
Seven Lessons
in

Program Design

Norman Ramsey
Tufts University

Contents

Introduction: Why program design? 1

1 Proof systems and program design 3
1.1 Formal judgment and sequents. 3
1.2 Proofs and inference rules . 3
1.3 Five proof systems . 4
1.4 From proof system to algebraic specification . 4
1.5 From algebraic laws to recursive function . 6
1.6 Complete process examples . 7
1.7 Mistakes to avoid in algebraic laws . 9

2 Scheme values and more algebraic laws 11
2.1 Describing µScheme data . 11
2.2 Laws for µScheme data . 12
2.3 More uses of algebraic laws . 12
2.4 Common issues using algebraic laws with Scheme . 14

3 Higher-order functions 15
3.1 Designing with functions as arguments . 15
3.2 Designing with functions as results . 15

4 ML types and pattern matching 19
4.1 Design steps . 19

Syntax help for Standard ML 23

5 Program design with typing rules 25
5.1 Overall program design . 25
5.2 Design steps for one function . 25
5.3 Translating rules to code . 26

6 Program design with abstract data types 31
6.1 Creator, producer, observer, mutator . 31
6.2 Representation, abstraction, invariant . 31
6.3 Two examples . 32
6.4 Suggestions . 32
6.5 How design steps are affected . 33

7 Program design with objects 35
7.1 Designing with abstraction . 35
7.2 How design steps are affected . 35
7.3 Laws for double dispatch . 37

Acknowledgements 39

iii

Steps

1. Forms of data. Using the descriptions given to you,
understand the forms of the data that will be in-
put to the function. Forms might be described by
proof rules, by list of cases, or even by a type def-
inition. However they are described, the forms of
data must be distinguishable by writing code.

2. Example inputs. For each form of data, write an
example input which has that form. Every form of
data needs an example.

3. Function’s name. If it’s not already given to you,
choose a name for the function. Use a noun, verb,
or property, as described in the general coding
rubric, under “Naming.”

4. Function’s contract. If it’s not already given to you,
write the function’s contract: in a simple, clear
sentence, what should the function return, as de-
termined by its argument(s)?

5. Example results. Look the example inputs from
part 2. On each example, what should the function
return? Write your answer as a check-expect or
check-assert unit test.

6. Algebraic laws. Generalize the example unit tests
to algebraic laws. Some values in the examples will
turn into variables. This step may be hard.

7. Code case analysis. Looking at only the left-hand
sides of the algebraic laws, start coding the body of
the function. The function should begin by asking
the input data, “How were you formed?,” which
tells the code which algebraic law to follow. Code
one case per algebraic law. Distinguish cases using
if-expressions.

8. Code results. Finish the function. For each case,
ask the input, “From what parts, if any, were you
formed?” Then, using the right-hand side of the
corresponding algebraic law, compute the results.

9. Revisit tests. Revisit the unit tests. First, look at
them. Do they test every form of input? If the
function’s result is Boolean, add new tests so that
you have both a “true” and a “false” test for each
form of input.
Next, run them. If there are any test failures, look
at the algebraic laws first.

Rationale

1. The shape of the data determines the shape of the
code. This idea, popularized by Fred Brooks in
The Mythical Man-Month, applies to many pro-
gramming languages and paradigms. It has been
known since the 1960s.

2. Examples are the easiest place to start, and they
are what people learn from.

3. A meaningful name is critical to code review. By
writing it early, you clarify what you are aiming
for.

4. Contracts aren’t just useful in code review: writ-
ing the contract first is a form of “design first, code
later,” which you may have practiced in Comp 40.
And the contract can help alert you to a design
that is too complex; if your contract isn’t simple,
your code may be hard to get right.
If you’ve been taught to think of a contract only as
documentation you write after the fact, you may be
surprised at how much you get out of a “contract
first” approach.

5. Writing down results on example inputs ensures
that we know where we’re going. If something is
going to be wrong, misunderstood, or confusing,
we want to identify it early—for example, before
we start coding the wrong function.
Writing examples as unit tests gives the inter-
preter the job of checking that everything works
as expected—every time. If anything goes wrong
with your code, you want the bug to manifest as a
failed unit test.

6. Algebraic laws are the single most powerful tool
you will learn in Comp 105. They occupy a mid-
dle ground between vague English and executable
code, where they simplify both coding and review.

7. Case analysis is always the enemy. This step shows
you where you must have it.

8. This step reduces the coding task to a bite-sized
piece involving one case at a time.

9. Adding test cases for both “true” and “false” results
finds many bugs, as does actually running the unit
tests.

A nine-step design process for functions

Introduction: Why program design?

One reason to get a university education in computer
science, as opposed to training at a boot camp or a
code academy, is to prepare yourself to write code
from scratch using a language you’ve never seen before.
To succeed at such a task, it helps to deploy program-
ming techniques that transcend language. Instead of
spitting out fragments of code you saw somewhere, or
“debugging a blank screen,” you can tackle new pro-
gramming tasks using a systematic design process.

If this booklet is your first encounter with a system-
atic design process, it may look overly detailed, bureau-
cratic, or even pedantic. Fortunately, bureaucracy has
its limits. It should help to know that it plays three
roles:

• A systematic process is necessary only when some-
thing is hard. If things are going great and you
just write down code that works, you don’t need
a systematic process. The time to apply process
is when you’re stuck, or something goes wrong, or
you need help, or simply when you feel that getting
your code to work takes too much time.
If you approach our teaching assistants for help
with programming or debugging, they will ask
about your design process.

• A systematic process is tiresome to learn—there
are a lot of steps to keep in mind—but if you can
master it to a point where you can apply it without
thinking, it is surprisingly helpful. You get the
benefits without any marginal cost.
You are not expected to reach that level of mas-
tery this semester, but I encourage you to apply
key parts of the process, such as unit tests and alge-
braic laws, to your work outside of this class. Many
students report excellent results applying system-
atic design on internship, for example.

• A systematic process is learned by applying it to
easy problems—typically problems that could eas-
ily be solved without a systematic process. Such
applications of systematic design might seem point-
less, but there is a point: when you are ready
to tackle a hard problem like a Boolean-formula
solver, you have the tools.
You will be expected to demonstrate parts of your
design process, especially unit tests and algebraic
laws, on some very simple problems—sometimes so
simple that systematic design seems like overkill.
The goal is not to solve an easy problem; the goal
is to learn design.

The design process we use is founded on one key tech-
nique: understand your input data, then let the shape of
your input data determine the shape of your code. This
technique was suggested in the 1970s by Brooks, devel-
oped into an industrial design method in the 1980s by
Jackson, and refined for beginning programmers in the
1990s by Flatt, Felleisen, Findler, and Krishnamurthi.
In this series of lessons, we look at data defined by in-
duction, generalize data examples to algebraic laws, and
turn algebraic laws into code. Inspired by an estab-
lished industry practice called test-driven development,
we also generalize data examples into test cases.

Our full design process is shown on the facing page.
The steps are not just for beginners: professional soft-
ware engineers value effective use of names, contracts
(and their associated algebraic laws), and unit tests.

Each lesson in the book applies the process in a dif-
ferent context: usually a form of data, a language, or
both. You’ll learn how to work with natural numbers;
with lists, trees, and other symbolic expressions; with
higher-order functions; with pattern matching; with
types; with proof systems; with abstract datatypes; and
with objects.

1

1. Proof systems and program design

In this lesson, we start to develop our code-from-data
technique by examining five inductive definitions of the
natural numbers, then looking at recursive functions
that we derive using the definitions. The lesson intro-
duces proof systems for describing forms of data, alge-
braic laws for specifying behavior, and complete exam-
ples of our design process for going from data to laws
to code. This lesson explores only proofs, laws, and
functions that compute with natural numbers.

1.1 Formal judgment and sequents

A regular person says something like “7 is a natural
number.” A semanticist1 also says “7 is a natural num-
ber,” but when they write it down, they write something
like this:

⊢ 7 nat.

Roughly speaking, what they mean is, “without having
to make any assumptions, I claim that 7 is a natural
number.” The notation is an example of a sequent from
mathematical logic, and the general form is like this:

context ⊢ statement.

A context usually contains assumptions, and because
7 is a natural number regardless of assumptions, the
sequent “ ⊢ 7 nat” doesn’t need any assumptions.

A sequent is just one form of formal judgment, which
is how a semanticist states a claim precisely. Formal
judgments play a major role in the second homework
(and in programming languages more generally), and
sequents are used to express judgments in type systems,
which we study in mid-semester.

When we speak a sequent out loud, we don’t usu-
ally pronounce the ⊢ symbol, but when we need to talk
about the symbol, we call it “the turnstile.”

1.2 Proofs and inference rules

A sequent is just a claim. As in real life, some claims are
good, like “7 is a natural number,” but some claims are
bad, like “the square root of 2 is a natural number.”
We’d like to distinguish good claims from bad ones.
Truth is always good, but truth is often impossible to
establish. Instead, we focus on provability. To prove a
judgment, as opposed to just stating it, we use a proof
system. If the proof system is designed properly, all

1Someone who studies the meanings of languages.

provable claims are true, and therefore, no false claims
are provable. For example, I can write “ ⊢

√
2 nat,” but

I’d better not be able to prove it. (Not all true claims
are provable; if you have heard of “Gödel’s incomplete-
ness theorem,” it constructs a claim that is true but not
provable.)

The proof systems we use are composed of inference
rules. An inference rule can be identified by its long
horizontal line. Below the line you will find a single
judgment, the conclusion. Above the line you will find
some number of judgments, called premises. The rule
means “if you can prove every premise (above the line),
you may apply this rule, after which you are considered
to have proven the conclusion (below the line).” For ex-
ample, if you can prove that m is a natural number, you
can also prove that m+1 is a natural number. The rule
is called Successor:

Successor
⊢P m nat

⊢P (m+ 1) nat

The capital P dangling off the turnstile is a way to label
this rule as belonging to a particular proof system—one
of five in the lesson.

A good way to read the Successor rule is, “if you
want to prove that m+1 is a natural number, you first
have to prove that m is a natural number.” This reading
is good because it’s like writing a recursive function:
if you want to compute a function of m+ 1, you might
first recursively call the function on m.2 This trick is
pretty good, and it covers every natural number except
zero (the only one that can’t be written in the form
m+ 1, where m is also a natural number). But zero is
also a natural number, and it needs a proof rule:

Zero
⊢P 0 nat

Another good way to read this rule is this “if you want
to prove that 0 is a natural number, there’s nothing
else you have to prove first—you’re done.” It’s a bit like
writing a recursive function: when you see an argument
of 0, you don’t have to make a recursive call.

