees reachable from it. The space and time
overhead from storing this information is prohibitive.

To avoid this problem, we modified the garbage collector
to trace objects in a different order. Instead of starting atthe
roots, we added a new “ownership” phase to the collector
that starts tracing from each owner object. If we encounter
an ownee object that belongs to the current owner, we mark
it as “owned.” After tracing from all the owners, we enter the
standard root scanning phase and allow the collector to pro-
ceed as normal. If the GC encounters an ownee object that
has not been marked as “owned,” we know it is not reachable
from its owner, and we print a warning and debugging infor-
mation. Notice that the portions of the heap that are reach-
able from the owners are marked in the ownership phase, so
they will not be traced again. Thus we are able to check the
ownership assertion without per-object memory overhead or
processing any objects twice.

This strategy solves the performance problem, but . First,
by starting GC tracing with the owner objects, we are assum-
ing they are live. This may not be the case. To address this
problem, we avoid marking the owner object when we do the
ownership scan. We still mark all objects reachable from the
owner. For the owner to remain live, it needs to be marked
during the root scan phase, that is, it must be reachable from
a root. Thus if the owner object is unreachable, it will be col-
lected during this GC. However, any objects reachable from
the owner that are not reachable from a root will not be col-
lected until the next GC. This results in additional memory
pressure that may cause the next GC to occur sooner.

The second problem relates to data structure overlap.
Suppose an ownee object is reachable from both its owner
and another object’s owner, and the other owner is selected
to be traced first in the ownership phase. The ownee will be
marked but not set as “owned” because we did not start scan-
ning from its owner. When we start tracing from the ownee’s

owner, the ownee has already been marked and will not be
processed again. Thus we will trigger a false warning for
this object. One could address this problem by enforcing a
condition that the data structures defined by owners bedis-
joint. However, data structures in real problems are usually
not disjoint; their objects often have back edges that result
in significant overlap. Instead, we designed the ownership
scanning phase to stop following a path when an ownee is
reached. Ownees are added to a queue and processed after
the scanning from owners has been completed. Thus collec-
tions are essentially truncated when their leaves are reached,
avoiding the back edge problem. We do enforce a condition
that the parts of the data structure from the owner node to
the ownees must be disjoint from that of other owners. For
the typical use-case whereassert-ownedBy is used to keep
track of objects in a collection, this design maintains the de-
sired semantics, while supporting the kinds of data structures
that occur in real programs.

To check this assertion we must maintain a list of owner-
ownee pairs. We implement this as a pair of arrays, one
containing owner objects and the other containing arrays
of ownee objects, one for each owner. Thus the metadata
overhead for this implementation is one word per owner or
ownee object. Time overhead is as follows: for each ownee
object encountered during tracing, we must check an ownee
array to see if it owned by the correct owner. The ownee
arrays are sorted, so we do a binary search to find the ownee
object. Thus, the worse case time overhead isn log n, where
n is the number of ownee objects. In practice we find the
overhead to be negligible, as discussed in Section 3.1.

2.6 Assertion violations

When an assertion is triggered the garbage collector has
several ways it can take action.

• Log an error, but continue executing. In the case of the
lifetime assertions we can report either the reference that
is directly keeping the object alive or the full path through
the heap. In our experiments in Section 3 we found that
our system can maintain full path information with no
measurable overhead.

• Log an error and halt. Similar to the case above, but
is used for assertions whose failure indicates a non-
recoverable error.

• Force the assertion to be true. In the case of lifetime
assertions, the garbage collector can force objects to be
reclaimed by nulling out all incoming references. This
might allow a program to run longer without running out
of memory but risks introducing a null pointer exception.

In this system, we choose to log the error and continue ex-
ecuting, so that we retain the semantics of the program with-
out any assertions. We discuss our error reporting scheme in
Section 2.7 below.

Warning: an object that was asserted dead is

reachable.

