
Syllabus for COMP 105, Programming Languages
(Information Every Student Must Know)

Fall 2020

Contents
Introduction and Welcome 3

What will the experience be like? 3
Is 105 in-person or remote? 3
What do we need to do if meeting in-person? 3
What will the online lectures be like? 3
How does 105 compare with 40? 3
Why do I feel lost? . 4
What should I do about it? 4
What tactics do and don’t work? 5
How does the class support my success? 5
How can I use office hours effectively? 5
What is Virtual Halligan? 5
What can I expect from teaching assistants? 6
What if I need special support? 6
How must I support my own success? 6
105 is a 100-level course. What does that mean? 7

What will we learn? 7

What topics will we study? 8

How heavy is the workload? 8

What does the workload consist of? 8

How does my work affect my grades? 8
How am I graded on reflection questions? 8
How am I graded on retrospective questions? 8
How am I graded on coding interlude questions? 8
How am I graded on check-understanding questions? . 8
How am I graded on reading-comprehension questions? 9
How am I graded in recitation? 9
How am I graded on my office hour visit? 9
How is my participation graded? 9
How is my homework graded? 9
What is a “minor deduction”? 11
What if my homework is graded incorrectly? 11
What will the midterm be like? 11
What will the final be like? 11
What does a grade of D mean in the course? 11

How should I interact with people? 11
How much interaction is too much? 12

So can I post my code on github? 13
How do pair-programming interactions work? 13
What if pair programming doesn’t work for me? 13
How does the course staff monitor pair programming? . 13
Do I have a right to pair program? 13

What is expected of my homework? 14
How should my homework be submitted? 14
How do I get access to the submit scripts? 14
How should my homework be formatted? 14
How should my code be written? 15
How will the structure of my code be evaluated? 15
How will the correctness of my code be evaluated? . . 15
Should I use LaTeX to write theory homework? 15
Then how should theory homework be written? 15
How may I use the library? 15
How may I use code I find on the Internet? 16
May I use code from the book? 16
How should I use Wikipedia? 16
What does an extra-credit problem mean? 16
What if I can’t get my homework in on time? 16
What if my partner is out of extension tokens? 16
What if I can’t finish all the problems? 16

What is expected in lecture? 17
Should I take notes? How? 17

What is expected in recitation? 17
Which recitation do I attend? 17

What logistics and policies affect my homework? 17

I’m not required to take 105. Should I take it anyway? 17

What skills must I have already? 18
What basic skills do I need? 18
What Unix skills do I need? 18
What file-transfer skills do I need? 18
What theory skills do I need? 18
What programming skills do I need? 18
What other programming skills might help? 19
What is the most important skill of all? 19

What books do I need? 19

What computers can I use? 19

1

What software can smooth my path? 19
How about Emacs tricks? 20

What if campus closes unexpectedly? 20

What may I do with solutions? 20

What if I am repeating the course? 20

What else do I need to know about academic integrity? 20

Where else might I go to get help? 20

What if I have a problem with a TA? 20

I’m different. Am I really welcome here? 21

Acknowledgments 21

2

Hard work is great but working smarter is even better.
At times, you have to take a break, back off, and use
your time efficiently.

— Bill Belichick

Introduction and Welcome
Welcome to COMP 105! Here you will learn to write code from
scratch, in a language you have never seen before, in a way that
sails through code review.

COMP 105 serves as the fourth course in our required program-
ming sequence. In this sequence, it is the only 100-level course.
It is the most technically deep, the most intellectually challeng-
ing, and the one in which you’ll develop the most diverse and
highest-level thinking skills. You will think hard, stretch beyond
the skills you have grown comfortable with, and emerge with a
permanently higher level of skill.

COMP 105 introduces you—through extensive practice—to ideas
and techniques that are found everywhere in today’s programming
languages. These ideas and techniques infuse many languages
you have not yet seen, and they will continue to infuse the pro-
gramming languages of the future. Foremost among these ideas
are functions, types, and objects. COMP 105 also introduces you
to the mathematical foundations needed to talk precisely about
languages and about programs: abstract syntax, formal seman-
tics, type systems, and lambda calculus. Mathematics helps you
recognize ideas and techniques that you have seen before, even
when they are disguised.

To provide a sane and sensible context in which to learn,
COMP 105 immerses you in case studies, conducted using tiny
languages that are designed to help you learn. In any given case
study, you may act as a practitioner (by writing code in a lan-
guage), as an implementor (by working on an interpreter for the
language), as a designer (by inventing semantics for a related
language), or as a scholar (by proving mathematical properties of
the language).

COMP 105 develops high-level, flexible programming skills that
you can transfer. For example, you will find you can apply your
skills to projects written in older languages such as Perl or Java,
in currently popular languages such as JavaScript, Python, Ruby,
Scala, and Swift, and in weird languages that might be important
in the future, such as Haskell, Rust, Agda, Coq, and who knows
what else. No matter what language you work in, when you
finish 105, you’ll be writing more powerful programs using less
code. In a profession where complexity is the enemy, your 105
skills will equip you to tackle the most demanding jobs—and
succeed.

What will the experience be like?
COMP 105 is as difficult as any course in our program, and it’s
a difficulty of a kind you are not used to encountering. I want

every student to succeed, and you are more likely to succeed if
you know what to expect.

Is 105 in-person or remote?
In Fall 2020, 105 can be taken fully remotely. For all students,
lectures will be delivered online asynchronously.
Recitations will be held online in Virtual Halligan. Office hours
will be held in Virtual Halligan with the help of the course help
center.

What do we need to do if meeting in-person?
When meeting in person for this course (e.g. for a study group or
by request), you’ll be responsible for wearing a mask that covers
your mouth and nose, practicing physical distancing of 6 feet
with other individuals, and keeping your desk and chair on the
designated spots on the ground. You will also be responsible for
wiping down your own desk, chair, and other frequently touched
surfaces with alcohol wipes or other approved disinfectant upon
arrival and departure from the classroom (or lab, studio, etc.). You
are also responsible for following the one-way directional patterns
indicated by the signs in the hallways in academic buildings. It
is imperative that we work together as a community to uphold
these standards to help mitigate the risk of spreading the virus.
Failure to do so may result in a referral to the Dean of Student
Affairs Office. For more information about expectations for the
Fall, please review the Fall Guide.

What will the online lectures be like?
The online “lectures" will be divided into a series of short videos,
preceded and followed by questions that you’ll need to answer.
The preceding questions ask you to reflect on a topic relevant for
the lecture. These questions are open-ended and will be graded
only to the extend that you respond to the prompt. The questions
that follow each video are questions that can be graded immedi-
ately to give you feedback on whether you are understanding the
key points in each video. These questions are designed to help
you stay engaged with the material in each video. This structure
of question, video, question takes the place of the question and
answer dynamics of the normal 105 lecture style.

How does 105 compare with 40?
For most students, COMP 105 is as difficult as COMP 40. Some
students find 105 a little easier, and some find 105 a little more
difficult.

If you know 40, you know that your feeling of accomplishment
comes primarily from building the projects. The 40 projects
are easy to talk about: they look big, and many of them sound
impressive, like “I built an image compressor.” Most important,
the 40 projects require that you apply the same skills that you
learned in 11 and 15, just to a greater degree. In brief, 40 yields
to force.

3

https://www.cs.tufts.edu/comp/105/help/
https://www.cs.tufts.edu/comp/105/help/
https://coronavirus.tufts.edu/sites/default/files/2020-06/Fall_2020_Campus_Guide_ASE_Students.pdf

COMP 105 also has a couple of projects that look big and sound
impressive, like “I built a type inferencer.” But overall, 105 is
much more about finding a small, elegant, precise solution to a
small problem—usually a programming problem, but sometimes
a math problem. As a result, compared with COMP 40,

• COMP 105 presents more intellectual challenges.

• COMP 105 gives you many more opportunities to make a
satisfying breakthrough, often by an “aha moment.”

• In COMP 105, you spend much more time feeling lost.

But even though 105 is quite different from 40, there are lots of
skills that transfer. If you have taken COMP 40, then

• You know how to read a long assignment and how to work
away at it gradually.

• You have practice building modules with specifications, and
you have practice testing against specifications.

• You have some experience translating some challenging
concepts into code.

But you must also be aware that some of not all of your habits in
COMP 40 will necessarily transfer to COMP 105:

• COMP 40 may fool you into believing that every hour
spent at the keyboard represents progress toward your goals.
In 105, it is all too easy to spend hours going nowhere. You
must learn to pause, step back, and think about where you
are going.

• In COMP 40, you can succeed without having much insight
into algorithms, linked data structures (think lists and trees),
or recursion. In COMP 105, you will need insight into all of
those things.

• COMP 40 may fool you into believing that you can complete
any difficult course if you just grind away doggedly. In 40,
this approach works: it may not be much fun, but you’ll
finish. And grinding away constantly has another benefit:
when you’re grinding, you don’t feel bad and you don’t feel
lost.

In 105, this approach works badly or not at all. If you are
always grinding, you will never have that quiet moment that
gives you the insight you need to solve a problem. You can’t
brute-force 105. Instead, you should deliberately break up
your work sessions with frequent pauses. Such pauses will
help you a lot. Stop, get up and move, and let problems
percolate in your brain. You will probably feel lost or un-
comfortable for a short time, but in the longer run, you’ll
finish faster, and then you’ll feel great.

Why do I feel lost?
To succeed in 105, you must understand that it is normal to feel
lost. There is nothing wrong with you, and there is nothing wrong

with the course—feeling lost is a consequence of the situation:
where you’re coming from and where you’re going.

Where you’re coming from is most likely 11, 15, and possibly 40.
All of these courses use a single programming paradigm, and
they use almost the same language: imperative programming
with unsafe pointers and explicit memory management, close
to the machine. Even the syntax and the data are the same—
compared to what you can see in the world, and to what you
are introduced to in 105, differences between C and C++ barely
matter. If you’ve completed 40, you’re going to feel like an expert.
And rightly so! You are an expert. But you’re a narrow expert,
and 105 introduces you to the demands of a wider world.