2Perhaps you are more accustomed to think “if I want to
compute a function of n, I might first recursively call the function
on n − 1.” I like this thinking, but I wouldn’t want to write the
Successor rule this way. When writing a specification like this,
we use m and m+ 1 because then the rule works for any natural
number m—the rule is not restricted to, say, natural numbers
greater than zero.

3

1.3 Five proof systems

When you write a recursive function on natural num-
bers, you have a lot of ways to structure the recursion.
Ideally, the recursive structure of your function follows
from the structure you use to describe the numbers.
And a structure for describing natural numbers can be
expressed in a proof system. This lesson presents five
example proof systems. All except the last are based
on numbering systems; the last is based on parity (even
versus odd).

Peano numerals

The simplest and most standard way to characterize the
natural numbers uses axioms posited by mathematician
Giuseppe Peano: a natural number is either zero or
is the successor of some other natural number. You
may have studied these axioms in math class. Here
is Peano’s characterization presented as a formal proof
system, identified with a subscript P on the turnstile.
The rules are the two rules you’ve already seen, but
under different names:

PeanoZero
⊢P 0 nat

Successor
⊢P m nat

⊢P (m+ 1) nat

Binary ``numbers''

Computer scientists say “binary number,” but a math-
ematician would balk—the binary system is a numera-
tion system, and a “binary number” is just a numeral.
A natural number is either zero or is twice a natural
number m plus a bit b.

BinaryZero
⊢B 0 nat

BinaryNat
⊢B m nat ⊢ b bit
⊢B (2×m+ b) nat

A bit is either zero or one:
BitZero

⊢ 0 bit
BitOne

⊢ 1 bit

Bits are bits regardless of proof system, so when I write
⊢ 0 bit or ⊢ 1 bit, I don’t decorate the turnstile.

A decimal system for arithmetic

The decimal (also called Arabic) numerals have a proof
system very similar to “binary numbers.” A natural
number is either zero or is ten times a natural number m
plus a decimal digit d.

DecimalZero
⊢D 0 nat

DecimalNat
⊢D m nat ⊢ d digit
⊢D (10×m+ d) nat

Proving that d is a digit requires ten highly repetitive
rules:

Digit0
⊢ 0 digit

Digit1
⊢ 1 digit

Digit2
⊢ 2 digit

Digit3
⊢ 3 digit

Digit4
⊢ 4 digit

Digit5
⊢ 5 digit

Digit6
⊢ 6 digit

Digit7
⊢ 7 digit

Digit8
⊢ 8 digit

Digit9
⊢ 9 digit

This proof system is great for guiding implementations
of arithmetic on natural numbers, including addition,
subtraction, multiplication, and division.

A decimal system for numeration

The Decimal proof system is useful for arithmetic, but
it is not at all good for looking at properties of numer-
als. For example, if you want to know if a number n
is represented by a numeral that is all 4’s, you should
avoid the Decimal system.3 Instead, you should prefer
this DecNumeral system:

DecNumeralDigit
⊢ d digit
⊢DN d nat

DecNumeralNat

⊢DN m nat
m ̸= 0 ⊢ d digit
⊢DN (10×m+ d) nat

Parity

This strange little proof system relies on numbers being
even or odd. It says that a natural number is zero, or
it’s one, or it’s two plus another natural number:

EvenParity
⊢E 0 nat

OddParity
⊢E 1 nat

SameParity
⊢E m nat

⊢E (m+ 2) nat

This system captures the the insight that 0 is even,
1 is odd, and whenever m is even or odd, so is m+ 2.

1.4 From proof system to algebraic
specification

A proof system is a starting point for designing recursive
functions. Design begins by looking at the forms of nat-
ural numbers as they appear in the conclusions of the

3Using the Decimal system would have the same effect as
writing every numeral with a leading zero.

4

Proof system Left-hand side
Peano (f 0) = · · ·

(f (m+ 1)) = · · ·
Binary (f 0) = · · ·

(f (2×m+ b)) = · · ·
Decimal (f 0) = · · ·
(arithmetic) (f (10×m+ d)) = · · ·
Decimal (f d) = · · ·
(numeration) (f (10×m+ d)) = · · ·
Parity (f 0) = · · ·

(f 1) = · · ·
(f (m+ 2)) = · · ·

Table 1.1: Forms of laws for a one-argument function f

rules. For example, the Peano system has natural num-
bers of the forms “0” and “(m+1).” The binary system
has natural numbers of the forms “0” and “(2×m+b).”

Once you know the forms, the next step in designing
a function is to specify what the function is supposed to
do for each form. The specification is written as a set of
equations called algebraic laws. These laws are stylized:
there is typically one law for each form of each input,
and the left-hand side of the law applies the function to
that form.

Writing left-hand sides is mechanistic: a left-hand
side is determined by the name of the function being
defined, the number of arguments it expects, and the
form of each argument. As examples, forms of laws for
all one-argument natural-number functions appear in
Table 1.1.

The laws in Table 1.1 are missing their right-hand
sides. Right-hand sides require thought: a right-hand
side specifies what a function must do in one particular
case. When writing a right-hand side, you can get a
valuable hint from the underlying proof system:

1. Look at the proof rule whose conclusion has the
form of input used on the law’s left-hand side.

2. If the rule has no premises, you have a base case.
The right-hand side should not make any recursive
calls.

3. If the rule has premises, each premise with the same
form of judgment represents a potential recursive
call. A premise with a different form of judgment
may represent a call to a helper function.

If there is more then one input, you may have to con-
sider more than one proof rule. Some examples appear
below.

Example: is a number even?

To design a function even?, which tells if a natural
number is even, we can reasonably use the Peano, bi-
nary, or parity system. The Peano system has two rules,
PeanoZero and Successor. In the zero case, there is
no premise above the line, and I ought to be able to tell
whether zero is even without making a recursive call.
In the successor case, there is a judgment ⊢P m nat
above the line, and I should consider a recursive call
(even? m). With these considerations in mind, I pro-
pose these laws:

(even? 0) = true
(even? (m+ 1)) = ¬(even? m)

where ¬ is the “logical not” operator.
Using the binary-numeral system, I’m pedantic

enough to want a helper function even-bit?, which
is based on the proof system for the judgment form
“ ⊢ b bit”:

(even? 0) = true
(even? (2×m+ b)) = (even-bit? b)

(even-bit? 0) = true
(even-bit? 1) = false

This is the system you would be using if you were coding
even? “in the normal way.” To see why, answer this
question: if n = 2×m+ b, how do you get b from n?4

Here are the laws for even? using the parity system:

(even? 0) = true
(even? 1) = false

(even? (m+ 2)) = (even? m)

I wouldn’t want to implement even? using either of
the decimal proof systems. These systems don’t really
fit a computation of even?, and no sane person would
try to use them—there’s no point in coding even? on
a digit d when you could more easily test n directly.

Example: Multiplication

The decimal proof systems are useless for parity, but
for problems like multiplication, they work well. Since
multiplication is a two-argument function, here is the
general form of laws for a two-argument function g, us-
ing the forms of input from the decimal-arithmetic proof
system:

(g 0 0) = · · ·
(g (10×m+ d) 0) = · · ·

(g 0 (10×m′ + d′)) = · · ·
(g (10×m+ d) (10×m′ + d′)) = · · ·

4b = n mod 2.

5

Proof system Form of n Test for form Parts n is formed from
Peano 0 n = 0

(m+ 1) n ̸= 0 m = n− 1

Binary 0 n = 0
(2×m+ b) n ̸= 0 m = ndiv 2 b = n mod 2

Decimal 0 n = 0
(arithmetic) (10×m+ d) n ̸= 0 m = ndiv 10 d = n mod 10

Decimal d n < 10 d = n
(numerals) (10×m+ d) n ≥ 10 m = ndiv 10 d = n mod 10

Parity 0 n = 0
1 n = 1
(m+ 2) n ≠ 0 ∧ n ̸= 1 m = n− 2

Table 1.2: Identifying the form of n and extracting its parts

The laws for multiplication are

(* 0 0) = 0

(* (10×m+ d) 0) = 0

(* 0 (10×m′ + d′)) = 0

(* (10×m+ d) (10×m′ + d′)) =

100×m×m′ + 10× (m× d′ +m′ × d) + d× d′

Example: ``All fours''

Suppose I want to write a function all-fours?, which
tells me if an argument’s decimal representation uses
only the digit 4. That is, it likes arguments 4, 44, 444,
and so on. I don’t want the Decimal system, since 0 is
the wrong base case. Instead, I want DecimalNat:

(all-fours? d) = (d = 4)

(all-fours? (10×m+ d)) = (all-fours? m) ∧ d = 4,

where ∧ is the “logical and” symbol.

1.5 From algebraic laws to recursive
function

When the algebraic laws are complete, we write the
code. Conceptually, the code emerges in response to
three questions:

1. We ask of each input, how were you formed? (Ex-
ample answer: 10×m+ d.)

2. Once we know the form of an input, we proceed to
ask from what parts were you formed? (Example
answer: from m and d, where m = ndiv 10 and
d = n mod 10.)

3. Finally, when we know how each input was formed
and from what parts, we can ask which algebraic
law applies and what does the law say we are sup-
posed to do with the parts? (Example answer: make
a recursive call on m and check if d = 4.)

The first two questions can be answered using the tests
and equations shown in Table 1.2. The third question is
answered by selecting the algebraic law whose left-hand
side has the right form, then using the right-hand side.

Detailed example

As a first example, let’s implement function is_even,
in C, using the parity system. Here are the laws:

(is_even 0) = true
(is_even 1) = false

(is_even (m+ 2)) = (is_even m)

Table 1.2 shows that we can distinguish the forms of n
using tests for 0 and 1, so the first draft of our function
uses if statements to distinguish three cases: one for
each law.

bool is_even (unsigned n) {
if (n == 0) {
...

} else if (n == 1) {
...

} else {
...

}
}

In the first two cases, n isn’t formed from any other
parts, and we can knock off the cases by filling in the
right-hand sides of the laws:

6

bool is_even (unsigned n) {
if (n == 0) {
return true;

} else if (n == 1) {
return false;

} else {
...