Type: Lspec/jbb/Order;

Path to object: Lspec/jbb/Company; ->

[Ljava/lang/Object; ->

Lspec/jbb/Warehouse; ->

[Ljava/lang/Object; ->

Lspec/jbb/District; ->

Lspec/jbb/infra/Collections/longBTree; ->

Lspec/jbb/infra/Collections/longBTreeNode; ->

[Ljava/lang/Object; ->

Lspec/jbb/infra/Collections/longBTreeNode; ->

[Ljava/lang/Object; ->

Lspec/jbb/Order;

Figure 1. Example of full-path error reporting. Each line
gives the type of an object along the path from root to the
object of interest.

However, for future work we would like to explore the
other options above, as well as a programmatic interface that
would allow the programmer to test the conditions directly
and take action in an application-specific manner. It might
make sense to support different actions based on the class of
assertion that is violated.

2.7 Providing debugging information

Once an assertion is triggered, the programmer still needs
help determining the cause of the error. For most of these as-
sertions, the problem occurs because of an unexpected path
through the heap to the offending object. Thus, displaying
that path for the user would be the best way to help pinpoint
the error.

Our reporting strategy is to provide the full path through
the object graph, from root to the “dead” object. This infor-
mation is extremely valuable for fixing Java memory leaks,
since all leaks are ultimately caused by outstanding refer-
ences to objects that are no longer needed. The full path to
the leaked object identifies the reference or container that
needs to be cleared to stop the leak. Our information is sim-
ilar to that provided by Cork [27], but much more precise:
our path consists of object instances, not just types.

Our implementation modifies the management of the
worklist that holds unprocessed references for the collector
during tracing (the so-called “gray” objects.) The baseline
algorithm performs a depth-first search by popping a refer-
ence off the worklist, scanning the object, and pushing all
its outgoing references back on the worklist. In our algo-
rithm, we keep this object on the worklist while its outgoing
references are being traced, allowing us to reconstruct the
path when necessary. We pop a reference from the work-
list, set its low order bit and push it back onto the worklist;
then we continue to scan the object normally. Because all
objects in Jikes RVM are word aligned, the two low order
bits are unused, and we can safely use one of them for this

algorithm. If we encounter a reference whose low-order bit
is set, we discard it and continue – this simply indicates that
we have already visited all objects reachable from it. Thus,
at any given time during tracing, the subset of the worklist
whose references have their low bit set define the complete
path from the root to the current object. Figure 1 shows an
example of the full-path output provided when an assertion
violation is detected.

A limitation of this technique is that, to print this infor-
mation for the user, we must be able to identify the offending
object or path when we first encounter it. For assert-dead and
assert-ownedBy, the detection algorithm naturally provides
this information. However, for assert-unshared, we have no
way of knowing which path is the “correct” one, and we only
know there is a problem when we encounter the second path.
We can print the second path, but it may not help the user
find the problem. Similarly, with assert-instances, we only
know that there is a problem after we have exceeded the in-
stance limit for a type, and the “problem” paths may have
been traced earlier. In these cases, the user will need to use
other tools if she cannot find the problem with the given de-
bugging output.

3. Results
We implemented GC assertions in Jikes RVM 3.0.0 using
the MarkSweep collector. This section describes our results,
presenting performance results for the system along a de-
scription of our experiences using it to find and fix bugs.
We collected performance measurements using a standard
benchmark suite; for our qualitative evaluation we used GC
assertions to check for errors in real-world programs.

3.1 Performance

We first present performance measurements for GC asser-
tions running on a standard set of benchmarks. For most
of the benchmarks we measure the performance of running
with no assertions, in order to determine the baseline cost
of adding the assertion infrastructure into the collector.Due
to the effort required to add assertions to unfamiliar code,
we present measurements for two of the benchmarks run-
ning with a non-trivial set of assertions added. In all cases,
the overhead of the system remains extremely low, typically
around 3% or 4%.

3.1.1 Methodology

We use the DaCapo benchmarks (2006-10-MR2) [6], SPEC
JVM98 [39], and a fixed-workload version of SPEC JBB2000
calledpseudojbb [40] to quantify performance. For SPEC
JVM98, we use the large input size (-s100); for DaCapo
andpseudojbb, we use the default input size. All experi-
ments were run on a 2.0 GHz Pentium-M machine with 2
GB of RAM, running Linux 2.6.20.