The most important way in which 11, 15, and 40 are narrow is
that their programming model is a thin veneer over the machine
model. These courses don’t rely heavily on functions or types,
and they do not commit deeply to objects. (While C++ makes it
possible to commit strongly to types and to objects, it imposes
such staggering complexity that these techniques cannot be taught
in introductory courses.) Your inexperience with functions, types,
and objects makes you a beginner again. And beginners often
feel lost.

The other factor that comes into play is that when you learn
challenging new material, you feel bad. Here’s the neuroscience:1

Many labs have observed that these critical brain re-
gions increase in activity when people perform difficult
tasks, whether the effort is physical or mental. . . [The
road is difficult], though, because these brain regions
have another intriguing property: When they increase
in activity, you tend to feel pretty bad—tired, stymied,
frustrated. Think about the last time you grappled with
a math problem or pushed yourself to your physical
limits. Hard work makes you feel bad in the moment.

What should I do about it?
When a successful student suddenly feels lost and confused, it’s
discouraging. To keep up your courage, I recommend two steps:

• First, recognize that unpleasant feelings are a normal part
of a learning process. Our job as professors is to set you
problems that are more challenging than you think you can
handle. . . and to support you as learn you can handle them.
This learning process requires hard work, attention to detail,
and a leap of faith. But if you persist, your unpleasant
feelings of confusion will be replaced by satisfying feelings
of mastery.

• Second, ask questions. “Is it normal that I’m confused here?”
“Are you confused here?” “If I’m confused but I still want
to make progress, what skill do I need, or what technique
should I practice?” “If you’re not confused, what skill are
you using? What technique are you applying?”

1Lisa Feldman Barrett, “How to Become a ‘Superager’ ”, New York Times,
Dec. 31, 2016

4

Both these steps will help you feel better.

You will also need to learn to proceed with your work despite
feelings of confusion, uncertainty, or anxiety. To help with that,
you need support.

What tactics do and don’t work?
In 105, the slow approach is the fastest one. Effective 105 students
stop, think, pause frequently, and work in short sessions. These
tactics can be hard to put into practice, especially if you have
used other tactics to succeed in other courses. But the work
tactics often preferred by beginners do not promote success in 105.
I paraphrase Garth Flint:

[Talented students] are very resistant to [a systematic,
thoughtful, slow] approach. They do not want to plan;
they want to do trial and error at the keyboard. They
have not learned an important axiom of programming:
“three hours of trial-and-error coding will save fifteen
minutes of planning.” (I wish I knew who came up
with that. They deserve an award.) [Students] want to
hammer keys [in Halligan for hours on end and] then
complain [that the course is too much work].

If you approach 105 by hammering away at the keyboard,
be aware how the approach is working for you. If the course
starts taking too much time, you can adjust your tactics—but only
if you are mindful of them.

If you have already learned systematic tactics for program de-
sign and implementation, you should be able to apply them to
COMP 105. If you have not had to learn a systematic approach,
which is common after early courses, you will easily master a
nine-step design process described in Seven Lessons in Program
Design.

How does the class support my success?
To help you navigate the learning process successfully, we have
built a variety of support structures into COMP 105.

• Early in the course, homework is structured as a large collec-
tion of small problems. When the going is most difficult, this
structure makes your progress visible, even when progress
is incremental.

• Every homework begins with some comprehension ques-
tions about the reading. These questions guide you toward
reading those parts of the book that are most valuable for
completing the homework. The comprehension questions
are designed to focus your attention on the most relevant
parts of the very long book for completing the rest of the
homework assignment. As such, we strongly recommend
you complete the reading comprehension questions first.

Comprehension questions are short, and if you understand
the reading, you should be able to answer all the questions in

just a few minutes. To achieve that understanding, however,
substantial reading may be required.

• Weekly recitation sections give you supervised practice
working on problems that resemble the homework prob-
lems. Most recitations are scheduled when a new homework
is just starting, so you can get off early, on the right foot.
Recitations are small, which makes recitation an ideal place
to ask questions, including the questions above. If you have
a question, others in your recitation probably have a similar
question. Recitations are mandatory, and they count toward
your course grade.

• Face-to-face interactions are invaluable, whether in person
or via zoom. COMP 105 provides extensive office hours,
conducted primarily by students who know the course and
who know how to succeed. We spend a significant fraction
of the course budget providing face-to-face office hours, so
take advantage of this resource!

Every student is expected to go to the instructor’s office
hours at least once, for at least five minutes.

• After every homework, we distribute model solutions. These
solutions model the best work of an expert in the field.

• This syllabus contains a heavy helping of advice.

• On the first day of class, we provide tips from the instructor,
and we also provide advice from successful students.

How can I use office hours effectively?

COMP 105 office hours are organized around the help center, a
website allows you to put your name in a queue to meet with a TA
in zoom. We strongly encourage you to hangout in the Comp105
space in Virtual Halligan while you are waiting to talk to the TA.

What is Virtual Halligan?

Virtual Halligan is an instance of the Sococo networked appli-
cation that uses a map-based metaphor to encourage informal
interactions. While in Virtual Halligan, you can chat with other
students who are working on the homework, much as students in
the past might have met up in the Halligan kitchen. If a group
of you all have the same question, you can meet with a TA in a
group, which sometimes means your question may get answered
more quickly. You can also attend recitations and office hours.

You can enter Virtual Halligan via the url https://tuftscs.sococo.
com and login using your Tufts SSO credentials. The application
works in Chrome or in native applications on Windows or on
Macs.

Information about how to use Sococo is available via the onboard-
ing guide written by Tufts students.

5

https://gflint.wordpress.com/2017/06/06/flints-perfect-strategy-on-how-to-teach-programming/
https://gflint.wordpress.com/2017/06/06/flints-perfect-strategy-on-how-to-teach-programming/
https://gflint.wordpress.com/
https://www.cs.tufts.edu/comp/105/help/
https://tuftscs.sococo.com
https://tuftscs.sococo.com
https://www.notion.so/Sococo-Onboarding-Guide-a1a39ffef6e745dbb4e074dcb68ebb6d
https://www.notion.so/Sococo-Onboarding-Guide-a1a39ffef6e745dbb4e074dcb68ebb6d

What can I expect from teaching assistants?

In COMP 105, the TAs have been instructed to use a model that
may be a little different from what you are accustomed to. The
TAs are not there to help you debug your homework. They are
there to help you learn. And the TAs who provide the best help
and who help students learn the most are the ones who guide
students with questions.

The questions that TAs ask are meant to be timeless and to apply
to many problems. Eventually, you will be able to use the ques-
tions yourself, to help your own progress. Questions range from
the technical (“what algebraic laws apply to this function”?) to the
conceptual (“in your own words, what is meant by Γ ` e : τ?”)
to the procedural (“how much of your 105 time is spent working
alone?”). Expect questions about your work, your understanding,
and your study practices.

Here are some other things you can and cannot expect from TAs:

• TAs will conduct themselves professionally—this is their
job. You can expect them to treat you with professionalism
and respect.

• TAs will be committed not just to your material success but
to your well-being—I have told them that your well-being
is our top priority.

• When it’s your turn to be helped, TAs will always be willing
to help you in a quiet place, or in private. I hope they will
remember to ask you, but if not, a TA will always agree to
help you in private.

• TAs will ask you a lot of questions. You can expect them to
be framed with good will and with the intention of getting
you on track to succeed. Many questions have been designed
before the course starts, for use by the entire staff. When
you need help with code, expect questions based on our
nine-step design process.

• TAs will tell you when they don’t know or aren’t sure. They
can’t know everything, but they know what they don’t know.

• TAs will push you to interact with other students who are
working on similar problems, trying to understand similar
topics, or confused by similar issues.

• TAs will push you to take responsibility for your own learn-
ing. You can expect them to want to understand what you
are doing to study, what you are doing to prepare, and what
you are doing on the homework problems themselves. You
can expect TAs to ask about your study practices and to help
you improve them.

• TAs will prioritize affinity groups over individual help.

• TAs will help individuals on a first-come, first-served basis.
You cannot expect them to jump you to the head of a queue
just because your question is short. If you think you need
help fast, form an affinity group.

What if I need special support?
Tufts University values the diversity of our students, staff, and
faculty; Tufts recognizes the important contribution each student
makes to our unique community. Tufts is committed to provid-
ing equal access and support to all qualified students through
the provision of reasonable accommodations so that each stu-
dent may fully participate in the Tufts experience. If you have a
disability that requires reasonable accommodations, please con-
tact the Student Accessibility Services office at Accessibil-
ity@tufts.edu or call 617-627-4539 to make an appointment
with a representative who will help determine appropriate accom-
modations.

Accommodations cannot be enacted retroactively; if you need an
accommodation, you must ask for it in advance.

How must I support my own success?
Everyone on the course staff is committed to your success. But
as we do our part, you must do your part. Take advantage of the
resources we offer. Read the syllabus. Most important, do not
allow yourself to become socially, emotionally, or intellectually
isolated. To prevent isolation, I recommend that you join a study
group, and that when you can, you work in the 105 space reserved
in Virtual Halligan (aka the department’s Sococo space), The
informal support network in physical Halligan has been strong;
participating in this culture is one of the unique advantages of
getting your computer-science education at Tufts. This semester,
that culture is moving online to Virtual Halligan. Don’t miss out.

As you will see throughout this syllabus, there is more you can
and should do:

• Actively engage with the asynchronous lecture material.
Thoughtfully respond to the reflection prompts that precede
the videos, even though the topics will be unfamiliar to
you. Thinking about the reflection questions will get your
mind working in ways that will make the new material make
sense to you faster. Similarly, do your best on the check-
your-understanding questions that follow each video. These
questions will help you make sure you understand the key
points in the video. If the questions don’t make sense, go
back and re-watch the video, this time looking for the an-
swers to the questions that follow.

• Go to recitation. Read the homework first.

• Don’t try to swallow the textbook. To guide your reading,
use the comprehension questions and other recommenda-
tions on the homework.

• Look at the homework problems as soon as they come out.
Think about them a little bit every day.

• Talk about the homework problems with your friends and
classmates. Some classmates may become new friends.

