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ABSTRACT
Dynamic difficulty adjustments can be used in human-
computer systems in order to improve user engagement and
performance. In this paper, we use functional near-infrared
spectroscopy (fNIRS) to obtain passive brain sensing data
and detect extended periods of boredom or overload. From
these physiological signals, we can adapt a simulation in or-
der to optimize workload in real-time, which allows the sys-
tem to better fit the task to the user from moment to mo-
ment. To demonstrate this idea, we ran a laboratory study
in which participants performed path planning for multiple
unmanned aerial vehicles (UAVs) in a simulation. Based on
their state, we varied the difficulty of the task by adding or
removing UAVs and found that we were able to decrease er-
rors by 35% over a baseline condition. Our results show that
we can use fNIRS brain sensing to detect task difficulty in
real-time and construct an interface that improves user per-
formance through dynamic difficulty adjustment.
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INTRODUCTION
Task difficulty can induce a wide variety of cognitive and
emotional states that can impact performance [16]. A prob-
lem that exceeds an individual’s skill set can be overwhelm-
ing and cause anxiety, while a problem that does not utilize a
person’s skills may result in boredom and apathy. When users
are in states of anxiety or boredom, they do not focus on their
task, learn less, are less productive, and more prone to errors
[30]. Minimizing anxiety and boredom during a task can keep
people in a state of flow, helping a user maintain focus on the
current task and perform well.
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To keep people in an optimal state, dynamic difficulty adjust-
ment (DDA) systems automatically modify the difficulty of
the task in real-time. By monitoring user state and adapt-
ing the system when it detects detrimental states, a dynamic
difficulty system improves performance and helps users max-
imize their amount of productive work. However, DDA sys-
tems face two primary challenges. First, DDA systems must
infer a correct model of the user’s skill level and willingness
to engage in a task. This can be particularly difficult when
performance metrics are hard to define or are not indicative of
skill, or as skill improves. Second, DDA systems must subtly
change difficulty level while not obtrusively interfering with
the task in order to not interrupt presence and degrade perfor-
mance [24, 41].

While there has been considerable research on DDA systems,
there are few examples of DDA systems outside of gaming
environments, where behavioral metrics are often a good in-
dicator of performance and difficulty. Finding these indica-
tors in the real world is challenging, but the benefits of sys-
tems with dynamic difficulty are widespread. For example,
in computer-assisted learning environments, the system could
calibrate the pace of learning or materials to the understand-
ing of each individual. These principles can also be applied
towards task allocation in order to use physiological signals
to calibrate the amount of work given to a user or balance task
load across team members.

In this paper, we demonstrate a set of adaptation techniques
and triggers to address some of the traditional problems with
using physiological input to DDA systems in the real world.
As an example of a task allocation environment, we construct
a system that aids operators in path planning for unmanned
aerial vehicles (UAVs) and use input from functional near-
infrared spectroscopy (fNIRS) brain sensing to model the op-
erator’s state. By using the confidence in its output, we con-
struct an adaptive system that is more robust to the noise of
physiological input. Finally, by being careful with our ma-
nipulation of visual elements, we prevent disrupting the user’s
mental model of the system. The UAV operator scenario is an
ideal testbed to control task allocation because the path plan-
ning system is composed of discrete elements, each of which
carries a level of independent workload.

In particular, we show that we can use fNIRS to model a
user’s working memory load in real time and use this sig-
nal as an indicator of difficulty in multitasking scenarios. We
propose that fNIRS has specific advantages in being applied
to DDA systems. It is a lightweight and non-intrusive sensor,
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and can be affixed to the forehead while allowing users to still
function normally. Additionally, it has been found to be re-
sistant to movement artifacts in comparison to other sensors
[35]. Because of this, it is ideal for a passive input, where
users still perform a task normally but the system knows and
adjusts to their overall cognitive state.

By applying fNIRS to a DDA system that supports UAV route
planning, we find that we are able to improve task perfor-
mance. We suggest that this is because we aid users in avoid-
ing harmful cognitive states, thereby maintaining a state of
flow. In this paper, we make the following claims:

• We show that we can build a brain-computer inter-
face that uses task allocation as means for dynamically
matching the task to the user. We apply functional near-
infrared spectroscopy to detect signals in the prefrontal cor-
tex that correlate with working memory load, using this
signal as a proxy for the user’s engagement with a task.
We demonstrate that this system decreases operator error
by 35% over a baseline condition, holding speed and other
factors constant.