We use the adaptive configuration of Jikes RVM, which
dynamically identifies frequently executed methods and re-
compiles them at higher optimization levels. We iterate each

antlr
bloat

chart
eclipse

fop
hsqldb

jython

luindex

lusearch

pm
d

xalan
pseudojbb

com
press

jess
raytrace

db javac
m

pegaudio

m
trt

jack
geom

ean

0

50

100

150

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 t

im
e

Base
NoAssertions

Figure 2. Run-time overhead for GC assertion infrastructure. The Base configuration corresponds to the unmodified
JikesRVM. The NoAssertions configuration corresponds to a modified JikesRVM that supports GC assertions running bench-
mark code with no assertions.

antlr
bloat

chart
eclipse

fop
hsqldb

jython

luindex

lusearch

pm
d

xalan
pseudojbb

com
press

jess
raytrace

db javac
m

pegaudio

m
trt

jack
geom

ean

0

50

100

150

200

N
or

m
al

iz
ed

 G
C

 t
im

e Base
NoAssertions

Figure 3. GC-time overhead for GC assertion infrastructure. The Baseconfiguration corresponds to the unmodified JikesRVM.
The NoAssertions configuration corresponds to a modified JikesRVM that supports GC assertions running benchmark code
with no assertions.

benchmark four times and record the results from the fourth
iteration. We repeat this twenty times for each benchmark.

We execute each benchmark with a heap size fixed at two
times the minimum possible for that benchmark using the
MarkSweep collector.

In Figures 2 and 3 we report two results for each bench-
mark. The Base configuration corresponds to running the
unmodified benchmark on an unmodified version of Jikes
RVM 3.0.0, using the MarkSweep collector. The NoAsser-
tions configuration runs the unmodified benchmark on our
modified version of Jikes RVM that supports GC assertions.
This experiment measures the overhead of checking the ex-
tra bits and recording debugging information. We report the
change in total execution time and GC time separately so
the reader can understand the performance impact on both

overall execution time and the GC subsystem. The error bars
correspond to a 90% confidence interval.

In Figures 4 and 5 we report results for209 db and
pseudojbb where we modified the benchmarks to in-
clude GC assertions in appropriate places. For example, in
209 dbwe asserted that all Entry objects are owned by their

containing Database object, and we added assert-dead asser-
tions at code locations where the authors had assigned null to
an instance variable (a common Java idiom that usually indi-
cates that the object pointed to should be unreachable). We
describe our modifications topseudojbb in Section 3.2.1
below. These tests are meant to simulate the typical usage
of GC assertions in production code. Again, the error bars
correspond to a 90% confidence interval.

pseudojbb

db geom
ean

0

50

100

150

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 t

im
e

Base
NoAssertions
Assertions

Figure 4. Run-time overhead for GC assertion checking.
This set of benchmarks shows the impact on total run-time of
running code that includes GC assertions and checking them
at runtime. The Assertions configuration corresponds to a
modified Jikes RVM that supports GC assertions running
modified benchmarks that include GC assertions.

3.1.2 Discussion

For the NoAssertions configuration, our results in Figures 2
3 show that the overhead of the assertion-checking infras-
tructure is negligible. Overall execution time increases by
2.75%, and mutator time is essentially unchanged at 1.12%.
GC time increases by 13.36%, which is reasonable consider-
ing that the collector must perform several checks on every
object it encounters.

For the Assertions test, our results in Figures 4 and 5 show
that using GC assertions in the benchmark code has a neg-
ligible effect on performance compared to the NoAssertions
case. For209 db, running time increases by 0.47% and GC
time by 30.1%, and forpseudojbb, running time increases
by 2.47% and GC time by 4.40%. Both changes in run-time
are inconsequential; overall performance is essentially iden-
tical. The larger increase in GC time with209 db is pri-
marily a result of incurring extra GCs (on average, 7 for As-
sertions compared to 6.1 for NoAssertions) because of the
increased memory pressure from metadata on ownership as-
sertions.