• Join a study group.

6

mailto:Accessibility@tufts.edu
mailto:Accessibility@tufts.edu

• Don’t work alone in your room. When you can, work in
Virtual Halligan or in online study groups.

• Take advantage of office hours.

• If the going gets tough, have another look at this syllabus.

• Read the handouts that describe experiences of top students
in past classes and the instructor’s tips.

• Build a “105-free zone” into your weekly schedule. Honor
the zone even if you get behind, so that at least once a week
you are sure to get a break from 105. (Because a homework
is due every week, there are no structural breaks built into
the course.)

• Again, finally, and most important, do not allow yourself to
become socially, emotionally, or intellectually isolated.

105 is a 100-level course. What does that mean?
Unlike 11, 15, and 40, COMP 105 is numbered above 100. For-
mally, this means only that unlike 11, 15, and 40, 105 counts
for graduate credit. But informally, a 100-level course carries
additional expectations:

• It’s not just code; it’s math. All required 100-level CS
courses have both code and math; the combination of code
and math is the essence of the field. 105 is mostly code, but
it still has lots of math; 160 is less code and more math; and
170 is almost all math.

• You are responsible for your own learning. You can’t learn
everything you need to know just by showing up at lecture.
Lecture will give you the keys to the hard parts, but you
need to tackle the book, and you need to take responsibility
for filling in the gaps by utilizing the full set of resources
available to you.

• Junior standing is recommended. 105 requires a degree
of maturity that is not usually expected of freshmen and
sophomores. Many students do take 105 as second-semester
sophomores, but unless they are also strong in math, these
students often struggle. It is reasonable to postpone 105
until your junior year.

What will we learn?
COMP 105 is built around two sets of skills:

• Programming skills that exploit the best of the best
programming-language features

• Mathematical reasoning about code

The programming skills contribute to your professional practice,
getting you ready to code from scratch in a language you’ve never
seen before. The math contributes to several outcomes:

• Math helps you communicate clearly about languages, lan-
guage design, and language features.

• Math is a way of seeing patterns in the world. When you’re
confronted with a language you’ve never seen before, your
mathematical experience will help you know what ques-
tions to ask, and it will help you recognize and identify the
elements that you have seen before.

• Math is an ideal way to specify what programs do: it’s
clearer and more precise than informal English, and it’s
cleaner and more streamlined than a reference implementa-
tion.

• Experience with programming-language math will help you
evaluate future claims about languages (for example, claims
about security).

Here are some of the detailed skills you will develop:

• Read and write precise specifications of how languages work

• Understand how it is possible to prove universal truths that
apply to any program written in a given language

• Design code using algebraic laws

• Write and reason about recursive functions

• Capture common patterns of recursion in higher-order func-
tions

• Recognize and exploit common higher-order list-processing
functions

• Program with first-class functions as data

• Prove correctness of code-improving transformations

• Express rich control structures using functions as continua-
tions

• Design and implement polymorphic functions, methods, and
data structures

• Understand the merits of polymorphism in programming

• Use types to guide the construction of code

• Understand in detail what are the merits of type checking
and how type checking works, including polymorphic type
checking

• Understand in detail what are the merits of type inference
and how type inference works, including polymorphic type
inference

• Describe computations using the lambda calculus

• Hide information using abstract data types, modules, and
interfaces

• Hide information using objects and protocols

• Reuse code using inheritance

7

What topics will we study?
You will develop the skills above by studying these topics:

I. Functions

• Recursion revisited: design by algebraic laws
• Abstract syntax & (big-step) operational semantics
• First-class, higher-order functions
• Functions as continuations

II. Types

• Core ML
• Typing rules (monomorphic and polymorphic)
• Type checking
• Type inference

III. Theory

• Lambda calculus & small-step operational semantics
• Recursion and fixed-point operators

IV. Data abstraction

• Abstract data types, modules, and interfaces
• Objects, classes, and protocols
• Inheritance and the design of class hierarchies

How heavy is the workload?
The workload in 105 is heavy; it counts for 5 semester hours of
credit. Expect a demanding homework assignment almost every
week, plus a final examinations. Most students say 105 demands
as much time and effort as 40.

What does the workload consist of?
The work is mostly programming assignments. These assign-
ments are significantly more challenging than the assignments
in COMP 15 and COMP 40, but most of them are also much
smaller: many solutions take 10 to 40 lines of code. Many of the
assignments use software that comes with the text by Ramsey.

The homework also has a significant theory component. You
will prove theorems using existing theory, and you will also
develop new theory of your own, which will describe how a lan-
guage feature might work. Early assignments are either “mostly
programming” or “mostly theory;” later assignments mix pro-
gramming and theory; and some assignments ask you to apply
theory to write code.

The course also has one exam: a final.

How does my work affect my grades?
Your course grade is based on my judgment of the quality of your
work and the degree of mastery you demonstrate. My judgment
is influenced by your written work, by your class participation,

and by your examination scores, but I give heavy consideration to
written work, as indicated by this approximate system of weights:

Reflection questions interwoven with lecture videos 5%
Check-understanding questions interwoven with videos 7%
Recitations 10%
Office-hour visit to the course instructor 5%
Participation in other class activities 5%
Homework including comprehension questions 58%
Final exam 10%

The weights may be adjusted at my discretion.

How am I graded on reflection questions?
Reflection questions are interwoven with lecture videos. They ask
you to think about a topic that will be covering in the associated
video so that when you watch the video, you’ll be more ready to
learn the material covered in the video. You are not expected to
know the answers to reflection questions, just to write thoughtful
responses, typically comprising a few sentences. Your response
to each reflection question will be scored as either satisfactory or
not satsifactory. All reflection questions for a given module will
be aggregated into a single grade using the same categories we
use for homework grades, which are explained below.

How am I graded on retrospective questions?
This form of question is interwoven with lecture videos. It
asks you to look back on what you have learned in a series of
videos and think about what you have learned and where you still
have questions. Like reflection questions, retrospective questions
are graded as satisfactory or not satisfactory and simply judge
whether you thoughtfully engaged with the prompt. Retropsec-
tive questions will be grouped with reflection questions in your
homework scores.

How am I graded on coding interlude questions?
This form of question is interwoven with lecture videos. It asks
you run and then make modifications to code that you have just
seen written in lecture videos. Such questions will occasion-
ally ask you to comment on the code or the process you used
to write the code. Like reflection and retrospective questions,
coding interlude questions are graded as satisfactory or not sat-
isfactory and simply judge whether you thoughtfully engaged
with the prompt. Coding interlude questions will be grouped with
reflection questions in your homework scores.

How am I graded on check-understanding ques-
tions?
Check-understanding questions are interwoven with lecture
videos. Each such question asks about material you have just
seen covered in an associated video. These questions are struc-
tured so they can be graded automatically as soon as you enter an

8

answer so you can get immediate feedback. They are designed
to help you stay engaged with the video content and make sure
you understand the key material in each video. All check-your-
understanding questions for a given module will be aggregated
into a single grade using the same categories we use for home-
work grades, which are explained below.

How am I graded on reading-comprehension ques-
tions?
Reading-comprehension questions are found on each homework.
Each such question guides you to a specific part of the reading
and lets you know which homework problems you are ready to
tackle. Each comprehension question is graded as completely
correct, mostly correct, or incorrect. When all questions are
mostly correct, a homework earns Very Good grades for reading
comprehension. Excellent grades may sometimes be earned for
completely correct answers, and a majority of mostly correct
answers earn Good grades. Reasonable attempts earn Fair grades,
and substantially incomplete work earns Poor grades.

How am I graded in recitation?
COMP 105 requires you to learn many new ideas and techniques.
Before you can make progress on the homework, you need to
understand the ideas and techniques. Recitation helps; each week
it gives you practice working relevant exercises. Each recitation
is graded on a three-point scale:

• Very Good recitation participation means you contributed a
question, answer, idea, or solution, and also engaged your
classmates to help them contribute. Your recitation leader
will model for you what this means. Very Good recitation
participation also requires that you come to recitation having
looked at the homework and that you are prepared to talk
about the reading-comprehension questions.

• Good recitation participation means you contributed, but
you did not engage your classmates. Perhaps you spoke
too much and didn’t leave room for others to contribute,
or perhaps you simply behaved as if others weren’t there.
Perhaps you had little idea of what was actually on the
homework or you couldn’t say anything about the reading.

• Fair recitation participation means only that you showed
up.

We drop the three lowest recitation grades, so if you have some
bad days, it won’t affect your final course grades. This policy
also enables you to miss up to three recitations without penalty.

Although we drop the three lowest recitation grades, we still
expect you to attend every recitation. There is no such thing as an

“excused absence” from recitation. If you need to miss a recitation,
it is kind to let your recitation leader know, but please do not ask
them to officially excuse you. If you need to miss more than three
recitations, explain the situation to your academic dean, and have
your dean make contact with me.

How am I graded on my office hour visit?

We find that meeting 1-1 with the course instructor early in the
semester positively impacts the dynamics of the class as it rein-
forces that we are a team working together to help you master the
material in the course. To encourage that connection, I count up
to five minutes of office-hour visits as part of your course grade.
Each minute you spend in conversation with me during my office
hours will earn one percent of your overall course grade, up to a
possible total of five percent. To earn full credit, you must come
to my office hours by the end of October.
I will likely schedule extra office hours over one or more week-
ends to make it easier to find time to talk. While you may find it
helpful to talk about homework, class, engineering, or Tufts over-
all, any mutually agreeable topic of conversation is acceptable.

Office-hour visits after the end of October may still count toward
your course grade, but not for the full five percent.

How is my participation graded?

A portion of your grade is based on your participation in the class.
This phrase encompasses a variety of activities that demonstrate
you are engaged actively in managing your own learning, devel-
oping new skills, and understanding new ways of programming
and problem-solving. To earn high grades for class participa-
tion, you must show that you are so engaged. You can show this
engagement in a variety of ways:

• Asking appropriate questions on Piazza
• Answering questions well on Piazza
• Actively participating in the 105 space in Virtual Halligan.
• Organizing study groups
• Working out ideas with teaching assistants
• Helping other 105 students in virtual or physical Halligan
• Participating in the in-class midterm course evaluation
• Submitting evidence that you wrote online end-of-term

course evaluations
• Submitting evidence that you evaluated your recitation lead-

ers

Nobody has to do all of these things; you can earn top grades
for class participation by doing just a few things well. What
questions are appropriate? Any question about programming
languages. However, it may not be appropriate to insist that
every question be tracked to its lair and answered. If a question
becomes inappropriate, I or another member of the teaching staff
will let you know.