• We suggest adaptive strategies that circumvent tradi-
tional problems with biocybernetic systems and make
adaptation feasible for DDA systems in the real world,
such as UAV path planning. To minimize the impact of
misclassifications, we only trigger the adaptive mechanism
when the system has a high confidence in its modeling. To
prevent disrupting the user’s mental model of the system,
we only modify those visual elements that the user has no
reason to monitor.

Application: UAV Path Planning
For our testbed scenario, we use an unmanned aerial vehicle
(UAV) software simulator. UAV operation lends itself well to
task allocation because difficulty adjustments because opera-
tors go through periods of boredom and high workload, both
of which lead to operator attention inefficiencies, delays, and
degradations in performance measures [14]. Unmanned air-
craft are an increasingly common solution used by the mili-
tary for surveillance, intelligence, and combat. They are also
frequently used for humanitarian assistance and disaster relief
to assess damage and conduct search and rescue missions, as
well as for transporting cargo and passengers.

Workload for a UAV operator is inherently dynamic. As
autonomy capabilities improve, there is increasing interest
in giving individual operators responsibility for multiple au-
tonomous vehicles. Because of varying demands for each
UAV, sometimes a lower number of UAVs will cause more
work and we cannot measure operator workload based solely
on number of vehicles [12]. A successful dynamic difficulty
system would better optimize distribution of workload and
the utilization of human resources to maximize performance.
In addition, control systems could be alerted when more or
fewer UAV operators are needed. However, such a system
requires the user’s state be captured in real-time, as perfor-
mance metrics alone might not accurately reflect the mental
demands of a UAV operator’s current scenario. Although this

study is based on a UAV simulation, we posit that it is gener-
alizable to most systems with variable levels of workload that
can be modified by task allocation.

BACKGROUND AND RELATED WORK

Flow and Dynamic Difficulty
As defined by psychologist and philosopher Mihaly Csik-
szentmihalyi, flow is the state of complete immersion in a task
induced by achieving an ideal balance between the skills of
the user and the challenge of the user’s task [10]. When this
balance is met, a user will typically experience a clear sense
of goals, focused concentration, loss of self-consciousness,
altered sense of time, increased sense of control, increased
motivation, and a merging of action and awareness [10]. As
depicted in Figure 1, keeping users in the flow state provides
a positive emotional experience and avoids boredom, frustra-
tion, anxiety, or apathy [15, 26].

Figure 1. A two-dimensional model of flow

To capitalize on these benefits, designers have attempted to
automatically maintain a user’s flow state through the use of
dynamic difficulty adjustment (DDA), or adapting the chal-
lenge of a task automatically based on a model of the user’s
current skills. Research has shown that game players, for ex-
ample, experience faster performance gains and feel more in
control when the difficulty increases based on their skill [24,
39]. Scenarios that adjust difficulty according to performance
keep the player more immersed than those that simply adjust
difficulty over the course of gameplay [32]. Outside of the
gaming industry, DDA systems can be used to accommodate
the transition of users from novice to expert [6] — a central
application of adaptive interfaces.

Dynamic Difficulty Psychophysiological Metrics
Psychophysiological signals can be used to determine player
boredom and anxiety [8], and many researchers have looked
at how these affect performance and flow [15, 32, 33]. Chanel
et al. found that playing at different levels of difficulty will
give rise to different emotional states and those emotional
states (and the underlying conditions) can be assessed using
physiological measures [8]. These signals can also be used
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passively to modify a scenario by determining a user’s af-
fective, or emotional, state [15]. Participants’ skills improve
more and the participants find the simulations more enjoy-
able when the level of challenge is altered due to affective or
mental state rather than their performance [33]. In addition,
research has found that boredom and frustration/anxiety are
distinguishable from each other and from flow, and that they
can be classified with high levels of accuracy [8, 33].