}
}

In the final case, the law mentions m, which is computed
as n− 2:

bool is_even (unsigned n) {
if (n == 0) {
return true;

} else if (n == 1) {
return false;

} else {
unsigned m = n - 2;
...

}
}

With m computed, we use the right-hand side of the law
to write a recursive call:

bool is_even (unsigned n) {
if (n == 0) {

return true;
} else if (n == 1) {

return false;
} else {

unsigned m = n - 2;
return is_even(m);

}
}

In practice, I probably would not bother with m in the
third case, writing instead is_even(n-2).

Condensed example

As another example, suppose I want to design a function
that sums the natural numbers from 0 to n. I choose
the Peano proof system, and I write these laws:

(sumto 0) = 0

(sumto (m+ 1)) = (sumto m)+ (m+ 1)

I distinguish case n = 0 from case n = (m+1) by testing
n = 0, and when n = (m + 1), I get the “part” m by
computing m = n− 1:

int sumto(unsigned n) { // not tested
if (n == 0} {
return 0;

} else {
return sumto(n - 1) + n;

}
}

In this code, I don’t bother with an explicit m.

1.6 Complete process examples

The preceding sections of this handout look at proof
systems, forms of data, and algebraic laws, which are
the technical core of our recommended software pro-
cess. This section works two more examples, showing
all 9 steps of the complete process.

Design of a factorial function

1. Understand the forms of data. To design a factorial
function, I choose the Peano system, with forms 0
and (m + 1). Choosing the right system is not
always obvious, but I’ve written factorial functions
before, and I know the Peano system will work.

2. Write a sample input for each form. My example
input of form 0 is 0, and my example input of form
(m+ 1) is 4.

3. Choose a name. I choose the name factorial.
This name is a noun that describes what the func-
tion returns.

4. Write the contract. The contract is trivial, pedan-
tic, and boring. It says

;; (factorial n) returns n factorial,
;; sometimes written "n!", where n
;; is a natural number

In practice, I would write this function without a
contract—the name alone is contract enough.

5. Write examples. My examples:

(check-expect (factorial 0) 1)
(check-expect (factorial 4) 24)

6. Generalize to algebraic laws. The zero case is al-
ready an algebraic law:

(factorial 0) == 1

For the successor case, the Peano proof system has
judgment ⊢ m nat above the line, so I’ll be looking
to make a recursive call with m. I write

7

(factorial (+ m 1))
== 24 ; assuming m = 3
== (* 4 6) ; assuming m = 3
== (* 4 (factorial m)) ; m = 3, recurs
== (* (+ m 1) (factorial m)) ; general

7. Code the case analysis. I’ve got two laws with dis-
tinct left-hand sides, so two cases. Table 1.2 on
page 6 recommends testing for n = 0. I get

(define factorial (n)
(if (= n 0)

... ; zero case

...)) ; successor case

This code will compile but not run.

8. Code the results. To finish the function, I plug
in the right-hand side for each case. I don’t fuss
with m—instead I just write n for (m + 1) and
n− 1 for m:

(define factorial (n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

9. Revisit unit tests. My tests cover every form of
input, and there are no Booleans in play. I add
them to my source file and run them:

$ impcore -q < fact.imp
factorial
Both tests passed.

The complete solution in file fact.imp looks like this:

;; (factorial n) returns n factorial,
;; sometimes written "n!", where n
;; is a natural number
(define factorial (n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

(check-expect (factorial 0) 1)
(check-expect (factorial 4) 24)

(Unit tests are indented eight spaces.)

Design of a power function

Same drill, but now I define a function of two argu-
ments, x and n, to compute xn. And I do something
sophisticated: I know that this computation depends
only on the form of n, not on the form of x. So have
only one form to analyze, and I get by with just two
cases instead of four or more.

1. Understand the forms of data. Again, I choose the
Peano system, with forms 0 and (m+ 1).

2. Write a sample input for each form. Again,
I choose examples 0 and 4.

3. Choose a name. I choose power, a noun that de-
scribes what the function returns.

4. Write the contract. This contract is not trivial:
we need to know which argument is the base and
which is the exponent.

;; (power x n) returns x raised to the
;; nth power, where n is a natural number

5. Write examples. My examples:

(check-expect (power 3 0) 1)
(check-expect (power 3 4) 81)

6. Generalize to algebraic laws. In math form,

x0 = 1

x(m+1) = xm × x

When you’re designing, math form is always legit-
imate and often helpful.
In code form,

(power x 0) == 1
(power x (+ m 1)) == (* (power x m) x)

7. Code the case analysis. It’s the same proof system,
the same form of input, and therefore the same case
analysis as for factorial:

(define power (x n)
(if (= n 0)

... ; zero case

...)) ; successor case

8. Code the results. Again, instead of m, I write n−1:

(define power (x n)
(if (= n 0)

1
(* (power x (- n 1)) x)))

9. Revisit unit tests. My tests cover every form of
input, and there are no Booleans in play. And they
pass.

Here’s the complete solution in file power.imp:

8

;; (power x n) returns x raised to the
;; nth power, where n is a natural number
(define power (x n)
(if (= n 0)

1
(* (power x (- n 1)) x)))

(check-expect (power 3 0) 1)
(check-expect (power 3 4) 81)

1.7 Mistakes to avoid in algebraic laws

An algebraic law sits halfway between a mathemati-
cal statement and a function definition. When you are
writing a law for function f , here are some mistakes to
avoid:

• A left-hand side is not an application of f .

• On a left-hand side, f is applied to something that
is not a form of data. For example, m/b or (/ m b).

• There is a permissible form of data that does not
match the left-hand side of any law.

• A law’s right-hand side mentions a variable that
does not appear on the left-hand side. (This mis-
take is just like trying to use an undeclared variable
in a C++ function.)

In addition to these basic mistakes, people who are first
learning to code with algebraic laws often make three
other, more subtle mistakes. The more subtle mistakes
reflect confusion about what a variable in a law stands
for: an actual parameter or a part of an actual parame-
ter? When a variable stands for a part of a parameter,
trouble sometimes follows.

In the first subtle mistake, the right-hand side of a
law uses a variable that is intended to stand for a formal
parameter, but the parameter doesn’t actually appear
on the left. For example,

(has-digit? (10 * m + d) d2) ==
(has-digit? (/ n 10) d2), where d2 != d

The n on the right-hand side is not specified—it could
be anything. This mistake is a special case of the fourth

bullet above, and I can see what’s going on: the left-
hand side specifies the parts of the first parameter, but
the right-hand side uses n to name the parameter itself.
What’s meant by (/ n 10) is actually m.

To avoid this mistake, remember this rule: The right-
hand side of an algebraic law may use any variable that
appears on the left-hand side, and only those variables.

In the second subtle mistake, a right-hand side mis-
uses a variable from the left as if it were the argument,
rather than a part of the argument. Here’s an example
for function (power x n):

(power x (+ m 1)) == (* (power x (- m 1)) x)

The variable m is already meant to be one less than the
argument: m = n − 1. The right-hand side of the law
incorrectly applies to m the operation that is meant to
be applied to n.

In the third subtle mistake, a name like m is used in
the algebraic laws to stand for a part of an argument,
but in the code to stand for the entire argument. Here’s
an example:

;; (has-digit? (+ (* 10 m) d) d) == 1
;; (has-digit? (+ (* 10 m) d) d2) == ...
;; ...

(define has-digit? (m d2)
...) ;; cases 1 & 2:

;; m == (+ (* 10 m) d)???

Each part is technically correct by itself, but mixing the
two is just too confusing: the argument can’t be m and
10×m+d. To avoid this mistake, make sure each name
stands consistently either for an argument or for a part
of an argument, but not both.

9

2. Scheme values and more algebraic laws

Now we remove the training wheels and start working
with more structured data. This lesson presents the
bare bones of programming with µScheme values, in-
cluding lists and S-expressions, using proof systems and
algebraic laws. We apply the same design techniques as
before, but with new forms of data.

This lesson also introduces a wider world of alge-
braic laws, distinguishing algorithmic laws from non-
algorithmic properties. When coding from scratch,
you must learn to make your laws algorithmic.

2.1 Describing µScheme data

The first section of this lesson revisits the ideas in the
natural-number lesson, but for some common forms of
µScheme data.

Proof systems for µScheme data

As noted in Figure 2.1 on page 93 of Programming Lan-
guages: Build, Prove, and Compare, a µScheme value
is either an atom, a function, or a cons cell. A “fully
general S-expression” is any of these except a function.
We could write a proof system like this:

⊢ v symbol
⊢ v gsx

⊢ n number
⊢ n gsx ⊢ #t gsx

⊢ #f gsx ⊢ '() gsx
⊢ v1 gsx ⊢ v2 gsx
⊢ (cons v1 v2) gsx

We could define “list of A’s” using the proof system
from section 2.4, which starts on page 109 of the text-
book:

EmptyList
'() ∈ LIST(A)

ConsList
a ∈ A as ∈ LIST(A)

(cons a as) ∈ LIST(A)

On your homework I’ll ask you to define “nonempty
list of A’s.”

We could define “ordinary” S-expression using just
ideas 1 and 2 from Figure 2.1 on page 93. The notation

of that last rule gets a little dodgy:
⊢ n number
⊢ n osx ⊢ #t osx ⊢ #f osx

vs ∈ LIST(osx)
⊢ vs osx

Writing LIST(osx) is flagrant abuse of notation.
There’s a better way.

An informal alternative

Proof systems are great for describing the structure
of natural numbers, as well as more complex struc-
tures like computations. But for describing simpler
data structures, we don’t need the expressive power of
proof systems, and it’s often difficult to come up with
good judgment forms—that’s where we got into trou-
ble above. As an alternative, we can write an inductive
definition informally. We name the set we’re trying to
define, and we list all the ways that data in the set could
be formed. Examples follows.