How is my homework graded?

Your homework grades are based on the course staff’s judgement
of the quality of your work and your mastery of the material.
Grades are assigned a coarse five-point scale:2

2It is the same scale used by the National Science Foundation and by Consumer
Reports.

9

https://piazza.com/tufts/fall2018/comp105/home
https://piazza.com/tufts/fall2018/comp105/home

• Excellent work is outstanding in all respects. To be ranked
Excellent, the work must truly excel; that is, it must exceed
expectations in some way.3

Excellent documentation addresses exactly the key issues,
and degree of detail is exactly appropriate.

Excellent code is very well thought out and implemented.
Excellent code shows mastery of new language features
and idioms. On the rare larger assignments, Excellent code
shows evidence of thorough attention to abstraction and
modularity. Excellent code is so simple that it obviously
has no faults. Instructors will see no obvious ways to make
excellent code shorter or simpler. Excellent code is laid out
consistently and uses scarce vertical space well. Excellent
code is of such high quality that the course staff would be
happy to maintain it.

• Very Good work is of high quality in nearly all respects.
An assignment that does everything asked for, and does it
well, earns a grade of Very Good.

Very Good documentation addresses most key issues, with a
good amount of detail.

Very Good code shows correct, idiomatic use of new lan-
guage features. On the rare larger assignments, Very Good
code shows that some attention has been paid to abstraction
and modularity, although one or two opportunities may have
been overlooked. Very Good code contains well-chosen
names for functions and their parameters, so that it is easy
to guess what functions do. Instructors may see one or two
ways to make Very Good code shorter or simpler. Layout is
consistent and uses scarce vertical space well. Small errors
may be evident from reading the code.

• Good work demonstrates quality and significant learning.

Good documentation covers some key issues, but significant
issues may have been overlooked or may be covered with
insufficient detail. Vague generalities may appear where
precise specifics are expected.

In Good code, individual functions are well organized and
readable. Most names are well chosen, but there may be
some exceptions. On the rare larger assignments, opportu-
nities for abstraction and modularity probably have been
overlooked. Good code gets the job done, but possibly in a
way that could be shorter or simpler. Layout may be incon-
sistent in a few places. Errors may be evident from reading
the code, but instructors will believe that code could be made
correct with only modest changes.

• Fair work is lacking in one or more aspects; key issues need
to be addressed. “Fair” is the lowest satisfactory grade.

3By definition, it is not possible for the entire class to excel. The normal top
grade is Very Good, and students who consistently produce Very Good work
earn A’s. Grades of Excellent are awarded only in cases of true distinction. This
means, for example, that if everyone in the class turns in a perfect solution, all
those perfect solutions are judged Very Good.

Fair documentation shows evidence of effort, but the degree
of coverage and detail is significantly short of what the
course staff believe is needed to foster success.

Fair code contains significant faults. Instructors may not
be able to figure out what all functions do. Layout may
be inconsistent or waste scarce vertical space (e.g., every
other line may be blank). Fair code may show evidence
of a ‘clone and modify’ approach to program construction.
Names may be poorly chosen. Possibly a Fair program
could be replaced by code half its size. Given Fair code,
instructors may believe major changes would be required
to make the code correct, or instructors may be unable to
understand why the code might be correct.

• Poor work shows little evidence of effort or has other serious
deficiencies. “Poor” is an unsatisfactory grade.

Poor documentation may fail to address key issues or may
address them perfunctorily.

Poor code may be undocumented or inappropriately docu-
mented (e.g., overcommented). Poor code is often lengthy,
out of proportion to the problem being solved. Poor code
may be laid out on the page in a way that is hard to read.
Poor code often shows evidence of its history: extra copies
of functions, unused logic left lying around, old code com-
mented out, and so on. Poor code may be so complex
that it has no obvious faults.

• No Credit is received for work not turned in, for parts that
are incomplete, or for work that is non-functional or appears
to bear no relation to the problems assigned.

No Credit is received for work that is deemed to be plagia-
rized. Code submitted for Comp 105 may be examined for
potential plagiarism using automated heuristics. Plagiarism
is a form of academic fraud, which is unacceptable at Tufts.
If academic fraud is suspected, appropriate steps will be
taken. Submitting someone else’s work as your own is likely
to lead to suspension or expulsion. It has happened to others.
No Credit is received for work that you cannot explain.

• Not Sufficient is received for extra-credit attempts that are
not sufficient to earn credit. The difference between Not
Sufficient and No Credit is that Not Sufficient shows up in
your grade record, so we both know you made the attempt.

In a typical class, a consistent record of Very Good homework,
together with commensurate examination grades, will lead to
a course grade in the A range. If some work goes “above and
beyond” and is rated Excellent, a grade of A+ is possible. Work
rated Good corresponds to a wide range of passing grades cen-
tered roughly around B. Work rated Fair will lead to low but
satisfactory course grades; if a significant fraction of your work
is Poor, you can expect an unsatisfactory grade (D or F).

No Credit is a disaster. If 10% to 15% of your work is awarded
No Credit, it is likely to cost you something like one full letter
grade. Any grade, even Poor, is dramatically better then No

10

http://theory.stanford.edu/~aiken/moss/

Credit. Why? Because the worst thing you can do is to skip
problems. Every problem you attempt will teach you something;
when you skip a problem, you learn nothing.

With each homework assignment and exam, we will let you know
our estimate of the nearest equivalent letter grade. Homework
grades tend to run lower than recitation grades and participation
grades, and on average, a student’s final letter grade is about
one-third of a letter grade higher than their homework average.
But there is a lot of variance.

What is a “minor deduction”?
Sometimes there is a fault in your code that needs to be corrected,
but that does not warrant dragging a grade down from Very Good
to Good or from Good to Fair. That sort of fault typically receives
a “minor deduction.” Here’s the prototypical example:

It is never correct to write if P then true else

false. Clean code always says just P.

A minor deduction is the rough equivalent of a “point off” out of
100 points.

What if my homework is graded incorrectly?
If we make a mistake in grading your homework assignment,
you have seven days after the return of the assignment to call
the mistake to our attention. File a request using the form at
https://www.cs.tufts.edu/comp/105/regrade. We reserve the right
to reassess your entire assignment and assign a new grade. The
new grade may be higher or lower than the original grade.

What will the midterm be like?
There will not be a midterm this semester.

What will the final be like?
The final exam will be given as a set of online quizzes, each
quiz corresponding roughly to what would be one question on
an in-person exam. The points for the quizzes, summed up, will
be your final exam score. I will post a list of the quiz titles, their
point values, and the time per quiz in advance of the exam. You
may take the quizzes in any order, and you will have several days
over which to take the quizzes. The time for each quiz will be
roughly proportional to the time that question would take on an
in-person exam, plus some extra time to account for the cognitive
overhead each time you start a quiz. Because of the extra time,
the total time for the quizzes will add up to more than the normal
two hour final exam. But, if you choose to take all the quizzes
one after the other, you will be able to do them in the standard
exam time as you can stay exam the whole time.

I’ll make a practice quiz available before the real exam. Although
I won’t grade the practice exam, please do take it so are familiar
with the mechanics and the instructions before the actual exam.

The quizzes will be made available starting on Tuesday, Decem-
ber 15, no later than 3:30pm ET, which corresponds to the final
block for the scheduled time of the course.

What does a grade of D mean in the course?
The Tufts Bulletin states that a grade of D may be awarded in
cases where a student submits work that is “unsatisfactory but
allowable for credit.” In COMP 105, work that is allowable for
credit earns satisfactory grades (Fair or above); work that is not
satisfactory earns a failing grade (Poor). For this reason, D grades
are not awarded: a record that is unsatisfactory overall earns an F.

Extraordinary circumstances may justify raising an F grade to a D.
Such circumstances are very rare—roughly once every five years—
and they apply at the sole discretion of the course instructor,
whose decision is final.

How should I interact with people?
Engineering is not a solitary profession. To maximize your
chances of success in 105 and beyond, I have designed some
interactive experiences into the class.

• Discussions with classmates. Programming is a creative
process. To help you think creatively, understand what the
homework problems are asking, and discover paths to solu-
tions, I encourage you to discuss the questions with friends
and colleagues. You will do much better in the course, and
at Tufts, if you find people with whom you regularly discuss
problems.

Once you start drafting code or algebraic laws, however,
discussions are no longer appropriate. Each program, unless
explicitly assigned as a pair problem or a recitation problem,
must be entirely your own work. Your code, your algebraic
laws, and the contracts for your helper functions must all be
kept private.

• Practice work with classmates. Recitation will give you
practice working out problems with the help of your class-
mates, under the supervision of a recitation leader. Your
recitation leader will model and identify appropriate ways
of talking about problems.

• Deep work with one classmate. Much of the programming in
105 is about your individual understanding of new language
features and new ideas, and to develop this understanding,
you will tackle most programming problems on your own.
In the real world, however, substantial artifacts are seldom
built by individuals working alone. COMP 105 will there-
fore provide you with some opportunities to build something
substantial by working deeply with one classmate, not just
on the ideas, but on the code itself. This is pair programming
(more at Wikipedia).

In COMP 105, pair programming is always an opportunity,
never an obligation. You are not required to work in pairs,

11

https://www.cs.tufts.edu/comp/105/regrade
http://en.wikipedia.org/wiki/Pair_programming

and typically about 20% of students choose to work alone.
If you do choose to work in a pair—which I recommend—
know that no single pair may work together on more than
three ten assignments.4 If you need help finding a partner,
advertise on Piazza.