The sympathetic and parasympathetic nervous sytem are sus-
ceptible to effects of cognitive state. Unobtrusive sensors
such as electrocardiograph (EKG) electrodes or Galvanic
Skin Response (GSR) can be used to find changes in a partici-
pant’s physiological state. Heart rate variability and interbeat
interval (IBI) measured from EKG can correspond to arousal
levels. In addition, IBI standard deviation and GSR mean
have been found to rise and peak as subjects’ challenge states
change from boredom to flow, but then fall again once the
challenge becomes too difficult and subjects reach a state of
anxiety, indicating that these physiological signals fall once
the user becomes disengaged [16]. These signals are a good
complement to fNIRS. However, they measure affective state
and how the user feels about the challenge and are not nec-
essarily descriptive of how the user’s skills interact with the
difficulty of the task.

Brain-sensing can be used to focus on a user’s mental
state. Clinical studies using electroencephalogram (EEG)
have found significant results that can be used for dynamic
adaptations, such as that left frontal lobe activity is correlated
with positive emotions and motivation and that frontal theta
rhythms are maximized when the challenge was also at its
peak [15]. EEG can also find attentional engagement and af-
fective workload in first-person shooters [1]. The key step in
creating an affective loop is to identify appropriate classifiers
that correlate biosignals and the actual affective state of the
users. Fairclough et al. also found significant differences in
EEG signals as task load in an n-back task changed and that
systolic blood pressure (SBP) increases with task demand,
peaks when task demand reaches the maximum challenge,
and then decreases once the task is too challenging [15].

While the literature on using EEG as input to adaptive sys-
tems is quickly growing, it has historically been extremely
sensitive to movement artifacts without careful filtering meth-
ods. We investigate the use of fNIRS as a less-explored de-
vice in comparison to EEG and complementary in many of its
characteristics. In the next section we provide a more detailed
description of fNIRS and its benefits for use in DDA systems.

fNIRS and Prefrontal Cortex
fNIRS uses near-infrared light to detect levels of oxygenated
(HbO) and deoxygenated hemoglobin (HbR) on the surface
of the prefrontal cortex. Light at this wavelength penetrates
biological tissue and bone but is absorbed by hemoglobin
in the bloodstream, and has similar vascular sensitivity to
fMRI [21]. Since neural activity is accompanied by increased
oxygen demands in order to metabolize glucose, much like
fMRI, fNIRS can detect activation at localized areas of the
brain. For a more in depth validation of fNIRS signals in
comparison to fMRI, we refer to Strangman et al [38]. fNIRS

detects slow trends of hemodynamic changes, and is thus
more appropriate for detecting overall state rather than event-
related responses.

Recently, fNIRS has increasingly been leveraged to research
users because it is considered to be safe, comfortable, rela-
tively robust to movement artifacts, and can be designed for
portability. In addition, it is resilient to head movement, facial
movement, ambient noise, heartbeat, and muscle movement
[17, 35]. This is critical for complex environments where the
user must be able to function freely and normally.

Predictive models have been used to differentiate the fNIRS
signal between levels of workload [4, 20, 28, 34], verbal and
spatial working memory [19], and game difficulty levels [17].
Furthermore, it has been used to determine periods of cogni-
tive multitasking [36, 37], levels of expertise [7], preference
[25, 29], and emotion [40].

fNIRS is a viable technology to monitor the brain activity
of UAV pilots in ecologically valid environments. Previous
work has shown that mean oxygenation levels increase as the
number of vehicles in a simulation increases, but then drop
once the operator is tasked with too many elements [2, 7, 22].

Passive Brain-Computer Interfaces
Traditional active and reactive BCIs use physiological signals
as input to directly control an application, such as moving a
cursor/object, selecting an option, or other intentional actions.
In contrast, passive BCIs are based on “reactive states of the
user’s cognition automatically induced while interacting in
the surrounding system” [44]. Passive inputs assess user state
and use that to help control interaction without direct or inten-
tional effort from the user. These systems supplement direct
input with implicit input, typically derived from physiologi-
cal sensors attached to the user, in order to trigger commands
based on user state. Jacob et al. anticipated the notion of
the passive physiological monitoring in 1993 [23], and re-
cent advancements in physiological sensors has allowed them
to become feasible. Physiologically-sensed signals represent
user state and can provide additional, implicit input to sys-
tems. Driven by more efficient monitors and the compu-
tational power and algorithms to process large quantities of
data in real-time, modern technology can more affordably in-
tegrate passive systems and has spawned research into passive
biocybernetic adaptation [15].