3.2 Qualitative evaluation

In addition to the performance benchmarks above, we tested
our GC assertions on real-world code to search for memory
leaks and other errors. We instrumented SPEC JBB2000 and
lusearch from the Dacapo suite. In addition, we attempted
to answer a question from the Sun Developer Network by
instrumenting the attached program. We found that in most
cases, GC assertions helped us find and repair problems
quickly and precisely. In addition, GC assertions gave us a
better understanding of how these programs worked.

pseudojbb

db geom
ean

0

50

100

150

200

N
or

m
al

iz
ed

 G
C

 t
im

e

Base
NoAssertions
Assertions

Figure 5. GC-time overhead for GC assertion checking.
This set of benchmarks shows the impact on GC time of
running code that includes GC assertions and checking them
at runtime. The Assertions configuration corresponds to a
modified Jikes RVM that supports GC assertions running
modified benchmarks that include GC assertions.

3.2.1 SPEC JBB2000

SPEC JBB2000 is a benchmark that emulates a three-tier
business system, with data stored in b-trees rather than an
external database. Notably, it uses the factory pattern to
create and dispose of objects. We first instrumented the
destroy()method of the Entity object with an expect-dead
assertion, believing that an object that had been destroyed
should be unreachable. We found that “dead” Order objects
were reachable from Customer objects. Upon further inves-
tigation, we found that each Customer object maintains a
reference to the last Order this Customer placed. When the
Order was destroyed, thelastOrder field in the associated
Customer was not cleared, and this reference prevented the
Order from being reclaimed. Since each Order object main-
tains a reference to the Customer to which it belongs, we
were able to repair this leak by setting the reference in the
Customer to null when the Order is destroyed. We found
a similar situation with Address objects, which were also
pointed to by Customer objects, but we were not able to
repair it since there is no back reference from Addresses
to Customers. The path example in 1 shows the debugging
output given by GC assertions when this error is detected.

The second problem we found was more subtle. In the
main loop of the benchmark, the Company object from the
previous iteration is destroyed (triggering a call to assert-
dead) before creating the Company object for the cur-
rent iteration. The previous Company is referenced in the
oldCompany local variable, which remains visible through
the whole method. Thus the previous Company object can-
not be reclaimed. Simply setting the variable to null after
the Company is destroyed allows this whole Company data

structure to be reclaimed. Note that the object referenced by
the oldCompany variable will be reclaimed on the follow-
ing iteration when it is replaced by the Company that was
allocated in this iteration. This is not a memory leak but an
example of memory drag, where the Company object could
be reclaimed earlier than it is. The Company data structure
keeps a great deal of data live, and reclaiming it earlier re-
duces memory pressure on the system. Notice also that this
problem could have been found by using assert-instances on
the Company type, since there can only be one Company
live in the benchmark at any given time.

Third, we investigated a known memory leak in SPEC
JBB2000 first reported by Jump and McKinley [27]. SPEC
JBB2000 places Order objects into anorderTable, imple-
mented as a BTree, when they are created. They are com-
pleted during a DeliveryTransaction but are not removed
from the table, causing a memory leak. To find this leak,
we placed an assert-dead assertion for the Order object at the
end ofDeliveryTransaction.process().Our GC asser-
tions system showed us the path through the object graph
where these Order objects were reachable, and with this in-
formation we were able to repair the leak. It is important
to note that, for the GC assertion to work, the program-
mer must know that the Order object should be dead at the
end ofDeliveryTransaction.process(). However, in a
large project where no single programmer can understand
the whole system, a GC assertion like this would be helpful
in explaining anomalous behavior.