• Interaction with faculty. One of your jobs as a student is
to get to know some of the faculty. While you cannot ask
questions during lecture with the asynchronous videos we’ll
be using this semester, you can come to office hours. If
the scheduled times don’t work for you, please reach out
to make an appointment. Questions about the course, what
we are studying, and why we are studying it are always
welcome, as are broader questions about computer science,
the future of the field, and your role in it.

• Interaction in Virtual Halligan. We encourage you to hang
out in the 105 space in Virtual Halligan (aka Sococo) when
you are working on 105. That way, you will be able to find
other students who are also working on 105 and the teaching
staff will be able to find you. This space is designed to
support the kind of serendipitous encounters that previously
took place in Halligan. In this space, you can text, audio
chat, video chat, or launch zoom conversations with other
students in the 105 space. You can also arrange to go to
smaller meeting spaces for smaller group discussions.

The teaching staff will be hanging out in Virtual Halligan
during their office hours, and Kathleen will be in her office in
Virtual Halligan when she is working, which is right across
the virtual hall from the 105 space.

We look forward to seeing you there!

• Interaction online. At any time of day or night, you can
post a comment or question to Piazza. If your question
reveals your code, your algebraic laws, or contracts for
your helper functions, you must make it private. Otherwise,
questions on Piazza should be suitable for public consump-
tion. If your question contains no code, algebraic laws, or
contracts, please make it visible to everyone, so you get
participation credit for asking it, and your classmates have a
chance to help you by answering it. (By helping to answer
your question, your classmates improve their own grades for
class participation. Similarly, you can improve your grades
by answering other people’s questions—but your answers
must not contain code, laws, or contracts that you have de-
veloped for the assignment. Do as you would be done by,
and everyone wins.)

I will use information in SIS to enroll most of you in Piazza.
But if you are not enrolled, you can enroll yourself using the
COMP 105 signup page.

We make every effort to answer posted questions in a timely
fashion. But if you have posted a question to Piazza and
have not gotten a timely response, many questions are ap-

4Change made on account of COVID-19

propriate to post to Stackoverflow, which can respond very
quickly indeed. If you use Stackoverflow, please follow our
guidelines.

Questions that include code, laws, or contracts that you are
working on (or that you have written) are OK for Piazza, but
they must be “private.”

Please don’t send questions directly to the course staff using
their personal email addresses. If, in a rare case, you have
an issue that is not appropriate for the whole course staff to
see, please send email to my personal account.

• Interaction with course staff in real life. The course staff are
here to enhance your learning; it is part of their job. Please
interact with course staff using the same professional man-
ners and standards you would use in any workplace. Please
also recognize that COMP 105 is only part of anyone’s job:
a member of the course staff may be present but not actually
available to talk about 105. You can see who is on duty on
the course homepage.

• Interaction on holidays. We do not guarantee to hold office
hours on university holidays. To know whether office hours
will be held, consult Piazza.

How much interaction is too much?
Interactions and discussions with classmates must take place in
human language, at a high level. You must not discuss code, al-
gebraic laws, or contracts for functions you design yourself. You
must not exchange human language, algebraic laws, pseudocode,
or other information that is expressed at the level of code. If you
start communicating in code or at the level of code, including
algebraic laws, you’re breaking the rules.

• While I encourage shared work at the whiteboard or in note-
books, if your shared work is so detailed or low-level that
there is only one reasonable translation into code, you are
collaborating too closely. (This is why conversations about
laws are proscribed.)

• Unless you are working with another student as part of a
programming pair, it is not acceptable to permit that student
to see any part of your program, including algebraic laws
and contracts, and it is not acceptable to permit yourself
to see any part of that other student’s program, including
algebraic laws and contracts. In particular, you may not test
or debug another student’s code, nor may you have another
student test or debug your code. (If you can’t get code to
work, consult a TA or the instructor.) Using another’s code
in any form or writing code for use by another violates the
University’s academic regulations.

• Algebraic laws have the same status as code: only you and
your programming partner (and the course staff) may see
your algebraic laws.

• Contracts for helper functions have the same status as code:
only you and your programming partner (and the course

12

https://piazza.com/tufts/fall2018/comp105/home
https://piazza.com/tufts/fall2018/comp105/home
https://piazza.com/tufts/fall2018/comp105
http://stackoverflow.com/
https://www.cs.tufts.edu/comp/105/so.html
https://www.cs.tufts.edu/comp/105/so.html
https://www.cs.tufts.edu/comp/105/index.html

staff) may see your contracts. For purposes of this rule, a
“helper” function is any function that is not named in the
assignment—contracts for named functions that are assigned
by us may be discussed freely.

• Do not, under any circumstances, post a public question to
Piazza that contains any part of your code, algebraic laws,
or contracts. Such questions must be private.

Suspected violations will be reported to the University’s Director
of Community Standards, who will investigate, decide if a viola-
tion has taken place, and if so, recommend an appropriate penalty.
Be careful! As described in the university’s academic-integrity
policy, the penalties for violation can be severe. A single bad de-
cision made in a moment of weakness could lead to a permanent
blot on your academic record.

The same standards apply to all homework assignments; work
you submit under your name must be entirely your own work.
Always acknowledge those with whom you discuss problems!

So can I post my code on github?
Code in a github repository is visible to other students. So no,
you may not post your code to a github repository—unless you
are very careful to make the repository private. It is certainly
convenient to use github for backup and to share your work
with potential employers. But it must be private. It is against
course policy for you to put your homework in a public github
repository—and because a public github repository can facilitate
misbehavior by others, it is considered a violation of academic
integrity.

How do pair-programming interactions work?
In pair programming, you work with a partner under the following
constraints:

• When work is being done on the program, both partners are
(virtually) present at the computer. One partner holds the
keyboard; the other watches the screen. Both partners talk,
and the keyboard should virtually change hands occasionally.
If you are not physically in the same space, you should have
an open audio channel. If bandwidth permits, you should
also have open video channel.

You might want to consider using a tool like TeamViewer,
which allows two programmers to work on one computer by
enabling one computer to “control” another.

• You submit a single program under both your names. That
work gets one grade, which you both receive.

While we strongly encourage both discussion and pair program-
ming, we are also charged with guarding Tufts’s standards of
academic integrity. The following policies help ensure that these
standards are upheld:

• If circumstances, such as scheduling difficulties, make it
impossible for you to work as part of a pair, you may ask

the course staff for permission to divide an assignment into
parts and to do some parts as a member of a pair and other
parts as an individual. Such parts must appear in different
files, and each file must be clearly identified as the work
of an individual or the work of a pair. Work done jointly
by the pair should be submitted by both members of the
pair. Files containing joint work must be identical. If you
as an individual modify a file containing joint work, and
you submit the modified file, that act will be considered a
violation of academic integrity.

• It is never acceptable to divide an assignment into parts and
have some parts done by one partner and other parts done by
the other. Submitting work done by someone else as your
own will be considered an egregious violation of academic
integrity. Submitting individual work as the product of
pair programming is also a violation of academic integrity.

What if pair programming doesn’t work for me?
In COMP 105, you are never required to pair program. About
20% of students routinely opt not to pair program.

If you try pair programming and find it is not working, or if your
programming partner disappears mid-project, proceed as follows:

• Notify your partner that you wish to discontinue the pairing.
You needn’t explain yourself; a simple wish to stop is reason
enough.

• Submit the work done in partnership at that point, even if it
is incomplete or broken. That work is “community property”
and both students may submit it.

• If you wish, follow up with an additional submission of
whatever you complete on your own.

How does the course staff monitor pair program-
ming?
To try to ensure a good pair-programming experience for every-
one, the course staff will choose a random sample of students to
ask these questions:

• How did you form your partnership?
• Briefly describe your experience working with this partner

on this assignment.
• How do you feel about this particular pair-programming

experience?

The course staff will use this information to try to improve stu-
dents’ pair-programming experience and to try to prevent disap-
pointing experiences from getting worse.

Do I have a right to pair program?
Pair programming is a privilege, not a right. If you foul up and
don’t fix it, I may revoke your pair-programming privileges. Foul-
ing up consists in any of the following unacceptable behavior:

13

https://students.tufts.edu/student-affairs/student-life-policies/academic-integrity-policy
https://students.tufts.edu/student-affairs/student-life-policies/academic-integrity-policy
https://www.cs.tufts.edu/comp/105/readings/pairs.pdf
https://www.teamviewer.com/

• Failing to treat your partner in a professional manner
• Repeatedly failing to keep appointments with your partner
• Lying to your partner about what you have done
• A pattern of violating academic integrity
• Other similarly egregious offenses

If I revoke your pair-programming privileges and you believe
I have done so unfairly, you may appeal to the department TA
ombudsperson, who is currently Mark Sheldon.

What is expected of my homework?
In this class, you will learn most of the material as you complete
the homework assignments. The importance of homework is
reflected in the weight it is assigned. Most homework for this
course involves short programming assignments. Many of them
are based on the text by Ramsey. There are also some larger
programming assignments. And there is some theory homework,
involving more proving and less programming.

As in most classes, it helps to start the homework early. But
in 105, starting early seems to produce unusually good benefits.
Many students report that if they start early, even if they don’t
appear to make much progress, a solution will “come to them”
while they are doing something else.

Another reason to start early is that if you get stuck, early help is a
lot better than late help. 105 is a big course, and your difficulties
could be overlooked until they get out of control. Keep an eye on
yourself, and remember that a short conversation during office
hours or recitation can save hours of aimless frustration.

If you complete and understand all the homework assignments,
you are almost certain to do well in the course and earn a high
grade. If you miss assignments or don’t really understand the
homework, it will be difficult for you to earn a satisfactory grade.

The homework is relentlessly cumulative, so failure to grasp
important points in early assignments will compound in later
assignments. This is not a course where you can make up for
early misunderstandings by cramming on later ones. This is a
course where a slow-and-steady approach will win the race.

How should my homework be submitted?
Homework for each assignment is submitted using a course-
specific submit script, with a name like submit105-impcore.
The submit script checks to be sure you have files with the right
names, and so on.5 On most assignments, there are some addi-
tional checks:

• Code you submit must be accepted by the appropriate com-
piler or interpreter without any warning or error messages.