Adaptations triggered by passive input face two primary chal-
lenges: to accurately model the user’s cognitive and emo-
tional state and to sensibly adjust the system based on this
model. The model must be very cautious since users are of-
ten in a different mental state during offline calibration and
online feedback [42].

BCI helps solve the first challenge of passive systems by pro-
viding user models that tap more directly the source of user
state. Cutrell and Tan suggest that the implicit commands in-
ferred from a user’s changing brain activity may be the most
promising, universal application of BCI [13]. Explicit brain-
issued commands suffer disproportionally from errors and
have a limited range of input, whereas implicit commands
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offer purely additional information without the user’s delib-
erate attention, and the user does not see misclassifactions,
nor have to spend additional cognitive resources recovering
from these errors.

There are currently few examples of passive, real-time BCI
systems that objectively improve user performance in a sys-
tem. Prinzel et al. built an EEG-based adaptive automation
system that alternated between manual and automated modes
for a joystic tracking task and auditory pitch counting task
[31]. Wilson and Russell designed a similar system based
on an EEG engagement index for single-operator single-UAV
systems and found success with slowing the UAV down or
presenting alert in order to maintain engagement levels [43].
Solovey et al.’s Brainput system was able to adapt a scenario
where an interactive human-robot system changed its state of
autonomy based on whether it detected a particular state of
multitasking [37] and Peck et al. demonstrated a passive, im-
plicit adaptive movie recommendation system [28].

FNIRS AS INPUT TO DYNAMIC DIFFICULTY
In this paper, we explore whether we can improve perfor-
mance by using fNIRS brain sensing as input to a dynamic
difficulty system. To investigate this topic, we run a user
study on an an task allocation system. As our testbed, we
use a simulation designed for UAV path planning [18]. In
this simulation, UAV operators are tasked with directing mul-
tiple UAVs at once, similar to an air traffic control task. Since
this task can either be overwhelming or overly simple, we
use fNIRS input to intelligently add or remove UAVs in order
to provide an ideal challenge to the user. Mirroring the two
primary challenges of DDA systems, we pose the following
research questions:

• Can we use fNIRS to identify periods of low and high dif-
ficulty as operators perform a navigation task with multiple
UAVs?

• Can we use real-time fNIRS data as input to a dynamic
difficulty system and improve operator performance?

In the following sections, we describe the UAV simulation
task, the details of our Brain-Based Dynamic Difficulty En-
gine, and the experimental design of our study.

Figure 2. View of UAV operator simulation. Participants guided UAVs
to targets while avoiding dynamic obstacles.

UAV SIMULATION TASK
We used a single-operator multiple-UAV system designed by
a human automation research laboratory [18]. In the UAV
navigation task, participants (or operators) were shown an
overhead view of a map with UAVs (displayed in Figure 2)
and instructed to guide the UAVs to a sequence of targets
as quickly as possible while avoiding obstacles. Participants
controlled between three and seven UAVs. Operators were
instructed that obstacles, shown as teal octagons, were no-
fly zones, and that while UAVs could fly through them, there
would be a large penalty for doing so. If entered, obstacles
should be exited as soon as possible. Leaving UAVs idle for
a long period of time would also result in a penalty, so partic-
ipants were motivated to balance performing the task quickly
and without collisions.

The participants were instructed that they were part of a team
of UAV operators and that vehicles would be passed off from
their control to other operators, and other operators’ vehicles
would be passed to them. Thus, participants were prepared
for vehicles to appear and disappear during the task. Inter-
mittently, UAVs would be added or removed to modify the
operator’s current challenge level. To prevent disruption of
the user’s mental model of the scenario, UAVs were only re-
moved if there were no obstacles in its path, meaning that
the UAV should not demand any of the user’s attentional
resources and thus the user would not be distracted by the
change. A pilot study showed that participants found this less
disruptive than removing vehicles that needed path modifica-
tions, since a UAV could disappear during interaction. Over-
all, scenarios were hard-coded in order to guarantee consis-
tency in obstacle density and path distance.