Finally, we revisited the issue of “dead” Order objects
being reachable from Customer objects. One flaw of the
assert-dead assertion is that the user must know where to
place the assertions, i.e. where objects become unreachable.
In SPEC JBB2000, we are lucky that the program includes
destructors to deallocate objects, but in the general case Java
programs will not have such information. Instead, we ap-
plied the assert-ownedBy assertion to the Orders in SPEC
JBB2000. Orders are stored in anorderTable in each
District, so we instrumented theDistrict.addOrder()
method and asserted that each Order added was owned by
its orderTable. We found the same problem as before:
Customer objects were keeping Order objects live after they
were removed from theorderTable. The ownership asser-
tion is an easier way to detect such problems since the user
does not need to know when an object should be dead.

3.2.2 lusearch

lusearch is a benchmark in the Dacapo suite that tests the
Apache Lucene text search engine library [19].lusearch

reads a pre-built index on disk and performs searches over
the index using multiple threads.

This benchmark uses the Lucene IndexSearcher class
to perform the searches. The Lucene documentation states,
”For performance reasons it is recommended to open only
one IndexSearcher and use it for all of your searches.” [21]
We instrumentedlusearch with an assert-instances asser-

tion stating that only one instance of IndexSearcher should
be live. We found that for most of the benchmark’s execu-
tion, 32 instances of IndexSearcher were live, one for each
thread performing searches. This could be repaired by using
only one instance of IndexSearcher and sharing it among the
threads.

In this example, the programmer using the Lucene library
was not aware of this performance recommendation. The
library code could include an assert-instances assertion to
warn a user if he tries to use more than one IndexSearcher
instance in his code.

3.2.3 SwapLeak

We investigated a memory leak reported by Bond and
McKinley [8]. The memory leak comes from a Sun Devel-
oper Network post where a user was asking for help under-
standing why an attached program runs out of memory [17].
The program defines a class SObject with a non-static inner
class Rep with an instance field that points to a Rep instance.
The SObject class defines aswap() method that takes an-
other SObject and swaps the Rep fields of each.

The main loop of the program allocates a fixed number
of SObjects and adds them to an array. It then iterates over
the array, allocating new SObjects and swapping their Rep
fields with those of the SObjects already in the array. The
user expected that these new SObjects would be reclaimed
after the swap, since they were not referenced by any local
variables.

We instrumented the user’s code with assert-dead asser-
tions after the swap operation, and on execution we received
the following warning:

Warning: an object that was asserted dead is

reachable.

Type: LSObject;

Path to object: LSArray; ->

[LSObject; ->

LSObject; ->

LSObject$Rep; ->

LSObject;

This warning explains the problem. An SObject in the ar-
ray has a reference to an instance of the Rep inner class,
but that Rep instance maintains a pointer to a different SOb-
ject, one that we expected to be unreachable. The problem
stems from the fact that non-static inner classes have ac-
cess to other members of the enclosing class. Thus they must
maintain a hidden reference to the enclosing class instance
in which they were instantiated. Our GC assertions system
displays this hidden reference and explains why the SObject
instances were not being reclaimed.

4. Related Work
Our work is related to a variety of techniques for checking
heap-based data structures and for detecting memory errors.
These techniques can be roughly categorized according to

(a) how the desired properties are specified (ranging from
programmer-written invariants to statistical analyses, such
as anomaly detection), and (b) when and how often the
checks are performed (either at compile-time, or at various
granularities during execution.) GC assertions representa
particular point in this space: on the one hand, they require
extra work to add to code, and there is no guarantee of
when they will be checked; on the other hand, they provide
the programmer with an expressive range checks and high-
quality results, while maintaining extremely low run-time
cost.

4.1 Runtime checking

GC assertions are closely related to programinvariants, but
differ in the balance between the strength of the guarantees
provided and the performance of checking. Modeling lan-
guages, such as JML [12] and Spec# [2], allow program-
mers to add invariant specifications into their code, which
are checked automatically at run-time. These systems en-
sure that the invariants always hold by checking them at ev-
ery program point where they could be violated (for exam-
ple, after every routine that updates a data structure). This
approach, while complete, is extremely expensive – it can
cause programs to run 10 to 100 times slower. Our system,
on the other hand, checks heap properties very efficiently,
but at essentially random program points (GCs). GC asser-
tions, therefore, cannot technically be considered “invari-
ants”, since we can miss transient violations (those that do
not persist across a GC boundary).