A fully general S-expression is one of the following:
• A symbol
• A number
• A Boolean
• The empty list '()
• (cons v1 v2), where v1 and v2 are fully general S-

expressions
A list of A’s is one of the following:

• The empty list '()
• (cons a as), where a is an A and as is a list of A’s

An ordinary S-expression is one of the following:
• A symbol
• A number
• A Boolean
• A list of ordinary S-expressions
It is frequently useful to expand that last bullet. It is

equally true that an ordinary S-expression is one of the
following:

• A symbol
• A number
• A Boolean
• The empty list '()
• (cons v vs), where v is an ordinary S-expression

and vs is a list of ordinary S-expressions

11

Data Left-hand side
Fully general (f a) = · · ·, where a is an atom
S-expression (f (cons y z)) = · · ·
List of A (f '()) = · · ·

(f (cons y ys)) = · · ·
Ordinary (f a) = · · ·, where a is an atom
S-expression (f (cons y ys)) = · · ·
Also (f '()) = · · ·
Ordinary (f a) = · · ·, where a is an atom but not '()
S-expression (f (cons y ys)) = · · ·
Nonempty list of A (homework)

· · ·

Table 2.1: Forms of laws for a one-argument function f

Data Form of argument x or xs Test for form Parts argument is formed from
Fully general a (atom? x) a = x
S-expression (cons y z) (not (atom? x)) y = (car x) z = (cdr x)

or (pair? x)

List of A '() (null? xs)
(cons y ys) (not (null? xs)) y = (car xs) ys = (cdr xs)

Ordinary a (atom? x) a = x
S-expression (cons y ys) (not (atom? x)) y = (car x) ys = (cdr x)

or (pair? x)

Also '() (null? x)
Ordinary a (atom? x) a = x
S-expression (cons y ys) (not (atom? x)) y = (car x) ys = (cdr x)

Nonempty
list of A · · · (homework) · · ·

Table 2.2: Identifying forms and extracting parts

2.2 Laws for µScheme data

As with natural numbers, the forms of data determine
the left-hand sides of algebraic laws, which determine
the case analysis that goes into your code. Table 2.1
shows what laws will look like for a one-argument func-
tion f . Table 2.2 shows how to identify forms of data
and how to extract the parts from which data is formed.

2.3 More uses of algebraic laws

Our first homework assignment introduced you to alge-
braic laws purely as a tool for designing functions that
you code from scratch. The tool works even better for
lists and S-expressions than it works for natural num-

bers. For example, here are laws that define a function
for asking how many elements there are in a list:

(length '()) == 0
(length (cons x xs)) == (+ 1 (length xs))

A set of laws like this is called algorithmic: the laws
specify the algorithm for length, and they are very
close to an implementation.

More generally, we can write algebraic laws for any
property that we believe is true. For example, if we
append two lists, the length of the result is the sum of
the lengths of the arguments:

(length (append xs ys)) ==
(+ (length xs) (length ys))

This law is not algorithmic—a law like this is called a
property. Let’s explore the distinction.

12

Understanding and using algorithmic laws

To identify a set of laws as algorithmic, learn to recog-
nize these hallmarks:

• Each left-hand side is a function to be defined, ap-
plied to one or more arguments, where each argu-
ment is either a variable or a form of data. In the
length example, both '() and (cons x xs) are
forms of data.

• In an algorithmic set of laws, each law is mutu-
ally exclusive with the others. That is, given any
particular input, at most one law applies. Mutual
exclusion is accomplished either using mutually ex-
clusive forms of data, like '() and (cons x xs), or
by using mutually exclusive side conditions.
(In rare cases, algorithmic laws can overlap: there
are inputs for which more than one law could apply.
In such cases, all applicable right-hand sides must
produce the same result. These cases are sufficiently
rare that I don’t present an example.)

• Collectively, an algorithmic set of laws accounts for
every input that is permitted by a function’s con-
tract. If an input is permissible, there must be a
law that applies.

• In every recursive call on every right-hand side,
some input is getting smaller.

Algorithmic laws are used for these purposes:

• Algorithmic laws are used primarily to design and
implement functions.

• Algorithmic laws can also be used to test functions.

Understanding and using properties

Technically, every law in an algorithmic set is also a
property. But not every property is an algorithmic law.
To identify a property law as non-algorithmic, learn to
recognize these hallmarks:

• On a left-hand side, a function is applied to the
result of another function. For example, in the
length property, length is applied to the result
of append.

• Properties might not be mutually exclusive, and
they needn’t account for every permissible input.

Properties have many more uses than algebraic laws,
including these purposes:

• Properties are used for testing. Substitute a per-
missible value for each variable in the property, and
check that equality holds. For example, here’s a
property we use to test arithmetic in Smalltalk:

(* 2 n) == (+ n n)

We can test this property with any natural num-
ber n.
Here’s a property about lists that is useful only for
testing:

(permutation? (cons x (cons y zs))
(cons y (cons x zs))) == #t

Good tooling for programming languages fre-
quently includes random, automated, property-
based testing based on substituting randomly gen-
erated values for variables in properties.

• Properties are used for refactoring, which means
rewriting code to improve its structure, without
changing its semantics. A good example is code
simplification. Many of the properties found in sec-
tion 2.5 of the textbook, like this append-cons law,
can be used to simplify code:

(append (cons x '()) xs) == (cons x xs)

• Properties are used for code improvement, which
means rewriting code to improve its performance,
without changing its semantics. (Code improve-
ment is often called “optimization.”) Some of the
properties found in section 2.5 of the textbook, like
this append-append law, can be used to improve
performance:

(append (append xs ys) zs) ==
(append xs (append ys zs))

• Properties are used for specification, especially of
abstract data types. Programmers may use proper-
ties to say how an abstraction behaves without say-
ing how it is implemented. Here’s a typical prop-
erty from an abstraction of sets:

(member? x (add-element x xs)) == #t

The property says that if we add an element x to
any set, then x is a member of the resulting set.

13

2.4 Common issues using algebraic
laws with Scheme

Below are some issues you might run into when writing
algebraic laws for Scheme functions.

Correct use of variables

A common mistake is to write laws thinking that vari-
ables are mutually exclusive with other forms of data.
They aren’t. When you write a variable, you are saying
implicitly, “this could be any form of data, and I don’t
care which.” In other words, when you write a variable
in an argument position, you are promising not to look
and see how the argument was formed. In particular,
when you write a variable, you are promising never to
apply null?, car, or cdr to that variable.

Here’s an example of this common mistake:

(sublist? xs '()) == #f ;; WRONG
(sublist? '() ys) == #t
... more cases below ...

The student who wrote these laws meant for xs and
ys meant to be nonempty. But a variable could be
any list, including the empty list. In this example, if
both xs and ys are empty, the laws give inconsistent re-
sults. That’s how we’re certain that something is wrong.
Here’s a correct version, in which every argument is ei-
ther explicitly empty or explicitly nonempty.

(sublist? (cons w ws) '()) == #f ;; RIGHT
(sublist? '() (cons z zs)) == #t
... more cases below ...

These left-hand sides can’t possibly be confused.
This version can be refined by observing that in the

original set, the problem lies with the first law. The law
(sublist? '() ys) == #t is actually good: the empty
list is a sublist of any list ys, whether ys is empty or
not. So we could write the laws this way:

(sublist? (cons w ws) '()) == #f ;; RIGHT
(sublist? '() ys) == #t ;; SPLENDID
... more cases below ...

The advantage of this final specification is that we might
then have to consider fewer alternatives in the “more
cases below.”

Breaking S-expression inputs down by cases

Quite often it’s useful to define an ordinary S-expression
as one of the following:

• The empty list

• (cons z zs), where z is an S-expression and zs is
a list of S-expressions

• a, where a is an atom but not the empty list

A common mistake here is to forget the side condition
on a. Here are some mistaken laws for counting the
number of atoms in an ordinary S-expression:

(atom-count '()) = 0
(atom-count (cons z zs)) =

(+ (atom-count z) (atom-count zs))
(atom-count a) = 1 ;; WRONG

The last law needs a side condition:

(atom-count a) = 1,
where a is a non-null atom ;; RIGHT

You can't break a function down by cases

Some of the problems on the homework, like takewhile,
dropwhile, and arg-max, take functions as inputs.
You can’t break a function down by cases, because
there’s no way to ask a function how it was formed.
All you can do with a function is apply it. How, then,
should a function appear in an algebraic law? As a vari-
able. Here’s an example for takewhile, which takes two
arguments, a predicate p? and a list of values. A func-
tion has one case and a list has two, and multiplied
together there are two in total:

(takewhile p? '()) = ...
(takewhile p? (cons x xs)) = ...

That’s not the end of the story, however: once we have
both p? and an x that we could apply p? to, we could
have extra cases depending on whether (p? x) is true or
false. Those cases would be written as side conditions.

One final example: function arg-max takes a function
and a nonempty list of values. The laws for arg-max will
have one case for the function input (just a variable),
and other cases for the nonempty list. (Finding the
forms of a nonempty list is a homework problem.)

14

3. Higher-order functions

In addition to “constructed data” (cons), Scheme also
has first-class, nested functions. This key feature, which
originated with Scheme, is now used prominently in
such scripting languages as JavaScript, Python, Lua,
and Perl. Functions are not quite like other forms of
data, but they still participate in the design process.
Functions that appear as arguments are handled some-
what like other forms of data; functions that appear as
results are different. The details are explained in this
lesson.

3.1 Designing with functions as argu-
ments

In a principled design process, here’s how we work with
function arguments:

1. Forms of data. A function is unlike any other form
of data so far, in this way: you can’t interrogate
a function to ask how it was made or from what
parts. Instead,

All you can do with a function is apply it.

However, we can and do use information about a
function’s contract as a proxy for its form. Step 1
of the design process is therefore to identify what
is important about the function’s contract. Usu-
ally what’s most important involves the number
of parameters and sometimes the types of the pa-
rameters and result. Here are some ways to think
about the form of a function:

• Takes one argument
• Takes two arguments
• Takes one argument, returns a Boolean
• Takes two arguments, returns a Boolean
• Takes one argument, returns a function
• Takes two arguments, returns a result that is

like the second argument

2. Example inputs. Once you’ve identified the form
of a function, you can come up with examples.
The best examples are familiar functions, like those
from the initial basis.

abs ; one arg
+ ; two args
symbol? ; one arg, returns Boolean
< ; two args, returns Boolean

curry ; one arg, returns function
cons ; two args, result like 2nd

3, 4, 5. When functions are used as arguments, steps 3 to 5
are unchanged.

6. Algebraic laws. Forms of algebraic laws are as be-
fore: on the left-hand side, the function being de-
fined is applied to arguments. What’s different is
there can be no case analysis on an argument that is
a function. The only thing you can do with a func-
tion is apply it. Case analysis on other arguments
proceeds as usual.