Interface Details
The vehicles were shown in pink and were numbered, with
each UAV having a corresponding numbered target. When
operators clicked on a UAV, that UAV and its target would
become red and the user could click anywhere on the map to
create a waypoint (indicated by a yellow diamond). When the
user pressed “Generate Path,” a path was created that included
the starting position of the UAV, all of the waypoints, and the
target. Once the participant pressed “Confirm,” the vehicle
would begin to follow the path.

The obstacles intermittently moved, so users could add more
waypoints, move existing waypoints, or delete waypoints in
the UAV’s path. The currently selected path was shown as
a solid black line, while other UAVs’ paths were shown as
dashed lines. When a vehicle’s path crossed into an obstacle,
the obstacle would turn bright yellow until the obstacle was
cleared. Every time the vehicle reached a target, a new target
would appear. Along the bottom of the map was a timeline
so that operators could see when the UAVs would reach their
targets, and a timer was on the top right.

BRAIN-BASED DYNAMIC DIFFICULTY ENGINE
In order to identify user states that correlate with periods of
low or high difficulty, we depend on a number of analytical
components that we call the Brain-Based Dynamic Difficulty
Engine. In this section, we describe the process of calibrating
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our system to recognize periods of low and high difficulty
as the user interacts with an interface. We also describe our
adaptation mechanism that attempts to increase or decrease
the difficulty of the user’s task.

Figure 3. An fNIRS sensor that contains five light sources (only four
were used) and one detector.

Equipment
We used a multichannel frequency domain Imagent fNIRS
device from ISS Inc. (Champaign, IL) for data acquisition.
The system used two probes (shown in Figure 3), one on
each side of a subject’s forehead, to measure changes in oxy-
genated and deoxygenated hemoglobin in the prefrontal cor-
tex. Each probe had four sources, each emitting infrared light
at two near-infrared wavelengths (830 nm and 690 nm), and
one detector. The source-detector distances ranged from 1.5
to 3.5 cm and the system sampled at 11.79 Hz.

Figure 4. 3-back task. Participants were instructed to respond if the
current square appeared at the same location as the one presented three
trials back in the sequence.

Calibration Task
In order to identify fNIRS signals that determine periods of
high and low periods of difficulty, participants first completed
a series of visuospatial n-back trials. The n-back test is widely
used and has been established and proven to incite increasing
levels of short-term working memory as n increases [5, 27] as
well as yield distinguishable fNIRS signals [11, 29]. Partici-
pants were shown a screen with a square and an X in the mid-
dle, with flashing black boxes (see Figure 4), and were asked
to indicate if the currently presented stimulus was the same
as the stimulus presented n trials previously. In order to in-
duce levels of low and high difficulty, participants performed
1-back and 3-back trials. Because each participant only has
to recall the last stimulus during a 1-back but has to remem-
ber the last three stimuli during a 3-back, the 3-back incites
significantly higher cognitive load. Each trial consisted of 10
stimuli, each being displayed for 500 ms with an interstim-
ulus interval of 2000 ms. Each trial totalled 25 seconds and
was followed by a 15 second break. Participants completed

30 trials and were allowed to take a longer break after every
10 trials.

Filtering the fNIRS Signal
During the n-back task, raw fNIRS data was collected by
Boxy (fNIRS acquisition software from ISS, Inc.) and sent
to a specialized analysis system which was built in-lab us-
ing MATLAB. There, the system calculated the time series of
change in light intensity compared to an initial baseline pe-
riod of 30 seconds for each of our 16 information channels (2
probes x 4 light sources x 2 wavelengths). The signals were
filtered for heart rate, respiration, and movement artifacts us-
ing a third-degree polynomial filter and low-pass elliptical fil-
ter. Further details of these algorithms can be found in [29,
37].