Recent work has usedincrementalizationto speed up
runtime invariant checking by eliminating recomputation of
the invariant check on parts of the data structure that have
not changed [38, 25]. This technique is complementary to
GC assertions: if we know that parts of a data structure have
not changed since the last GC, we could avoid checking
assertions for those objects.

HeapMD [13] monitors properties of objects (such as
in-degree and out-degree) at run time and reports statisti-
cal anomalies as possible errors. ShapeUp monitors similar
properties for Java, but uses type information to make checks
more precise [28]. ShapeUp computes aclass-field summary
graphand reports anomalies in the in-degree and out-degree
of its nodes. As with leak detection, the primary difference
between this work and ours is that we allow the programmer
to declare explicitly what conditions constitute an error,and
we check those conditions precisely and cheaply.

The QVM [1] Java virtual machine providesheap probes,
which can be used to check some of the same properties
as GC assertions and are also implemented using garbage
collector infrastructure. The semantics of heap probes, how-
ever, are substantially different from GC assertions. Heap
probes are performed immediately at the point the probe
is requested. QVM triggers a garbage collection foreach
heap probethat must be checked, incurring a hefty overhead
that is mitigated by sampling the heap probes rather than

checking every single one. Our system, on the other hand,
batches assertions together and checks them all in a single
heap traversal during a regularly scheduled collection. Asa
result, checking is much more efficient, but it cannot verify
properties at the exact point the assertion is made.

4.2 Static analysis

Previous work on static analysis has yielded a significant
body of sophisticated techniques for modeling the heap
and analyzing data structures at compile-time. Previous ap-
proaches include pointer analysis [11, 30, 5], shape analy-
sis [24, 36, 26], type systems [23, 15, 9], and formal veri-
fication [31, 16, 42]. The strength of static analysis is that
it explores all possible paths through the program: a sound
analysis algorithm can prove the absence of errors, or even
verify the full correctness of a data structure implementation.
Static analyses, however, face three substantial challenges:
(1) conservative assumptions about input values and control
flow can lead to many spurious errors (false positives), (2)
algorithms for building a detailed heap model scale poorly
to whole-program properties, and (3) analysis typically fails
for programs that use dynamic class loading, reflection, or
bytecode rewriting. Our system builds on this work by sup-
porting thekindsof data structure checks that have proved
useful in static analysis, but avoids the pitfalls by checking
them at run-time.

4.3 Instrumenting and controlling the JVM

Sun provides the JVM Tool Interface (JVMTI) [29] to allow
tool developers to monitor runtime and GC activity. Several
of our GC assertions could be implemented using JVMTI,
with the advantage that they would be portable across dif-
ferent JVMs. We chose not to use JVMTI for three reasons.
First, many of the hooks we need for GC assertions are op-
tional parts of the specification. Second, JVMTI would not
allow us to explore certain reporting mechanisms, such as
the full object path. Finally, modifying the virtual machine
incurs a lower performance overhead since we can perform
low-level optimizations like using spare bits in object head-
ers and changing the order of object traversal in the GC to
speed up assertion checking.

O’Neill and Burton propose a mechanism that allows
users to annotate objects with small pieces of code called
simplifiers, which are executed by the garbage collector [34]
when an object is traced. Simplifiers provide a general mech-
anism for injecting code into the GC process, but the fo-
cus is primarily on improving program performance. Some
of our GC assertions could be implemented using simpli-
fiers: for example,assert-dead() could use a simplifier
to check a flag in the object or object header. It would
not be possible, however, to implement an assertion like
assert-ownedBy(), which requires changing the order of
traversal of the object graph.

The COLA system allows programmers to dictate the
layout order of objects to the garbage collector using an

iterator-style interface [33]. Like simplifiers, the focusof
COLA is on controlling the garbage collector’s behavior to
improve performance.