7. Code case analysis. Because we can’t do case anal-
ysis on a function, the presence of a function as
an argument doesn’t change the way we code case
analysis. Case analysis on non-function arguments
proceeds as usual.

8, 9. When functions are used as arguments, steps
8 and 9 are unchanged.

3.2 Designing with functions as re-
sults

When a function returns another function as a result,
the design process is affected more broadly. That’s be-
cause we can’t do much with a function result. In par-
ticular, we can’t compare a function result with another
function result—all we can do is apply it. If we want to
test or specify a function result, we have to test or spec-
ify what happens when we apply the function to some-
thing. The central principle is this:

Two functions are equal if and only if when
they are applied to equal arguments, they re-
turn equal results.

Here’s how this principle affects our design process.

1, 2. We’re talking about results, not inputs, so the story
about forms of data and inputs is unchanged.

3, 4. Naming and contracts are unchanged.

5. Example results. Example results may or may not
be helpful here—it depends whether the expected
result has a well-known name. Here’s a case where
example results are helpful: function flip takes a
two-argument function as argument and returns a
function that is like the argument function, except

15

the result function expects its arguments in the op-
posite order. A couple of good example results are

(flip <) == >
(flip >=) == <=

With these examples, we got lucky. More com-
monly, the result doesn’t have a name. For exam-
ple, we don’t have a name for (flip append).
While you can sometimes find examples to be equal
to a function result, you can always construct ex-
amples about what a function result is applied to.
This design technique is reliable, and it might look
like this:

((flip <) 3 4) == #f
((flip <=) 3 4) == #f
((flip append) '(a b c) '(1 2 3)) ==

'(1 2 3 a b c)

This general form of example has three parts:

a) The function being designed, flip, is applied
to arguments, producing a result.

b) The result is itself applied to (more) argu-
ments.

c) The result of the result (the whole applica-
tion) is equal to something.

6. Algebraic laws. Right-hand sides of algebraic laws
don’t change, but left-hand sides do. When a func-
tion returns a function, the left-hand side is now
going to include at least two applications, just like
the example results in step 5.

a) The function being designed is applied to vari-
ables and/or forms of data.

b) The result of the function being designed is
then applied to more variables and/or forms
of data.

As examples, here are the laws for every predefined
µScheme function that returns a function as a re-
sult:

((o f g) x) == (f (g x))
((uncurry f) x y) == ((f x) y)

If the result of a result is also a function, we keep
applying until we get to a point where we have
results that can be tested for equality:

(((curry f) x) y) == (f x y)
;; *three* applications on left!

7. Code left-hand side. When a function returns a
function, this step changes a bit. The key change
is that we code one function for every application
on the left-hand side. The outermost function can
be coded using either define or lambda. Inner
functions are coded using lambda.
One possibly confusing point:

The innermost application in the law
corresponds to the outermost define or
lambda in the definition.

That’s because in the law, the innermost applica-
tion is evaluated first, but in the definition, the
outermost lambda is evaluated first. Let’s see how
it works.
In the law for ((o f g) x), we have two nested
applications:

(o f g) = result
(result x) = (f (g x))

That result is going to become an anonymous
lambda.
First step in the code: innermost application from
the left-hand side:

(define o (f g)
; law: (result x) == (f (g x))
... result function ...)

Next step of the left-hand side: result function ex-
pects x as an argument:

(define o (f g)
; law: (result x) == (f (g x))

(lambda (x) ... right-hand side ...))

And leaping ahead to step 8:

(define o (f g)
; law: (result x) == (f (g x))

(lambda (x) (f (g x))))

Here’s the same development for uncurry:

(define uncurry (f)
; law: (result x y) = ((f x) y)
... result function ...)

And finishing the left-hand side with lambda:

(define uncurry (f)
; law: (result x y) = ((f x) y)
(lambda (x y) ... RHS ...))

16

And leaping ahead to step 8:

(define uncurry (f)
; law: (result x y) = ((f x) y)
(lambda (x y) ((f x) y)))

8. Code results. The code for a final result on a right-
hand side is written in the same way as usual, but
we’ll find it inside at least one additional lambda.

9. In order to test a function’s result, we have to apply
it to something. Here is one bad example accom-
panied by three good ones:

(check-expect (flip <) >) ;; USELESS
(check-expect ((flip <) 3 4) (> 3 4)) ;; GOOD
(check-expect ((flip <) 3 3) (> 3 3)) ;; GOOD
(check-expect ((flip <) 3 2) (> 3 2)) ;; GOOD

17

4. ML types and pattern matching

This lesson sketches how to apply our design process
to ML, a language with types and pattern matching.
Popular languages with these features include Haskell,
Elm, OCaml, Reason, F♯, Erlang, and Scala. More ob-
scure languages include Agda, Idris, and Coq/Gallina.

This lesson is followed by a page of syntax help.

4.1 Design steps

Our design method is affected by the introductions of
constructed data and types.

1. Forms of data for numbers and functions are as in
Scheme. But forms of data for lists, pairs, tuples,
trees, and other constructed data are determined
by primitive types and user-defined types, includ-
ing algebraic datatypes. These forms are shown in
Table 4.1 on the next page, as patterns.
Patterns are the technical name for the phrases
that appear as function arguments on the left-hand
sides of algebraic laws—so you already know how
to program with them. But to define them care-
fully, here are ML’s rules for patterns:

• Any variable, as in x, is a pattern.
• The “wildcard,” as in _ (underscore), is a pat-

tern
• A sequence of patterns separated by com-

mas and wrapped in round brackets, as in
(l, x, r), is a tuple pattern.

• The empty tuple () is a pattern.
• A sequence of patterns separated by com-

mas and wrapped in square brackets, as in
[x1, x2, x3], is a list pattern.

• The empty list [] is a pattern.
• A value constructor by itself, as in nil or

NONE, is a pattern.
• A value constructor applied to a pattern, as

in SOME x, is a pattern.
• An infix value constructor placed between

patterns, as in x :: xs, is a pattern.1

• A sequence of pattern bindings separated by
commas and wrapped in curly brackets, as in
{ ps1 = s, ps2 = s' }, is a record pattern.

1Confusingly, “fixity” is a local property of a name, not a
property of the value constructor itself.

• A literal number, as in 1852, is a pattern.
• A literal string, as in "frogs", is a pattern.
• A literal character, as in #"f", is a pattern.

A key feature of ML is that you get to define
new forms of data, using the datatype definition.
For example, a binary tree of machine integers:

datatype inttree
= ILEAF
| INODE of inttree * int * inttree

2. Example inputs include what you would expect
from Scheme: numbers written using numeric liter-
als, and anonymous lambda functions written using
fn, as in (fn (x, y) => y + 1). ML also has string
literals.
In addition, examples of constructed data are
formed using the pattern rules: if a pattern has
no variables or wildcards, it specifies a value:

(105, "hello")
[2, 3, 5, 7, 11]
SOME 33

3. Function names are limited. In ML, you may use
either “symbolic” characters like <, ?, +, and so on,
or you may use alphanumeric characters2 with an
underscore, but you may not use both in the same
name. Symbolic characters may be combined into
arbitrarily long names, such as <=> or /*/.
ML offers a design choice not available in Scheme:
function names can be “infix.” Predefined functions
like mod, o, and + all have infix names, as does the
value constructor ::. The fixity of names can be
changed by an infix or nonfix definition form.
It’s especially common for symbolic names to be
made infix.
Infix names like :: and + can’t be used as first-class
values; when you write an infix name, ML thinks
you mean to apply it. But there is a workaround:
putting the reserved word op in front of any infix

2The ASCII quote mark, here pronounced “prime,” counts as
alphanumeric, as in x', pronounced “x-prime.”

19

Type of e Patterns Test in definition Test in expression Types of parts
case e

'a list [] fun f [] = · · · of [] => · · ·
x :: xs | f (x :: xs) = · · · | x :: xs => · · · x : 'a, xs : 'a list

case e
'a option NONE fun f NONE = · · · of NONE => · · ·

SOME x | f (SOME x) = · · · | SOME x => · · · x : 'a

case e
order LESS fun f LESS = · · · of LESS => · · ·

EQUAL | f EQUAL = · · · of EQUAL => · · ·
GREATER | f GREATER = · · · of GREATER => · · ·

case e
int 0 fun f 0 = · · · of 0 => · · ·

n | f n = · · · | n => · · · n : int

let val (x, y) = e
'a * 'b (x, y) fun f (x, y) = · · · in · · · x : 'a, y : 'b

end

let val (x, y, z) = e
'a * 'b * 'c (x, y, z) fun f (x, y, z) = · · · in · · · x : 'a, y : 'b, z : 'c

end

{ f1 : 'a { f1 = x fun f { f1 = x let val { f1 = x x : 'a
, f2 : 'b , f2 = y , f2 = y , f2 = y y : 'b
, f3 : 'c , f3 = z , f3 = z , f3 = z z : 'c
· · · , ... , ... , ... } = e

} } } = · · · in · · ·
(record) (“f1” is short for “field 1”, and so on) end

case e
'a tree LEAF fun f (LEAF) = · · · of LEAF => · · ·
(homework) NODE(l,x,r) | f (NODE(l,x,r)) = · · · | NODE(l,x,r) => · · · l : 'a tree, x : 'a

r : 'a tree

case e
µScheme LITERAL v fun f (LITERAL v) = · · · of LITERAL v => · · · v : value
exp VAR x | f (VAR x) = · · · | VAR x => · · · x : name
(page 312) SET (x, e) | f (SET (x, e)) = · · · | SET (x, e) => · · · x : name, e : exp

...
...

...
...

Table 4.1: Identifying forms and extracting parts (ML builtins and 105 types)

20

name turns it into a nonfix name, which you can
use as a value. Here are two classic examples:

fun sum ns = foldl op + 0 ns
fun prod ns = foldl op * 1 ns

4. Function contracts are now enhanced: every func-
tion has a most general type. We consider the type
to be part of the function’s contract. The type
is enforced by the compiler. In many cases, like
List.all and List.exists, the name and the
type form a sufficient contract all by themselves.

5. Example results and test cases work using the
same ideas as in µScheme (“check-expect,” “check-
assert,” and “check-error”), but the mechanisms
are different. Compared with µScheme, ML’s unit
testing is verbose and awkward. But there is one
small compensation: unlike µScheme, ML indicates
checked run-time errors using exceptions. This fea-
ture makes it possible to check for the presence of
a particular exception, like Subscript, Empty, or
Overflow. In µScheme, that’s not possible.