Modeling Difficulty
Previous work that used fNIRS to detect workload in UAV
operator tasks took advantage of changes in the oxygenated
hemoglobin signal. By calculating the mean and linear re-
gression slope of operators’ oxygenated hemoglobin levels
in the prefrontal cortex, they were able to see signal differ-
ences that correlated with the number of UAVs and task dif-
ficulty [3, 7] Thus, for each n-back trial, we constructed an
example of 32 features (16 information channels x 2 descrip-
tive features) in order to build our model of user difficulty.
We then fed each of these examples into LIBSVM, an inte-
grated software for support vector classification [9], where
we used a linear kernel to prevent overfitting the data [11].
In addition, we did a parameter search for the C and γ, the
cost and gamma parameters for the machine learning model,
in order to find the best model for each individual user. This
technique uses the training data to build a support vector ma-
chine in order to classify new input and give a probability
estimate. Finally, after building the model, we used 10-fold
cross-validation to ensure that the model was accurate. For
system implementation, see Figure 5. We used an individu-
alized model for each user (Figure 6 is for illustration pur-
poses), and this model was able to predict difficulty level
while each user was performing the UAV task.

Classifying New fNIRS Data in Real-Time
After the model was created, we were able to predict user
state in real-time by using a sliding window of the same size
as our n-back trial length (25 seconds) on new, incoming
fNIRS data. For each window of data, we used the same fil-
tering techniques as the training series data and extracted the
same mean and slope features.

Predictions and confidence values were sent to the UAV sim-
ulation software in real-time, which kept track of recent clas-
sifications and calculated its own prediction of user state by
averaging the previous 8 seconds that were received from the
model. Whenever the confidence average was above 80% for
either low or high difficulty levels, a UAV would be added
or removed, respectively. We base our confidence average
off of results obtained from pilot studies. The adaptation was
used to raise or lower the overall difficulty and challenge of
the simulation when appropriate. This ensured that we would
only make an adaptation if the system was confident in the
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Figure 5. Diagram of our closed-loop dynamic difficulty adaptation engine. Raw signals acquired the fNIRS device are filtered, then used to classify
user workload. When we are confident that the user is in a suboptimal state, we appropriately add or remove UAVs in order to provide the right amount
of work.

user’s state. In the following sections, we compare the suc-
cess of this adaptation with a non-adaptive condition.

EXPERIMENTAL DESIGN

Training and Calibration
Participants first went through a self-guided slideshow ex-
plaining UAV simulation. They then practiced the simulation,
spending five minutes controlling three UAVs and five min-
utes controlling seven UAVs. Our initial pilot tests showed
that three UAVs was the minimum to incite workload, and
that seven UAVs was the maximum that a single operator
could handle without frustration. After this section, they were
then described the calibration task – n-back task – and prac-
ticed a 1-back and 3-back task. Once the calibration task be-
gan, participants performed 30 n-back trials, 15 each of 1-
back and 3-back trials, with a 15 second break between trials
in order to allow their brain to return to resting state. The data
from these trials was used to train our classifier. Although
each participant had an individual model, the overall trends
are shown in Figure 6.

UAV Scenario - Adaptive vs. Non-Adaptive
We compared our fNIRS-based adaptations to a control con-
dition where UAVs were randomly added and removed. Thus,
the independent variable in this experiment is the extent to
which the system adapts to the user’s state: adaptive and non-
adaptive.

• In the adaptive condition, UAVs were added and removed
according to brain signals correlating with low workload
and high workload. We posit that extended periods of low
and high workload cause boredom and anxiety, and lead
to periods of disengagement and decreased performance.
Thus, when the system was confident that the user was in a
state of low or high workload, one UAV would be added or
removed, respectively. After a UAV was added or removed,
there was a 20 second period where no more vehicles were
added or removed. This was done to prevent the user from
having to rapidly switch contexts.

• In the non-adaptive condition, the simulation did not keep
track of user state and intermittently added and removed
UAVs (a random interval between 20 and 40 seconds). This

timing was determined based on a series of pilots to corre-
spond as closely as possible to the average number of ad-
ditions/removals we observed in the adaptive condition.

All participants ran one ten-minute trial of each condition.
The order of conditions was counter-balanced across subjects
and participants wore the fNIRS device during both trials so
they did not notice a difference between the two conditions.

Dependent Measures
In order to evaluate the success of the system, we analyzed
the following dependent measures:

• Successes: the number of UAVs that reached the target
without entering a no-fly zone

• Failures: the number of UAVs that entered at least one no-
fly zone on the way to the target.