5. Conclusion
The garbage collector is a powerful source of information
about large-scale program state and behavior because it sys-
tematically visits all objects and references in the heap. It
is in a unique position to check a wide variety of data struc-
ture properties. Furthermore, the garbage collector can check
properties, such as object lifetime, that no other subsystem
has access to. This paper presents a programmer-driven tech-
nique for taking advantage of these capabilities by providing
a structured way to communicate with the garbage collector.
GC assertions are easy to use and provide accurate results
with high-quality debugging information. By piggybacking
assertion checks on the existing GC tracing algorithm, GC
assertions are cheap enough to be used in deployed software,
where they can help detect the most important and serious
bugs: those that occur during real executions.

Acknowledgments
We would like to thank Mike Bond, Kathryn McKinley, Nick
Mitchell, Nathan Ricci, Gary Sevitsky, Yannis Smaragdakis,
and Ben Wiedermann for their helpful ideas and discussions.
We thank Steve Blackburn for his help with the measurement
methodology. We thank the anonymous reviewers for their
helpful comments. Finally, we thank the Jikes RVM team
for their great work in building an important platform for
research.

References
[1] M. Arnold, M. Vechev, and E. Yahav. Qvm: an efficient run-

time for detecting defects in deployed systems. InOOPSLA
’08: Proceedings of the 23rd ACM SIGPLAN conference on
Object oriented programming systems languages and appli-
cations, pages 143–162, New York, NY, USA, 2008. ACM.

[2] M. Barnett, K. Rustan, M. Leino, and W. Schulte. The
spec# programming system: An overview. http://research.-
microsoft.com/users/leino/papers/krml136.pdf.

[3] BEA. JRockit Mission Control. http://dev2dev.bea.com/-
jrockit/tools.html.

[4] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsid-
ering custom memory allocation. InConference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, pages 1–12, 2002.

[5] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee.
Points-to analysis using bdds. InACM Conference on
Programming Languages Design and Implementation, pages
103–114, New York, NY, USA, 2003. ACM.

[6] S. M. e. a. Blackburn. The DaCapo Benchmarks: Java
Benchmarking Development and Analysis. InConference
on Object-Oriented Programming, Systems, Languages, and
Applications, 2006.

[7] M. D. Bond and K. S. McKinley. Bell: Bit-Encoding Online
Memory Leak Detection. InInternational Conference on
Architectural Support for Programming Languages and
Operating Systems, 2006.

[8] M. D. Bond and K. S. McKinley. Tolerating memory
leaks. InOOPSLA ’08: Proceedings of the 23rd ACM
SIGPLAN conference on Object oriented programming
systems languages and applications, pages 109–126, 2008.

[9] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for
object encapsulation. InACM Symposium on the Principles
of Programming Languages, pages 213–223, 2003.

[10] N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith.
Multiple ownership. InACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
441–460, 2007.

[11] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of
pointers and structures. InACM Conference on Programming
Languages Design and Implementation, pages 296–310,
1990.

[12] Y. Cheon and G. T. Leavens. A runtime assertion checker
for the java modeling language (jml). Technical Report TR
03-09, Iowa State University, 2003.

[13] T. M. Chilimbi and V. Ganapathy. HeapMD: Identifying
Heap-based Bugs using Anomaly Detection. InInternational
Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

[14] T. M. Chilimbi and M. Hauswirth. Low-Overhead Memory
Leak Detection Using Adaptive Statistical Profiling. In
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 156–164, 2004.

[15] D. G. Clarke, J. M. Potter, and J. Noble. Ownership typesfor
flexible alias protection.SIGPLAN Notices, 33(10):48–64,
1998.

[16] P. T. Darga and C. Boyapati. Efficient software model
checking of data structure properties. InACM Conference
on Object-Oriented Programming Systems, Languages, and
Applications, pages 363–382, 2006.

[17] S. D. N. Forum. Java programming [archive] - garbage
collection dilema (sic). http://forums.sun.com/thread.jspa?-
threadID=446934.