6. Algebraic laws are as helpful as ever. They must
respect types. We will also develop a new design
method that helps with writing right-hand sides of
algebraic laws. The new method is based on types,
and when we are ready to study types in detail,
it will be presented in class.

7. Coding case analysis is much simpler than in
Scheme: for case analysis over constructed data,
we just use pattern matching. This feature makes
the code look an awful lot like the algebraic laws.
For case analysis of natural numbers or machine
integers, we can often use partial pattern match-
ing (one or more cases of interest, followed by a
catchall case).

8. Coding results uses the same design methods as
in Scheme. But in ML, both the concrete syntax
and the abstract syntax are different from Scheme.
Here are the key differences in the abstract syntax
and our use of it:

• In ML, the let form uses definitions and has
a similar semantics to Scheme’s let*. Direct
recursion is accomplished by using fun, and
mutual recursion by using and.

• ML has a case form for pattern matching in
an expression. (But usually we will pattern
match in the fun definition form.)

• Deconstruction of input data is always done
by pattern matching. ML has functions like
car, cdr, and null?, but they are used rarely,
and only by experts.

9. Revisiting tests has the same intellectual content,
but it’s much more fussy to code. To run your
tests, you’ll need to study the Unit interface that
is described in the guide to learning ML.

21

Syntax help for Standard ML

Standard ML is a full language, not simplified for teach-
ing, and an exhaustive syntax summary would be over-
whelming. This section presents the key syntactic tools
that you will use most frequently. It is not exhaustive!

ML has four major syntactic categories. From the
top down:

d Definitions
p Patterns
e Expressions
τ Types

These categories are related like this:

• Definitions sit at the top, and they contain both
patterns and expressions. A typical definition form
has a pattern on the left and an expression on the
right. The definition of a Curried function may
have multiple patterns on the left.
The val form you already know is present, but in-
stead of just a name on the left, it can take any
pattern.
The define form you already know is a special
case of fun, but fun is more typically used with
patterns, to express algebraic laws directly.
There are two kinds of type definitions: type ab-
breviations (type) and fresh, algebraic data types
(datatype). Both are called “types,” and both def-
inition forms contain types.

• Patterns are new. They are one of the two main
interesting features of ML, and they are described
in detail in Lesson 4 above. Patterns may contain
types, but they usually don’t—we put types in pat-
terns only when we’re debugging.

• Expressions resemble those that you already know,
except for the let form. ML’s let form con-
tains definitions, not Scheme’s name-value bind-
ings. And unlike Scheme’s let, which binds all
names simultaneously, ML’s let evaluates defini-
tions in sequence, like Scheme’s let*.
Expressions may contain definitions and types. Ex-
pressions commonly contain definitions (any let
form), but they rarely contain types—we put types
in expressions only when we’re debugging.

• Types are more general than the types you know
from C and C++. We will study types at length.

To summarize the common forms of the categories
listed above, I use these symbols for nonterminals:

x, f Name (of a variable or function)
k Literal (like 7 or #"a")
K Name of a value constructor
t Name of a type

Using these symbols, here are some examples of the
most commonly used forms of ML syntax:

p ⇒ x
∣∣ k ∣∣ (p1, p2)

∣∣ (p1, p2, p3)
| []

∣∣ p1 :: p2
∣∣ [p1,p2, …, pn]

| NONE
∣∣ SOME p

∣∣ LESS ∣∣ EQUAL ∣∣ GREATER
| K

∣∣ K p

e ⇒ x
∣∣ k ∣∣ (e1, e2)

∣∣ (e1, e2, e3)
| []

∣∣ e1 :: e2
∣∣ [e1,e2, …, en]

| NONE
∣∣ SOME e

∣∣ LESS ∣∣ EQUAL ∣∣ GREATER
| K

∣∣ K e

| e e · · ·
| if e1 then e2 else e3
| let d · · · in e end
| (case e of p1 => e1 | p2 => e2 | · · ·)
| raise e

∣∣ (e1 handle p => e)
| e1 andalso e2

∣∣ e1 orelse e2

d ⇒ val p = e
| val (x1, x2) = e (overlooked special case)
| fun f p1 = e1 | f p2 = e2 | · · ·
| fun f p1 · · · = e1 | f p2 · · · = e2 | · · ·
| exception K
| exception K of τ
| type t = τ
| type 'a t = τ
| datatype t = K1 of τ1 | K2 of τ2 | · · ·
| datatype t = K1 | · · ·
| datatype 'a t = K1 of τ1 | K2 of τ2 | · · ·
| datatype 'a t = K1 | · · ·

τ ⇒ int
∣∣ string ∣∣ bool ∣∣ char

| τ list
∣∣ τ option

| τ1 * τ2
∣∣ τ1 * τ2 * τ3

| τ1 -> τ2
| 'a

∣∣ 'b ∣∣ 'c

23

5. Program design with typing rules

One reason to use formal proofs (for operational seman-
tics and type systems) is that proof rules often tell us
how to write code. We can approach the coding task
the same way we approach other coding tasks: we can
start by viewing a proof as data and each proof rule as
a form of data. But if the goal is to translate a type sys-
tem (or any other proof system) into code, we are better
off specializing the design process to write the transla-
tion directly. This lesson presents a suitably specialized
process, which you will use for two assignments: type
checking and type inference.

The special process for turning rules into code, even
more than other processes, is ultimately meant to be
internalized and abbreviated. It is possible to com-
plete all the homework successfully without mastering
the process, but if you do master it, you will find your-
self writing clean code, fluently. Your coding will be
driven primarily by questions like “what do I know?”,
“what can I compute from what I know?”, and “what
do I want to compute next.” If you reach this level of
fluency, you will not need to leave evidence of your de-
sign process, and you will not need to follow the coding
suggestions to the letter.

5.1 Overall program design

When we code up a type system or other proof sys-
tem, every judgment form is implemented by a function.
A judgment form is a logical statement, amounting to
“a claim is provable.” A function implementing a judg-
ment form follows one of two models:

• Every metavariable in the judgment form is an in-
put to the function, and the function returns a
Boolean that answers the question, “is this claim
provable?”
Example: judgment x ∈ domΓ. Both x and Γ
are inputs, so the function takes a name and an
environment and returns a Boolean. This is the
function isBound from the ML homework.
Example: judgment τ1 ≡ τ2. Both τ1 and τ2 are
inputs, so the function takes two types and returns
a Boolean. This is the function eqType from the
type-systems chapter.

• Some metavariables are inputs and some are out-
puts. The function tries to compute values for the
output metavariables such that the whole judgment
is provable. If it succeeds, it returns those values.
If it fails, it raises an exception.

Example: judgment ∆,Γ ⊢ e : τ . The inputs are ∆,
Γ, and e, and the output is τ . This is the function
typeof from the type-systems homework.
To give an example of typeof, I assume I’m using
the environments from the initial basis. If, in ad-
dition, I pass the input expression (+ 2 2), typeof
will succeed and will return type int. If I pass
(+ 2 #t), typeof will fail by raising the exception
TypeError.
To identify functions like this, I frequently write a
judgment form with boxes around the outputs, as
in “∆,Γ ⊢ e : τ .”

To implement a type checker, a type inferencer, an-
other static analyzer, or even an interpreter, you im-
plement all the judgment forms. Here are some key
questions:

• What function will each judgment form be imple-
mented by? What are the inputs and the outputs?

• What are the proof rules for the judgment forms
I implement? What judgments do those proof rules
use?

• Which judgment forms are already implemented
for me? Perhaps in the book?

• Which judgment forms do I have to implement?

The answers are different for each different type system,
but many of the answers are found in the book:

Typed Impcore Table 6.2 on page 347
Typed µScheme Table 6.5 on page 376
nano-ML Table 7.3 on page 443

5.2 Design steps for one function

To design a function that implements a judgment form,
we follow the usual design steps:

1. Forms of data. Key data types found in type sys-
tems are

Γ Type environment
∆ Kind environment
C Equality constraint (inference only)
e Abstract syntax
τ Type
σ Type scheme (Hindley-Milner only)
α Type variable

25

Like the judgment forms, these forms of data and
their ML representations are shown in the tables
on pages 347, 376, and 443.
Not all of these data are broken down by cases:

• Environments are never broken down by
cases.

• Types are not usually broken down by cases,
except when implementing a constraint solver
for type inference.

• Type schemes have only one form, but
when instantiating polymorphic values, type
schemes are deconstructed. (Instantiation is
implemented in the book.)

• Equality constraints and abstract syntax,
when consumed, are broken down by cases.

2. Example inputs. To write examples of abstract syn-
tax, we use concrete syntax. (Writing abstract syn-
tax is what concrete syntax is for!) When possible,
we do the same with types, which also have a con-
crete syntax.

3. Function name. To form names, we usually use
nouns like “type” or verbs like “elaborate,” “eval-
uate,” “substitute,” “conjoin,” or “solve.” Or some
other name that is connected with the proof sys-
tem. Function names are often given by one of the
tables on pages 347, 376, and 443.

4. Function contract. This is a key step. At an ab-
stract level, all the contracts are the same: “im-
plement a judgment.” But it helps to be concrete.
Example: judgment form C,Γ ⊢ e : τ from nano-
ML. Here’s the function and its contract:

val typeof : exp * type_env -> ty * con
Calling typeof (e,Γ) returns (τ, C) such
that C,Γ ⊢ e : τ . Constraint C is not
guaranteed to be solvable.1

To help us remember a function’s contract, we can
write the corresponding judgment form with boxes
around the outputs: C ,Γ ⊢ e : τ .

5. Example results. While it is possible to write exam-
ple inputs and results directly as ML values, this

1The inputs and outputs to type inference are a frequent
source of confusion. Examples of other type systems, as well
as operational semantics, suggest the heuristic, “inputs on the
left, outputs on the right.” But that’s not how logic works—the
heuristic is wrong. The logical structure of a sequent is

context ⊢ claim.

In type inference, one of the outputs of the algorithm is the con-
straint C. This constraint, which is part of the context, expresses
the assumptions that have to be made in order for term e to be
typable.

level of work can usually be avoided. For most
type-checking tasks, try this method:

• Whenever possible, use the environments in
initial basis.

• When necessary, extend the initial environ-
ment with just one or two definitions.