• Obstacles entered: the total number of no-fly zones that
planes entered during operation. This metric differs from
failures because a UAV can enter multiple no-fly zones in
a single flight.

• Distance in obstacles: the total distance (in pixels) that
UAVs travelled in no-fly zones during operation. This mea-
sure helps us understand how quickly users were able to
recover from these mistakes.

• Average neglected UAVs: a neglected UAV is idle waiting
for a route or having a no-fly zone in its route and need-
ing redirection. This metric refers to the avg number of
neglected UAVs at any given moment during operation.

RESULTS
The study included twelve participants (five male) between
the ages of 18 and 26. All participants were right-handed,
had no history of brain injury and had normal or corrected-
to-normal vision. Informed consent was obtained for all par-
ticipants. This experiment was approved by our institutional
review board.

Improved Performance: Fewer Failures, Collisions
Across conditions, participants controlled roughly the same
number of UAVs over time, averaging 4.41 UAVs in the
adaptive fNIRS condition and 4.69 UAVs in the non-adaptive
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Figure 6. Although we model each participant individually, the fNIRS signal exhibited general trends as participants completed 1-back and 3-back
trials. Plotting the mean change in HbO and HbR across all training trials and all participants (15 trials * 12 participants) shows that the 1-back task
is correlated with a drop in HbO and increased levels of HbR, while the 3-back task induces an increase in HbO and decrease in HbR. The standard
error of the mean is shown with the width of the plots.

condition (no significance in number of UAVs). Partici-
pants completed the same number of successful trials across
conditions, so there was no significant difference in com-
pletion rates. However, their failure rate was significantly
higher in the non-adaptive condition. With a paired t-test,
we found that participants had significantly fewer failures in
adaptive condition (M = 3.25, SD = 2.14) than the non-
adaptive condition (M = 5, SD = 1.95) (t(11) = 3.17, p <
0.01, Cohen′s d = 0.92). In addition, although there was no
significant difference in the number of obstacles that appeared
in the UAVs’ paths across conditions (since the obstacles ran-
domly moved over time), participants entered an average of
4.75 (SD = 2.77) no-fly zones in the adaptive condition and
7.42 (SD = 2.81) no-fly zones in the non-adaptive condition
(t(11) = 4.14, p < 0.01, Cohen′s d = 1.2).

While we did not see a change in number of successful trials,
this is to be somewhat expected, since the operators’ ability
to complete their main objective was not affected by condi-
tion. However, the significant decrease in failures as well as
variables associated with failures shows that users prevent de-
grades in performance. One likely explanation is that partic-
ipants are paying more attention to the simulation and stay
more engaged in the task.

Increased Awareness: Quicker Error Correction

We also measured the number of pixels that the UAVs trav-
eled while in no-fly zones, an indicator of how aware the
operators were that the UAVs were in obstacles. With
a paired t-test, we found that participants traveled signifi-
cantly less distance in obstacles in the adaptive condition
(M = 101.38, SD = 91.43) than the control condi-
tion (M = 206.39, SD = 179.1) (t(11) = 2.84, p <
0.05, Cohen′s d = 0.82). This means that they were more
attentive to the appearance of obstacles in the adaptive condi-
tion and did a better job of avoiding the obstacles once the
obstacles appeared. Participant also neglected UAVs less,
having fewer average UAVs that needed attention. Partici-
pants had an average of 1.14 (SD = 0.13) neglected UAVs
in the adaptive condition, with 1.37 (SD = 0.29) neglected
UAVs in the non-adaptive condition (t(11) = 2.78, p <
0.05, Cohen′s d = 0.80).

DISCUSSION
We presented a working dynamic difficulty system that used
brain activity to determine when to perform task mitigations.
In the background section of this paper, we described two pri-
mary challenges for DDA systems. First, DDA systems must
accurately model the interaction between user skills and the
challenge of their task. Second, DDA systems must mod-
ify the challenge to keep users in a state of flow without be-
ing disruptive. Mirroring these challenges, we posed research
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Figure 7. We use a slopegraph to plot the effects of condition on UAV operator performance for each partcipant. The following four measures showed
significantly (p < 0.05) better performance in the adaptive condition interface (upward sloping lines), and at least ten of the 12 subjects performed
better in the adaptive condition in each of these measures.

questions asking whether using fNIRS as input could address
these challenges in a UAV operator task. In this section, we
explore the implications of our study as it relates to these
questions, beginning with the second of these challenges.