• Unit tests submitted as part of your solution must pass, and
the entire file must load, including testing, in at most 250

5We hope one day to get provide to take care of these checks for us, but
we’re not there yet. Please don’t submit homework using provide.

CPU milliseconds. If you have created long-running test
cases, place them in a separate file.

And the submit script may ask for other information:

• The submit script for the first assignment should ask you how
we should pronounce your name. A COMP 105 instructor
might answer “kaeth-LEEN FIH-shur” or “NORE-muhn
RAM-zee.”

• Every submit script should ask you approximately how many
hours you have spent completing the assignment.

Before running a submit script, cd to the directory in which you
have placed your solutions. If the submission script complains,
fix the problems and resubmit. You may submit and resubmit the
same assignment as many times as you like. I encourage you to
submit work early and often, even if it is incomplete, so that you
have an independent check that what you plan to submit is what
the submit script is expecting.

How do I get access to the submit scripts?
We provide a submission script for each assignment. To get
access to those scripts, you need to execute

use comp105

to ensure that these scripts are on your execution path. This
use command should also give you access to interpreters for
impcore, uscheme, and so on.

It is very convenient to put the use line in your .cshrc or .pro-
file file, but to work around a misfeature in use you will need
the line

use -q comp105

Without the -q option you may have difficulties with scp, ssh,
git, VNC, or rsync.

A submission script is named submit105-name, so for ex-
ample the submission script for the first assignment is called
submit105-impcore.

How should my homework be formatted?
Whether it is digital or analog, your written work must bear your
name, and it must be neat and well organized. Clear English
expression is required; grammar and spelling count. The same
requirements apply to exams.

Every assignment should include a README file that describes
the work. This description must

• Identify you by name

• Identify what aspects of the work have been correctly imple-
mented and what have not.

• Identify anyone with whom you have collaborated or dis-
cussed the assignment.

14

https://www.cs.tufts.edu/comp/105/howto-vnc/

How should my code be written?

Your code should conform to our coding-style guidelines. Pay
special attention to the offside rule. These guidelines will help
your solution be understood and modified by others. Your code
is graded on its conformance to these guidelines, on your ex-
planation of what you are doing, and on your code’s functional
correctness.

You will notice that the code from the book does not conform to
all of the guidelines in the handout—especially the guidelines
on layout. That’s because the book code is written as a literate
program. If you wish to submit your own code as a literate
program, you may. And you may choose whether you wish to
work with the bare or the commented versions of the code in the
book.

How will the structure of my code be evaluated?

The structure and organization of your code is evaluated accord-
ing to our general coding rubric.

How will the correctness of my code be evaluated?

Submitted code is typically evaluated by automated testing.
Our test scripts aim to explain why you got the grade you did, and
if you made a mistake, what it was. On most assignments, you
can expected grades to be assigned according to the following
criteria:

• To earn a Very Good grade, code must show no faults.
(In rare cases, we may assign Very Good grades to code
with faults. In such cases, faultless code often earns Excel-
lent grades.)

• To earn a Good grade, code must show faults only in partic-
ular corner cases which course staff will have identified as
compatible with quality and significant learning.

• To earn a Fair grade, code may have faults, but it must have
no grave faults. Grave faults that might disqualify code from
earning a Fair grade include misuse of standard output, or
such run-time errors such as using an undefined name or
calling a function with the wrong number of arguments.

• To earn a Poor grade, code must show significant progress
toward solving a problem, even if the solution is substantially
incomplete.

In summary, Very Good code is expected to be faultless. Faulty
code normally earns a Fair grade, but if the faults are very minor,
it might earn a Good grade, and if the faults are grave, it might
earn a Poor grade.

Code that writes to standard output or standard error, unless such
output is called for in the problem specification, is at risk of
earning No Credit. Use print and println at your peril!

Should I use LaTeX to write theory homework?

No. LaTeX and the mathpartir package do make it possible to
typeset clear, legible inference rules, derivations, and proofs. That
makes it easy for the course staff to read your work. But unless
you already have experience using LaTeX to typeset mathematics,
I recommend against using it. LaTeX is a power tool, but it’s hard
to learn, and it provides terrible error messages. In COMP 105,
you will be learning plenty of other power tools; learn LaTeX
some other time.

If, however, you already know LaTeX, you may benefit by emu-
lating our LaTeX source code for a simple proof system or Sam
Guyer’s LaTex source code for typesetting operational semantics.

Then how should theory homework be written?

Use pencil and paper. (Microsoft Word, Open Office, and that ilk
are even worse choices than LaTeX—they aren’t set up to handle
even simple math, let alone inference rules.) Of course, you need
to submit PDF. Here are two ways to get it:

• If you have a smartphone with a decent camera, there are
many scanning apps. I recommend Scanbot, which is free
for both Android and iOS.

• As a last resort, the big copier in the CS office has a docu-
ment feeder and a Scan button. The scan is formulated as
PDF and is sent to an email address you designate.

Any PDFs you submit will be emailed back to you automatically.
Use the automated email to confirm that the PDF was correctly
transferred to the homework server, that it opens, and that it
displays your work as you expect.

How may I use the library?

You may look in the library (including the Internet, etc.) for ideas
on how to solve homework problems, just as you may discuss
problems with your classmates. But using the library is never
required; everything you need to know can be found in lecture,
in recitation, on the course web site, or in one of the books.

Some students rely heavily on the library. Although this behavior
is permissible, I discourage it. I assign homework problems not
because I want to know the answers, but because doing homework
is the best way for you to learn. While library skills are important
in our profession, the homework in this course is designed to
develop other skills that are even more important. Remember,
you will not have the library with you when you write your exams
or go on job interviews!

If you do use the library, the Internet, or other outside sources,
your homework must acknowledge the use of these sources, even
if you find little or nothing useful.

15

https://www.cs.tufts.edu/comp/105/coding-style.html
https://www.cs.tufts.edu/comp/105/coding-rubric.html
https://www.cs.tufts.edu/comp/105/handouts/noset.tex
https://www.cs.tufts.edu/comp/105/handouts/latexexample.tex
https://play.google.com/store/apps/details?id=net.doo.snap&hl=en
https://itunes.apple.com/us/app/scanbot-6-pdf-document-qr/id834854351?mt=8

How may I use code I find on the Internet?
Any code that is posted to the official Tufts COMP 105 web site
is permissible for you to use. You must not download any other
code from the Internet. You certainly may not submit it as part of
a homework assignment.

May I use code from the book?
Absolutely! Any code from either of the books is fair game for
you to use. Most of this code is provided in machine-readable
form in /comp/105/build-prove-compare. Help yourself!

Several of the later homework assignments—especially around
type systems—are feasible only with the support of code from
the book.

How should I use Wikipedia?
Don’t. Wikipedia is a terrible source of information on program-
ming languages. Many of the entries are just plain wrong, and
Wikipedia’s rules make it nearly impossible for experts to correct
bad articles. You don’t yet have enough experience to identify
bad information, so don’t use Wikipedia for 105.

What does an extra-credit problem mean?
Most homework assignments will offer opportunities to earn extra
credit. I use extra credit to adjust final letter grades. For example,
if your grade average falls in the borderline between A- and B+,
I will assign you the higher grade at my discretion if you have
done significant extra-credit work. I will also mention extra credit
if I write you a letter of recommendation. Extra credit is just that:
extra. You can earn an A or A+ without doing any extra credit.

What if I can’t get my homework in on time?
Homework is typically due at 11:59 PM on a Monday, Tuesday,
or Wednesday. We will grant an automatic extension of fifteen
minutes at no cost to you. If you plan on submitting your work at
midnight, you will have fourteen minutes for last-minute changes.

We expect your homework to be submitted on time. But we
recognize that the exigencies of college life occasionally interfere.
If you have difficulty, you have several options:

• For ordinary difficulties, each student is automatically issued
seven “extension tokens.” By expending an extension token,
you get a 24-hour extension on all deadlines associated with
a single assignment. It happens automatically; when you
turn in any piece of work more than fifteen minutes late, the
course software charges you one extension token.

Expenditure of extension tokens is governed by these rules:

– At most one extension token may be expended on any
single assignment.

– When you are out of tokens, late homework will no
longer be accepted. It will be returned ungraded, and
you will receive No Credit for the work.

• If an illness affects your ability to complete homework on
time, your first step is to report the illness using SIS. This
step alerts us about your illness. We will then make suitable
arrangements.

• If you experience extraordinary difficulties, such as bereave-
ment, family emergencies, or similarly unpleasant events,
please begin by making contact with your associate dean for
undergraduate education. Please take this step before the as-
signment is due. Ask your dean to drop me an email or give
me a call, and we will make special arrangements that are
suited to your circumstances. “Special arrangements” might
include a longer extension, but more commonly, we will try
to find a way for you to skip portions of the homework.

After the 24-hour extension deadline has passed, model solutions
will be available on the Web or distributed as hard copy, making
further extensions extremely unlikely.

What if my partner is out of extension tokens?
If you are pair programming with another student, and you need
to submit work a day late, both partners are charged an extension
token. If your partner is out of extension tokens, your only choices
are to submit on time or to get a “no-fault divorce” and submit
separately. After the divorce, both students have equal rights
to all common work, but only the student who still has tokens
can submit late. At submission time, both submissions must be
identified as individual work (list nobody as the programming
partner). Submitting as a partnership is likely to harm one or both
grades. The true situation should be explained in the README file.

What if I can’t finish all the problems?
If you can’t finish every problem, act tactically to maximize your
grade:

• Start every problem. Turn in, if you can, a partial solution,
or at least an analysis. Incomplete work might still earn a
grade of Poor, or possibly even Fair.

If you turn in nothing for a problem, you get nothing for it.
“No Credit” means zero. That’s very bad for your grade.
If you have to choose between two problems of equal weight,
it is slightly better to get two Poor grades than to get one
No Credit and one Very Good. You can’t just scribble down
anything and expect to receive a Poor grade—the course
staff have to be able to find some substance. But if you
document some progress, the outcome will be better for you.