• Write example inputs (expressions and defi-
nitions) using the concrete syntax of Typed
Impcore, Typed µScheme, or nano-ML. Write
example outputs likewise.

• Turn the examples into unit tests using the
check-type, check-principal-type, and
check-type-error forms.

When implementing the proof system for the con-
straint solver, there is no concrete syntax for con-
straints. Fortunately, the ML syntax for writing
constraints is not too painful. So to design the
constraint solver, write example inputs and results
as you learned to do when coding the first ML as-
signment.

6, 7, 8. Algebraic laws and code. Experienced type-system
hackers can code a type system from inference rules
alone. But while you are learning, you are better
off following the step-by-step translation procedure
outlined below. This procedure is the one you want
to internalize.

9. Revisit unit tests. To test a type checker, use con-
crete syntax with unit-test forms in source code,
as described in step 5 above. To test the nano-ML
constraint solver, use Unit functions to embed unit
tests inside your interpreter.

5.3 Translating rules to code

To implement a type system or other proof system,
you organize the rules by the form of the judgment
that appears in the conclusion. All the rules that con-
clude the same form are implemented by the same func-
tion. So for example, if you consult the table 6.5 on
page 376, you’ll see that the Typed µScheme type sys-
tem needs you to write two functions: typeof and
elabdef. The corresponding forms of concluding judg-
ment are ∆,Γ ⊢ e : τ and ⟨d,∆,Γ⟩ → Γ′ . You’ll
find the corresponding collections of rules summarized
in Figures 6.12 and 6.13 on pages 405 and 406. (Not ev-
erything is in the summaries; in particular, the rules for
literal values are found only at the beginning of sec-
tion 6.6.5, which starts on page 370.)

Now you know the function you are implementing, its
inputs and outputs, and the collection of rules that spec-
ifies the implementation. Your next step is to break the
rules down by forms of data, which is to say the forms

26

of the abstract syntax in the conclusions of the rules.
For typeof, this is expression syntax; for elabdef, this
is definition syntax. For each form of syntax, expect
one or more rules. In our case, we’re expecting exactly
one rule per form of syntax—systems with more than
rule are not hard to implement, but they are beyond
the scope of this lesson.

To finish the job, you translate each rule into code.
Code produced by beginners looks quite different from
code produced by experts, but the expert’s code reflects
the same thought process as the beginner’s—the code
is just streamlined. This lesson teaches you to write
beginner’s code. But because you’ll see expert code in
lecture and in the model solutions, the lesson also adds
notes about what experts do.

In a beginner’s code, every right-hand side (whether
a law or direct to ML code) takes the form of a let ex-
pression, with bindings and a body. The let expression
is developed using the custom design process embodied
in these steps:

(A) In your chosen rule, identify all the judgments
above the line. Put them on a list of unproved
judgments. (The expert knows exactly which judg-
ments are proved and unproved at every point in
the code, but the judgments might not need to be
written down.)

(B) In each unproved judgment, identify (1) what func-
tion implements the judgment and (2) which parts
of the judgment are inputs and which parts are out-
puts. Draw a box around each output. (The expert
knows at a glance what function implements each
judgment and what the inputs and outputs are.)

(C) Look at all the variables that appear in output po-
sitions in unproved judgments. If any variable ap-
pears in more than one such position, all those
outputs must be equivalent. In the original rule
and the list of unproved judgments, rename out-
puts until all output variables have unique names,
and introduce equality or equivalence constraints.
If you are writing type inference, return the new
constraints from the function. If you are writing
a type checker, add equivalence judgments to your
list of unproved judgments. (The expert may leap
directly to new constraints or new judgments, with-
out doing the intervening renaming step.)

(D) Look at all the literals or expressions that appear in
output positions in unproved judgments. In a type
checker, these are likely to be types like bool or
τ1 → τ2. These also must be renamed, and equal-
ity or equivalence constraints must be introduced.
(Again, the expert may leap directly to suitable
constraints, without the renaming step.)

(E) Once every judgment above the line has only vari-
ables in output positions, and no variable appears
in more than one output position, you are ready
to write code to discharge the unproved judg-
ments. You will need to keep track of the avail-
able metavariables. These include any inputs to
the judgment below the line—and their parts—plus
any metavariables introduced in the let bindings—
of which you don’t have any yet.
As long as there is an unproved judgment, re-
peat the following step: find an unproved judgment
whose inputs are all available. Now as a beginner,
implement that judgment in one of two ways:

• If the judgment has any outputs, add a let
binding that calls the function:

val output-pattern = f inputs
• If the judgment has no outputs, add a trivial

binding that confirms the judgment is prov-
able, and if not, raises an exception.2

val () =
if f inputs then
()

else
raise TypeError message

(The expert finds a judgment in exactly the same
way, but the expert may know at a glance which
metavariables are available and can therefore eas-
ily choose a judgment whose inputs are available.
But the expert’s code may be much more heavily
condensed than a beginner’s code: an expert may
not always bind a call’s result in a val, and an
expert is quite likely to combine the Boolean test
and the exception raising into a conditional that
appears in the body of the outer let.)
Once the judgment is implemented:

• Cross it off the list of unproved judgments.
• Note that its outputs, if any, are now avail-

able.

Beginners and experts alike continue repeating this
step until there are no more unproved judgments.

(F) Once all the unproved judgments have been dealt
with, return to the judgment below the line. Look
at the outputs. Every output should either be an
available variable or should be formed from avail-
able variables. Use these variables to make the out-
put, and place it in the body of the let. (An ex-
pert carries out the same process, but if the rule is

2If your proof system has more than one rule per syntactic
form, as in an interpreter for an operational semantics, for exam-
ple, you would not raise an exception. Instead, you would try the
next rule. Once you’ve tried all possible rules, then you raise the
exception.

27

simple enough, the expert may choose simply to re-
turn a result without the administrative overhead
of a let.)

Complete example

Let’s demonstrate the process with the If rule:

∆,Γ ⊢ e1 : bool ∆,Γ ⊢ e2 : τ ∆,Γ ⊢ e3 : τ

∆,Γ ⊢ If(e1, e2, e3) : τ

(A) We have these unproved judgments:

∆,Γ ⊢ e1 : bool
∆,Γ ⊢ e2 : τ

∆,Γ ⊢ e3 : τ

(B) Each of the unproved judgments is implemented by
typeof. The inputs are ∆, Γ, e1, e2, and e3, and
the outputs are bool and τ .

(C) The variable τ appears in two output positions in
unproved judgments. I rename the second position
τ3, and I introduce the type-equivalence judgement
τ ≡ τ3.
My original rule now looks like this:

∆,Γ ⊢ e1 : bool ∆,Γ ⊢ e2 : τ ∆,Γ ⊢ e3 : τ3
τ ≡ τ3

∆,Γ ⊢ If(e1, e2, e3) : τ

and the unproved judgements look like this:

∆,Γ ⊢ e1 : bool
∆,Γ ⊢ e2 : τ

∆,Γ ⊢ e3 : τ3

τ ≡ τ3

(D) Next, I spot bool in an output position. I rewrite
it to τ1. My original rule now looks like this:

∆,Γ ⊢ e1 : τ1 ∆,Γ ⊢ e2 : τ ∆,Γ ⊢ e3 : τ3
τ ≡ τ3 τ1 ≡ bool
∆,Γ ⊢ If(e1, e2, e3) : τ

and the unproved judgements look like this:

∆,Γ ⊢ e1 : τ1

∆,Γ ⊢ e2 : τ

∆,Γ ⊢ e3 : τ3

τ ≡ τ3

τ1 ≡ bool

(E) All of my unproved judgments have only variables
in output positions (τ1, τ , and τ3), and no vari-
able appears in more than one output position.
I’m ready to start discharging them.

The type system has only one rule for If, so I’m
going to code it directly in one clause of a clausal
definition for typeof. That clause begins some-
thing like this:

fun typeof (IFX (e1, e2, e3), Delta, Gamma) = ...

And my available variables are ∆, Γ, e1, e2, and e3.
Time to start proving judgments. Variables are
available for any of the first three unproved judg-
ments. I start with the first.

• Judgment ∆,Γ ⊢ e1 : τ1 has output τ1, so
I add this definition form to my let bindings:

val tau_1 = typeof (e1, Delta, Gamma)

This binding adds τ1 to my list of available
variables.

• Now that τ1 is available, I can discharge the
unproved judgment τ1 ≡ bool. This judg-
ment doesn’t have any outputs, so I have to
test it to see if it is provable. From Table 6.5,
the corresponding function is eqType. I add
this definition form to my let bindings:

val () =
if eqType (tau_1, booltype) then
()

else
raise TypeError "...message..."

• I now discharge the second unproved judg-
ment ∆,Γ ⊢ e2 : τ with this binding:

val tau = typeof (e2, Delta, Gamma)

• And I discharge the third unproved judgment
∆,Γ ⊢ e3 : τ3 with this binding:

val tau_3 = typeof (e3, Delta, Gamma)

• With variables τ and τ3 finally available, I can
discharge the last unproved judgment, τ ≡ τ3:

val () =
if eqType (tau, tau_3) then
()

else
raise TypeError "...message..."

• Finally, I return to the judgment below the
line, ∆,Γ ⊢ If(e1, e2, e3) : τ . The output
is τ , so tau is what I return in the body of
the let.

With all steps complete, here’s my full implementation
of the If rule, in beginner’s style:

28

fun typeof (IFX (e1, e2, e3), Delta, Gamma) =
let val tau_1 = typeof (e1, Delta, Gamma)

val () =
if eqType (tau_1, booltype) then
()

else
raise TypeError "...message..."

val tau = typeof (e2, Delta, Gamma)
val tau_3 = typeof (e3, Delta, Gamma)
val () =
if eqType (tau, tau_3) then
()

else
raise TypeError "...message..."

in tau
end

And here’s the code I might write as an expert, starting
with an internal function ty that reduces the bureau-
cracy of the repeated calls to typeof. I also combine
bindings; I change name tau to tau_2; and to make it
easier to write good error messages, I invert conditions
on the ifs:

fun typeof (IFX (e1, e2, e3), Delta, Gamma) =
let fun ty e = typeof(e, Delta, Gamma)

val (tau_1, tau_2, tau_3) =
(ty e1, ty e2, ty e3)

in if not (eqType (tau_1, booltype)) then
raise TypeError "...message..."

else if not (eqType (tau_2, tau_3)) then
raise TypeError "...message..."

else
tau_2

end

Summary of the steps

You’ll repeat these steps for every rule, so it’s worth
having a short summary:

(A) List unproved judgments.
(B) Know function names; box the outputs.
(C) Rename duplicated output variables.
(D) Introduce variables for output literals.
(E) Discharge each unproved judgment:

• Find a judgment whose inputs are available.
• If it has outputs, val bind them.
• It if has no outputs, confirm it returns true

or raise an exception.
(F) Return the outputs from the rule’s conclusion (the

judgment below the line).