Using fNIRS to Minimize Disruption
It is worth reemphasizing the benefits of using fNIRS for
ecologically valid evaluations of user state. Its resistance to
movement artifacts in comparison to other many other sens-
ing technologies means that users are able to engage with
their task under fewer constraints. Earlier, we mentioned that
an important goal of DDA systems was to minimize disrup-
tion within the context of adaptation. However, this disrup-
tion can also apply to the constraints required by measure-
ment tools. Allowing the user to interact naturally will be im-
portant to consider if DDA systems are to be driven by phys-
iological input in the future. While our system still requires
users to be tethered by wires and fibers, there is a growing
body of research that suggests that fNIRS will become even
more lightweight and unobtrusive in the future [2, 41].

Mapping Working Memory to Difficulty
Our results indicate that we were able to model the working
memory load of the user in the UAV scenario using fNIRS.
Participants who interacted with the adaptive system saw per-
formance boosts in the form of fewer failures and fewer colli-
sions in comparison to a non-adaptive condition. Incorrectly
modeling user state would have negatively impacted perfor-
mance by pushing users into a potentially harmful state such
as boredom or overload. Therefore, we were able to model
user state sufficiently enough in a real-time environment to
improve performance. Although misclassifications are in-
evitable, one of the challenges of applying adaptations is de-
ciding when to take action. Our system shows that using a

timeseries of confidence classifications can aid the user by
only adapting when we are fairly certain of user state.

However, one criticism for using working memory as a proxy
for difficulty is that high working memory load may in fact
be an indicator of engagement with a task. While we cau-
tion against mindlessly mapping working memory to diffi-
culty, the UAV experiment exemplifies a larger classification
of tasks where measuring high working memory load can in-
dicate harmful user states. In multitasking scenarios, increas-
ing the amount of mental effort required to accomplish a pri-
mary task necessarily decreases the available resources for
secondary tasks.

We also believe that the user’s increased awareness in the
adaptive condition, as demonstrated by distance travelled in-
side obstacles and neglected UAVs, suggests that our adaptive
mechanism successfully preserved the user’s mental model of
the scenario while modulating their challenge level.

Our system has measurable benefits, with no direct input from
the user. This is advantageous because the user may not de-
tect when he or she is disengaging, and will not have time or
the extra cognitive capacity to indicate when the workload is
overwhelming; continuously inputting information explicitly
would be annoying and distracting.

This system is independent of the simulation software pack-
age and thus can be applied to any operator scenario. The
predictions are sent as text strings (consisting of the predic-
tion and the confidence rates) over TCP/IP, and a we have
developed a generic Java class that reads in these predictions
and gives moving averages of the predictions. Stripling et al.
emphasize the need for a “robust user-friendly closed-loop
training environment” that can produce automated methods
for adaptive manipulations in complex simulations [39], and
this system seeks to do that based on brain signals.
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CONCLUSION
Dynamic difficulty adjustment is a valuable tool to keep peo-
ple in an ideal state to learn better and perform better, while
also enjoying the experience. As physiological sensors be-
come more prevalent and the signal processing techniques
continue to improve, passive systems will become easier to
implement, more accurate, and more commonplace.

In this paper, we presented our system, the Brain-Based Dy-
namic Difficulty Engine, which uses fNIRS brain signals to
dynamically adjust the difficulty level of a given task. Our
system is real-time and passive, which is ideal for real world
conditions such as UAV operations where the operators need
to perform tasks and cannot tell the system when difficulty
level is inappropriate. We demonstrated that our system can
significantly decrease the operator’s failure rate by 35% com-
pared to randomly adding and removing over time, holding
other factors constant. In addition, the operators exhibited
higher level of awareness in dealing with UAVs that had im-
mediate concerns. These results suggest that our system is
beneficial to operators, and that fNIRS and other brain sens-
ing techniques for DDA can be used for regulating user state
and producing improved performance.
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