105 is very cumulative, so if you can’t finish every problem, you’ll
also want to act strategically to maximize the chances that you
can do better on the next assignment. Your best strategic choice
depends on the details of the assignment, so ask the course staff.

16

https://students.tufts.edu/academic-advice-and-support/academic-advising/what-we-offer/guidance-academic-policies/what-if-i-need-miss-class
https://students.tufts.edu/academic-advice-and-support/academic-advising/meet-your-advising-team
https://students.tufts.edu/academic-advice-and-support/academic-advising/meet-your-advising-team

What is expected in lecture?

In-person lectures will be replaced by a series of videos inter-
leaved with reflection and check-your-understanding questions.
The videos for the each week will be released the preceding
Friday. You should plan to watch the videos and answer the cor-
responding questions no later than your recitation session, which
will be sometime between Wednesday late afternoon and Fri-
day morning. The recitation material assumes you have already
watched and actively engaged with the video content.

When watching the videos, I expect you to maximize your learn-
ing by actively engaging with the short videos and associated
questions and by eliminating distractions that might interfere with
your learning.

Should I take notes? How?

To maximize your learning, I recommend that you take notes,
sketches, and diagrams by hand. Paper is good, with a pen or
pencil. If you have a large touch screen and can take notes with a
stylus, that works, too. I recommend against using a keyboard
with a standard laptop or word-processing software:

• The neuroscience is quite clear that note-taking with pen
or pencil activates most of the brain. Note-taking using a
keyboard activates a much smaller region.

• Word-processing software is terrible for note-taking. Your
notes should be about highlights and connections: good
notes connect more recent material with material from earlier
in the lecture; good notes contain diagrams; good notes
contain arrows and boxes. Good notes are highly non-linear.
A word processor is designed to produced polished final
documents, not to take notes. Use the superior tool: pencil
and paper.

You never need to copy the instructor’s notes or slides; they are
available online. Use your own notes to make connections and
to highlight points that you find difficult or that you want to
remember.

What is expected in recitation?

Recitation helps deepen your knowledge of the course material,
and it helps you learn to work in a way that promotes insight and
defends you against overwork and exhaustion. Recitation is struc-
tured around practice on problems related to current homework
assignments.

• Before your recitation, you are expected to have watched the
videos for the week and answered the interleaved questions,
looked at the current homework assignment, and to have
read enough to talk about the comprehension questions on
the homework.

• During recitation, you will discuss and tackle problems. You
are expected to contribute, to engage your classmates, and
to make sure your classmates have room to contribute.

Recitation is mandatory, and your participation is graded.

Which recitation do I attend?
Attend the recitation you signed up for on SIS when you regis-
tered for COMP 105. In order to create a small-group learning
environment, we cap the enrollment of each recitation section.
This cap is strictly enforced.

If your recitation section has been cancelled, or if there is another
reason you need to change recitations, please make a private post
on Piazza with the following information:

• Identify yourself by your name as it appears in SIS
• Identify the recitation to which you were assigned
• Explain why you need to be assigned to another recitation
• Say what other recitation sections you can attend

What logistics and policies affect my
homework?
Here is a summary of relevant information that is distributed
throughout this syllabus:

• Homework must be submitted using a submit script.

• You can get one automatic 24-hour extension by expending
one “extension token.” You have a total of seven such tokens.
On any given assignment, you can expend at most one token.

• Code must compile or load with no errors or warnings, and
it must do so within 250 CPU milliseconds.

• Except when you are pair programming, another student
must never see your code or your algebraic laws.

• Any homework question can be posted publically to Piazza,
unless that homework question contains code, an algebraic
law, an inference rule, or another part of the solution. Any
question that discloses your work must be posted privately.

• If needed, you have 7 days to request a regrade, which you
do via a Web form located at https://www.cs.tufts.edu/comp/
105/regrade.

I’m not required to take 105. Should I
take it anyway?
COMP 105 is required for Computer Science majors. If you’re
not a Computer Science major, find the paragraph that applies to
you below.

If you’re getting a Computer Science minor, or if you’re just
interested in computing, you should take 105 if you want an in-

17

https://www.cs.tufts.edu/comp/105/notes.html
https://www.cs.tufts.edu/comp/105/regrade
https://www.cs.tufts.edu/comp/105/regrade

tense experience that will broaden and deepen your programming
skills. (Unless you have a professional or recreational interest in
mathematics or logic, some of the theory parts of the course may
be less interesting to you.)

If you’re a postbac student or a master’s student, you also should
take 105 if you want an intense experience that will broaden and
deepen your programming skills. Many of our postbac students,
in particular, report that 105 was a highlight of their certificate
program. Postbac students and master’s students do need to be
aware that as part of Tufts’s commitment to residential learning,
the course is designed to serve undergraduate students who are
on campus during the day.

If you’re a doctoral student or MS/PhD student, the value of 105
depends on what you are trying to accomplish.

• If your research is going to depend on your ability to design,
write, and evolve good software, take 105.

• If you’re curious about programming languages as a po-
tential area of research, consider taking 105. Just keep in
mind that 105 is designed to be required of all undergradu-
ate students. That makes it light on research and heavy on
practice.

• If you know you’re interested in programming languages
and you want to study core programming-language topics
at a graduate level, 105 is going to disappoint you—it’s
not operating at the right level. 105 is a first course in the
field. As such, it just touches on the rudiments of theory,
and it omits many other interesting topics, including logical
relations, denotational semantics, garbage collection, and
logic programming.

• If what you want is to meet the proficiency requirement for
the PhD qualifying examination (“functional programming
or object-oriented programming with inheritance”), 105 is
one of several options. 105 is a good source for functional
programming, but if you are going for object-oriented pro-
gramming, you are probably better off with 180 (Software
Engineering).

Keep in mind that the proficiency requirement is minimal,
and 105 presents a broad and deep view of programming
languages that goes beyond minimal proficiency. If that’s
what you’re looking for, great! But it’s an intense experience
that may take time away from your research.

What skills must I have already?

COMP 105 is the final course in our required programming se-
quence, and it calls on a broad and deep array of skills you are
expected to have developed in earlier courses.

What basic skills do I need?
You must grasp basic algorithms, data structures, and good pro-
gramming practice.

What Unix skills do I need?
You must understand the basics of files, directories, creating
and editing files, printing, compiling and loading programs, and
using make. You will be much, much happier if you also can
write a simple shell script (sh) and use Awk and grep effectively.
You can learn about such things from Kernighan and Pike.

What file-transfer skills do I need?
If, as we recommend, you do your theory homework on paper,
you need to know how to convert it to PDF and to get the PDF
onto a departmental Linux machine.

• If you use the Scanbot app on a smartphone, you can get
Scanbot to upload to a service like Google Drive, from which
you can then download to the servers.

• If you use some other means of creating the PDF, getting
it to the servers is up to you. Various students report good
results with Swift File Transfer from Android devices and
scp (from the OpenSSH suite) from computers.

• If you use the copier in the CS office, you will be emailed a
PDF attachment.

What theory skills do I need?
You must be comfortable with basic discrete mathematics. You
must be able to prove theorems, especially by induction.

You must have taken Discrete Math (Math 61 or COMP 61).
If you have not, you must produce some other evidence that you
can reason precisely about computational objects.

You must be able to write an informal mathematical proof. For
example, you should be able to prove that a sort function returns
the same set of elements that it was passed.

You must be comfortable using basic mathematical formulas with
“forall” (∀) and “exists” (∃) quantifiers, i.e., the propositional and
predicate calculi.

You must know basic set theory, e.g., the mathematical definition
of functions as sets of ordered pairs.

You must be comfortable reading and writing formal mathemat-
ical notation, or at least be able to look at it without running
screaming from the room.

What programming skills do I need?
You must have substantial programming experience. If you don’t,
you will have difficulty keeping up with the homework.

18

https://www.cs.tufts.edu/comp/105/readings/indexbody.html

A few homework assignments require some proficiency in C.
If you have a strong background in C++, some details will be
different, but your background should be sufficient.

Your programming experience should include work with dynami-
cally allocated data structures and with recursive functions. You
must be comfortable writing recursive functions in the language
of your choice, as well as proving that such functions terminate.

You must have implemented some of the basic data structures
and algorithms used in computer science, like stacks, queues,
lists, tables, search trees, standard sorts (quick, insertion, merge,
heap), topological sort, and graph algorithms. These topics are
well covered in COMP 15 at Tufts. Prior exposure to exhaustive
search (backtracking) will also be helpful.

What other programming skills might help?
It really helps to have some facility with systematic software
design. Our recommended nine-step design process is a solid
starting point, but if you have practice with additional design
methods, you will prosper. Many of the most effective design
methods are grounded in formal reasoning about programs, in-
cluding the following intellectual tools:

• Loop invariants and termination conditions as they apply to
imperative programs

• Contracts for functions, including preconditions and post-
conditions

• Termination conditions for recursive functions6

• Representation invariants and abstraction functions for ab-
stract data types

You can brush up on this material by looking at the article by
Bentley on the reading list. Chapter 4 of Liskov and Guttag has a
nice tutorial on reasoning about data, which you will find helpful
in several assignments.

What is the most important skill of all?
The most valuable skill you can have for COMP 105 is the skill
of managing yourself. To do well in 105 or in any other course
that involves programming, develop these habits:

• Think carefully about a problem before you begin to write
code.

• When having difficulty writing code, stand up, walk away
from your computer, and think about the difficulty. Enlist the
whiteboard or a blank piece of paper where you can sketch
ideas as your ally.

• Never be satisfied with a “working program,” but strive for
the simplest, clearest, most elegant implementation.

6When writing recursive functions, try to develop your understanding of
the deep connections between recursion and loops; the ideas of invariants and
termination conditions apply to both.

If you have these habits, the other prerequisites are almost irrele-
vant. If you don’t, you can expect difficulty no matter what other
background you have.

What books do I need?
You absolutely, positively have to have the book Programming
Languages: Build, Prove, and Compare by Norman Ramsey. And
you have to have the August 2020 edition—older editions will
not do. You can buy the book in the Computer Science office in
Halligan. We will post information about times to purchase and
pick up the book on Piazza. When you buy the book, nobody
profits: the intellectual property is donated; the copies are printed
by the University printing office; and the department sells the
book for a sum just sufficient to cover the cost of printing. If you
are not able to pick up the book in the CS department office, we
will mail a copy of it to you. For the price of the printed copy,
you will also be able to download a pdf copy of the textbook.