[18] A. S. Foundation. Apache http server project. http://httpd.-
apache.org/.

[19] A. S. Foundation. Apache lucene - overview. http://lucene.-
apache.org/java/docs/index.html.

[20] A. S. Foundation. Apache portable runtime project. http://-
apr.apache.org/.

[21] A. S. Foundation. Indexsearcher (lucene 1.9.1 api). http://-
lucene.apache.org/java/19 1/api/org/apache/lucene/search/-
IndexSearcher.html.

[22] J. Fox. When is a singleton not a singleton? http://java.sun.-
com/developer/technicalArticles/Programming/singletons/.

[23] P. Fradet and D. L. Métayer. Shape types. InACM Symposium
on the Principles of Programming Languages, pages 27–39,

1997.

[24] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a
cyclic graph? A shape analysis for heap-directed pointers
in C. In ACM Symposium on the Principles of Programming
Languages, pages 1–15, 1996.

[25] M. Gorbovitski, T. Rothamel, Y. A. Liu, and S. D. Stoller.
Efficient runtime invariant checking: a framework and case
study. InWODA ’08: Proceedings of the 2008 international
workshop on dynamic analysis, pages 43–49, 2008.

[26] B. Hackett and R. Rugina. Region-based shape analysis with
tracked locations. InACM Symposium on the Principles of
Programming Languages, pages 310–323, 2005.

[27] M. Jump and K. S. McKinley. Cork: dynamic memory leak
detection for garbage-collected languages. InSymposium on
Principles of Programming Languages, pages 31–38, 2007.

[28] M. Jump and K. S. McKinley. Dynamic shape analysis. In
ACM International Symposium on Memory Management,
2009.

[29] Jvm tool interface. http://java.sun.com/javase/6/docs/-
platform/jvmti/jvmti.html.

[30] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural
modification side effect analysis with pointer aliasing. In
ACM Conference on Programming Languages Design and
Implementation, pages 56–67, 1993.

[31] S. McPeak and G. Necula. Data structure specifications via
local equality axioms. InComputer Aided Verification, pages
476–490, 2005.

[32] N. Mitchell and G. Sevitsky. LeakBot: An Automated and
Lightweight Tool for Diagnosing Memory Leaks in Large
Java Applications. InEuropean Conference on Object-
Oriented Programming, pages 351–377, 2003.

[33] G. Novark, T. Strohman, and E. D. Berger. Custom object
layout for garbage-collected languages. Technical Report
UM-CS-2006-06, UMass Amherst, 2006.

[34] M. E. O’Neill and F. W. Burton. Smarter garbage collection
with simplifiers. InWorkshop on Memory System Perfor-
mance and Correctness, pages 19–30, 2006.

[35] Quest. JProbe Memory Debugger. http://www.quest.com/-
jprobe/debugger.asp.

[36] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. InACM Symposium on the Principles of
Programming Languages, pages 105–118, 1999.

[37] SciTech Software. .NET Memory Profiler. http://www.-
scitech.se/memprofiler/.

[38] A. Shankar and R. Bodı́k. Ditto: automatic incrementalization
of data structure invariant checks (in java). InPLDI ’07:
Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, pages
310–319, New York, NY, USA, 2007. ACM.

[39] Standard Performance Evaluation Corporation.SPECjvm98
Documentation, release 1.03 edition, 1999.

[40] Standard Performance Evaluation Corporation.SPECjbb2000
Documentation, release 1.01 edition, 2001.

[41] X. Wang, Z. Xu, X. Liu, Z. Guo, X. Wang, and Z. Zhang.
Conditional correlation analysis for safe region-based mem-
ory management. InPLDI ’08: Proceedings of the 2008 ACM
SIGPLAN conference on Programming language design and
implementation, pages 45–55, New York, NY, USA, 2008.
ACM.

[42] K. Zee, V. Kuncak, and M. Rinard. Full functional
verification of linked data structures. InACM Conference
on Programming Languages Design and Implementation,
pages 349–361, 2008.