The short booklet Seven Lessons in Program Design is available
online.

The book Elements of ML Programming by Jeff Ullman is very
useful, but just for a few assignments. If need be, you can get by
without it; we have assembled an extensive ML learning guide
that uses entirely free resources. We recommend Ullman’s book
anyway, because we think that spending the extra money will
save you enough time to be a good tradeoff. If you do buy the
book, be sure you get the ML’97 edition. It is available in the
University bookstore, but you can probably get it more cheaply
elsewhere.

What computers can I use?
The class is set up to run on Red Hat Enterprise 64-bit Linux,
as installed on the departmental homework server. For remote
access use homework.cs.tufts.edu. The software from the
book will be installed on these machines, but you can also
grab the software and compile it on your own computer; try
git clone homework.cs.tufts.edu:/comp/105/build-

prove-compare.

If you need an account for CS machines, please send email to
staff@cs.tufts.edu. I recommend that you ask for bash or
fish as your login shell.

What software can smooth my path?

I recommend a wonderful program called ledit, which is ex-
tremely handy for interacting with our interpreters. Try typing,
e.g., ledit impcore, and you will be able to get an interactive
editing loop with the impcore interpreter. The ledit program
is already installed on the departmental servers, and it can also
be downloaded from INRIA and installed on your own machine.

19

https://www.cs.tufts.edu/comp/105/handouts/student-process.pdf
https://www.cs.tufts.edu/comp/105/readings/indexbody.html
https://www.cs.tufts.edu/comp/105/coding-style.html
https://www.cs.tufts.edu/comp/105/readings/indexbody.html
https://www.cs.tufts.edu/comp/105/readings/indexbody.html
https://www.cs.tufts.edu/comp/105/readings/indexbody.html
https://www.cs.tufts.edu/comp/105/design/lessons.pdf
https://www.cs.tufts.edu/comp/105/readings/ml.pdf

I also recommend using a “programmer’s editor” such as vim
or emacs. A most valuable feature of such editors is the ability
to jump directly to the source location of an error. For vim you
will need to learn the :make command, and you will probably
need to set makeprg. For emacs you will need to learn the M-x
compile command.

How about Emacs tricks?

If you do use emacs, you will find your code much easier to
manage if you enable paren-mode, which you can do by placing
these lines in your .emacs file:

(require 'paren)
(show-paren-mode)

(setq show-paren-style 'expression)

I also recommend using the M-x customize-face command
with face show-paren-match to set the screen to bright yellow
on parenthesis match.

You can use the Emacs TRAMP facility to edit files di-
rectly on the remote server, by using file names like
/nr@homework.cs.tufts.edu:/comp/105/www/syllabus.md.
This allows you to edit on your own local machine, but every
time you save the file, it is automatically sent to the homework

server, where you can compile or run it.

What if campus closes unexpectedly?
We will continue fully online. In-person recitations will move on-
line, as will in-person office hours. Everything else will continue
as planned.

What may I do with solutions?
I provide solutions to all homework and exam questions. Being
able to examine master solutions helps you learn. But I provide
solutions for your private use only. Please do not share them with
other students, and please make sure they do not find their way
into public places, archives, and so on.

Copying solutions, whether from me or from another student, is
a serious violation of academic integrity. Providing solutions to
be copied is equally serious.

What if I am repeating the course?
If you are repeating the course, we expect you to abide by the
following policies.

• There is no acceptable use of model solutions from prior
semesters. If you have kept any model solutions, destroy
them.

• If you have written your own solutions for past semesters, it
is acceptable to consult them for ideas, and it is acceptable
to submit parts verbatim. Such use must be acknowledged.

• In every homework, your README file must note what
work is new, what work is based on work from a prior
semester, and what work is submitted verbatim from a prior
semester. Even if nothing is from a prior semester, your
README file must disclose this information.

(README files are anonymized, but PDFs are not. If you
wish to preserve your privacy from graders, consider remov-
ing your name from any PDFs you submit.)

• In every homework, you must cite collaboration with every
partner with whom you worked on the assignment in a past
semester—even if none of that partner work survives.

What else do I need to know about aca-
demic integrity?
The course operates under the university’s academic-integrity
policy, which you must know. In addition, you must know that in
COMP 105, seeing another student’s code is an integrity viola-
tion, and so is allowing another student to see your code. I am
mandated to report even the suspicion of an integrity violation.

Where else might I go to get help?
The StAAR Center (formerly the Academic Resource Center and
Student Accessibility Services) offers a variety of resources to
all students (both undergraduate and graduate) in the Schools
of Arts and Sciences, and Engineering, the SMFA, and The
Fletcher School; services are free to all enrolled students. Stu-
dents may make an appointment to work on any writing-related
project or assignment, attend subject tutoring in a variety of
disciplines, or meet with an academic coach to hone funda-
mental academic skills like time management or overcoming
procrastination. Students can make an appointment for any of
these services by visiting go.tufts.edu/TutorFinder, or by visiting
go.tufts.edu/StAARCenter.

What if I have a problem with a TA?
If you have concerns about anyone on the teaching staff, please
raise the issue with a member of the senior teaching staff or the
course instructor. If you don’t feel comfortable approaching any-
one associated with the course, please reach out to the department
TA ombudsperson, who is currently Mark Sheldon.

The TA ombudsperson (AKA TA liaison) is here to help mediate
conflicts that arise involving TAs. Specifically, the TA ombudsper-
son/liaison will help with the following situations:

• A student having a problem with a TA

20

https://students.tufts.edu/student-affairs/student-life-policies/academic-integrity-policy
https://students.tufts.edu/student-affairs/student-life-policies/academic-integrity-policy
https://go.tufts.edu/TutorFinder
https://go.tufts.edu/StAARCenter

• A TA having a problem with a student
• A TA having a problem with another TA
• A TA having a problem with an instructor

If you are involved in or aware of such an issue,
please contact the TA ombudsperson, Mark Sheldon, at ta-
ombudsperson@cs.tufts.edu or ta-liaison@cs.tufts.edu. If you are
one of Mark’s students or TAs and are not comfortable discussing
the issue with him, please contact the back-up TA ombudsperson,
Prof. Megan Monroe, at mmonroe@cs.tufts.edu.

I’m different. Am I really welcome here?
Yes! We strive to create a learning environment that welcomes
students of all backgrounds. If you feel unwelcome for any
reason, please let us know so we can work to make things better.
Talk to anyone on the teaching staff, or if that feels uncomfortable,
try your academic advisor, the department TA ombudsperson
(who can be reached by emailing ta-ombudsperson@cs.tufts.edu),
our department chair, or your dean.

COMP 105 can be especially difficult for first-generation college
students and for members of groups that are underrepresented in
computing, who may not have the family or social support that
helps them develop their skills in “how to be a college student.”
If you are a first-generation college student or a member of group
that is underrepresented in computer science, I encourage you
to have your “five minutes with the professor” visit early in the
term, and we can talk about your support system.

Acknowledgments
Norman Ramsey wrote the great majority of this syllabus. Kath-
leen Fisher wrote the portions related to online instruction. Jared
Chandler, Alex Chandler, and Jeff Foster also contributed. Nor-
man would like to thank Annie Soisson for help with syllabi in
general.

21

	Introduction and Welcome
	What will the experience be like?
	Is 105 in-person or remote?
	What do we need to do if meeting in-person?
	What will the online lectures be like?
	How does 105 compare with 40?
	Why do I feel lost?
	What should I do about it?
	What tactics do and don't work?
	How does the class support my success?
	How can I use office hours effectively?
	What is Virtual Halligan?
	What can I expect from teaching assistants?
	What if I need special support?
	How must I support my own success?
	105 is a 100-level course. What does that mean?

	What will we learn?
	What topics will we study?
	How heavy is the workload?
	What does the workload consist of?
	How does my work affect my grades?
	How am I graded on reflection questions?
	How am I graded on retrospective questions?
	How am I graded on coding interlude questions?
	How am I graded on check-understanding questions?
	How am I graded on reading-comprehension questions?
	How am I graded in recitation?
	How am I graded on my office hour visit?
	How is my participation graded?
	How is my homework graded?
	What is a ``minor deduction''?
	What if my homework is graded incorrectly?
	What will the midterm be like?
	What will the final be like?
	What does a grade of D mean in the course?

	How should I interact with people?
	How much interaction is too much?
	So can I post my code on github?
	How do pair-programming interactions work?
	What if pair programming doesn't work for me?
	How does the course staff monitor pair programming?
	Do I have a right to pair program?

	What is expected of my homework?
	How should my homework be submitted?
	How do I get access to the submit scripts?
	How should my homework be formatted?
	How should my code be written?
	How will the structure of my code be evaluated?
	How will the correctness of my code be evaluated?
	Should I use LaTeX to write theory homework?
	Then how should theory homework be written?
	How may I use the library?
	How may I use code I find on the Internet?
	May I use code from the book?
	How should I use Wikipedia?
	What does an extra-credit problem mean?
	What if I can't get my homework in on time?
	What if my partner is out of extension tokens?
	What if I can't finish all the problems?

	What is expected in lecture?
	Should I take notes? How?

	What is expected in recitation?
	Which recitation do I attend?

	What logistics and policies affect my homework?
	I'm not required to take 105. Should I take it anyway?
	What skills must I have already?
	What basic skills do I need?
	What Unix skills do I need?
	What file-transfer skills do I need?
	What theory skills do I need?
	What programming skills do I need?
	What other programming skills might help?
	What is the most important skill of all?

	What books do I need?
	What computers can I use?
	What software can smooth my path?
	How about Emacs tricks?

	What if campus closes unexpectedly?
	What may I do with solutions?
	What if I am repeating the course?
	What else do I need to know about academic integrity?
	Where else might I go to get help?
	What if I have a problem with a TA?
	I'm different. Am I really welcome here?
	Acknowledgments