29

6. Program design with abstract data types

Our 9-step design process is intended for functions. Ab-
stract data types introduce new problems, which are
dealt with by means of abstraction functions and invari-
ants. While you will have seen these ideas in Comp 15
and possibly in Comp 40, you may not have gotten the
vocabulary. So this chapter sketches the main ideas,
with the vocabulary. It also explains how to extend
and apply our design process to client code (outside of
a type’s module) and implementation code (inside of a
type’s module).

6.1 Creator, producer, observer, mu-
tator

Following a taxonomy of Barbara Liskov, operations on
an abstract data type are classified as creators, produc-
ers, observers, or mutators. This classification is ex-
plained in Programming Languages: Build, Prove, and
Compare, in section 2.5.2 on page 113. It informs both
the design of interfaces and the design of the client code
that uses those interfaces.

6.2 Representation, abstraction, in-
variant

The new idea here is data abstraction: we have a rep-
resentation that lives in the world of code, and an ab-
straction that lives in the world of ideas. This idea
pervades Comp 40, and you may also have encountered
it in Comp 15. “We can’t put a student in the com-
puter, but we can put a representation of a student in
the computer.”

For the classic data structures we study in Comp 15,
the world of ideas is usually the world of mathematical
ideas, like sets, sequences, and finite maps. For more
practical system-building, the world of ideas is usually
the outside world of problems we’re trying to solve: stu-
dents, images, games, or what have you. In all cases,
there are some steps you follow before you can start
designing functions:

(a) Identify the abstraction.
(b) Choose the data you will use to represent the ab-

straction. This choice is often informed by desires
about the cost model. For example, if you want
constant-time lookup, you might choose a hash ta-
ble.

(c) Explain the mapping from the representation to the
abstraction. This mapping is called the abstraction
function and is written A.

(d) Design invariants that restrict the representation.
Invariants sometimes also support the cost model.

In data-structures class, you study implementations
of well-known abstractions like sets, sequences, and
finite maps (also known as “tables” or “dictionar-
ies”). In real systems, designing new, useful abstrac-
tions is often hard. A new abstraction typically goes
through multiple iterations of refinement or even re-
design. In Comp 105, we avoid this part of the design
process—the abstractions have been designed for you,
and your role is to come up with good representations.

Choosing a representation may or may not be hard.
In data-structures class, you learn about proven, effec-
tive representations. These representations are found
in books, and the same representations are used in real
systems. But when you’re designing a representation
for a new, system-specific abstraction—like a two-player
game, for example—you will have to fall back on your
own ideas.

Once you’ve chosen a representation, you write an
abstraction function and a representation invariant.
These elements play different roles:

• An abstraction function tells us what each value
stands for, so we can be confident we are imple-
menting a module’s operations according to their
contracts. An abstraction function need be defined
only on representations that satisfy the invariant!
As an example, the abstraction function for a bi-
nary search tree usually just accumulates all the
values held at all of the nodes.
The role of the abstraction function is to make sure
your representation works, and to help you under-
stand how to implement each function. The func-
tion’s contract is written in terms of the abstraction
(“in the world of ideas”), but its code operates on
the representation (“in the world of code”). To ar-
gue that a function’s contract is fulfilled by its im-
plementation, you use the abstraction function to
map the representations of arguments and results
up to their corresponding abstractions.

• A representation invariant tells us what is true
about the representations we encounter at run
time. It could be something as simple as “the list

31

contains no duplicate elements” (for an implemen-
tation of sets as lists) or something so complicated
as to demand to be written mathematically. In-
teresting data structures usually satisfy multiple
representation invariants. These may be referred
to individually, and they may also be collectively
called “the invariant.”
A good example is a binary search tree. A binary
search tree always has an order invariant—usually
“smaller to the left, larger to the right.” The or-
der invariant guarantees that a search function will
find an object, if present, without having to look at
every node of the tree. A serious, sophisticated bi-
nary search tree also has a balance invariant. There
are many different forms of balance invariant, but
they all guarantee that search takes a number of
steps that is at most logarithmic in the number of
nodes in the tree.
The role of the representation invariant is to help
you write the code, and often to meet expectations
about costs. Every function is permitted to rely
on the representation invariant, which means it
may assume that every input satisfies the invariant.
And every function is obligated to guarantee the
representation invariant, which means it must en-
sure that every output satisfies the invariant. This
combination is called rely/guarantee reasoning.

These ideas will be clearer with some more examples.

6.3 Two examples

Sets

My first example abstraction is a set. To write my ab-
straction function, I use set notations like { · · · } and ∪.
Potential representations include a list, a sorted list,
and a binary search tree, as shown in Table 6.1. Any of
these representations will work, but they have different
cost models:

• A plain list is easy to implement, and as long as
sets are small, it’s cheap. By avoiding repeated el-
ements, we limit worst-case costs to the cardinality
of the set. The abstraction function simply con-
verts the list to a set.

• A sorted list stands for the same abstraction as
an unsorted list, and so it shares the abstraction
function with the unsorted list. But the sorted list
satisfies an additional invariant: it is sorted. This
invariant changes the cost model: adding a new ele-
ment now takes half as much expected time as with
the unsorted list, as does searching for an element
that’s not present.

• A binary search tree is the most difficult to imple-
ment, but if it includes a balance invariant in ad-
dition to just the order invariant, it is guaranteed
to do insertion, lookup and deletion in logarithmic
time, even in the worst case.
The order invariant is a great example of
rely/guarantee reasoning: the lookup function re-
lies on the invariant, and the insert function both
relies on it and guarantees it.

Priority queues

My next example abstraction is a priority queue.
This abstraction is actually just a sorted list of values,
with operations that provide access only to the front of
the list. As shown in table 6.2, a priority queue can
be represented as a sorted list or as a binary tree, but
if you studied data structures at Tufts, you probably
learned to represent it as an array, under the name
“heap.” My favorite representation is the binary tree:
it is easy to implement, and with the “leftist heap” in-
variant, it is super efficient. Regardless of the represen-
tation, my abstraction function maps the representation
onto a sequence of elements.

6.4 Suggestions

For homework, you’ll write abstraction functions and
representation invariants for other abstractions. Rep-
resentation invariants are usually pretty easy to write
down:1 because they operate on actual representations,
they can be coded, typechecked, and tested. Abstrac-
tion functions are more challenging, because by defini-
tion, they map to the world of ideas, which might not
be represented in code. Here are some suggestions for
the abstraction functions for homework problems:

• For natural numbers, the world of ideas is the
mathematician’s world of natural numbers, some-
times written N. Operators and notations that are
well-defined in this world include 0, S (successor),
and +.

• For integers, the world of ideas is the mathe-
matician’s world of integers, sometimes written Z.
Operators and notations that are well-defined in
this world include 0, +, −, and · (multiplication).
At need, you can also resort to div and mod.

• For coins, the simplest abstraction is probably a
list of denominations, such as “quarter, quarter,
dime, quarter, nickel.” Operators and notations
that are well-defined in this world include all the
usual operations on lists.

1The order invariant for a binary search tree is an exception;
it’s hard to write down correctly and completely, especially in an
abstract setting where the type of a value is not known.

32

Abstraction Operations
Set At minimum, empty/new, insert, delete,

member?; possibly also empty?, size,
union, inter, diff

Representation Invariant Abstraction Function
List No element is repeated. A([]) = { }

A(x::xs) = {x} ∪ A(xs)
Sorted list No element is repeated; elements are sorted. (Same as list.)
Binary search tree No element is repeated; smaller elements

are in left subtrees; larger elements are in
right subtrees; perhaps some sort of balance
invariant.

A(EMPTY) = { }
A(NODE(l,x,r)) = A(l) ∪ {x} ∪ A(r)

Table 6.1: Representations of sets

Abstraction Operations
Priority queue At minimum, empty/new, insert, empty?,

and delete-min; possibly also size,
find-min, merge

Representation Invariant Abstraction Function
List List is sorted with the smallest element at

the front (inefficient unless small).
A(xs) = xs

Array Element at index i is not larger than the
elements at indices 2i and 2i+ 1, if any.

A(a) = sort(a)

Binary tree Element at node is not larger than elements
at left and right child, if any.

A(EMPTY) = []

A(NODE(l,x,r)) = x :: merge(A(l),A(r))

Leftist heap Binary tree, with the additional invariant
that every left subtree is at least as high as
the corresponding right subtree.

(Same as binary tree.)

Table 6.2: Representations of priority queues

• For players, the abstractions are X and O.

6.5 How design steps are affected

Abstract data types affect the design process because
of two changes:

• Contracts for functions are written for the ab-
straction (“in the world of ideas”), but the func-
tions themselves are written for the representation
(“in the world of code”).

• Outside its defining module, an abstract type has
no forms of data.

The implications are explored below.

Design steps for client code

Outside an abstract type’s module, code is called a
client of the module. Here’s how each step of the design
process works in client code:

1. Forms of data. Manifest types have exposed repre-
sentations, so client code works with them just as
usual.

Abstract types don’t give access to the forms of
data. If you’re a client and you’re consuming ab-
stract data, you’ll typically be calling observers—
sometimes mutators. And to make new abstract
values, you’ll use creators and producers.

33

A value of abstract type is a little bit analogous to
a function: all you can do with it is what’s in the
interface.

2. Example inputs. Example inputs can be made only
by calling creators, producers, and sometimes mu-
tators. (Mutation makes testing harder.)

3. Functions’ names. Nothing changes.

4. Functions’ contracts. The client’s own contracts
may mention the abstraction or may even be writ-
ten in terms of the abstraction. The client doesn’t
know about the representation—which is mostly
the point.

5. Example results. Any example results of abstract
type have to be expressed indirectly, again us-
ing creators, producers, and sometimes mutators.
(Mutation makes testing harder.)

6. Algebraic laws. When client code consumes a value
of abstract type, it can’t have one algebraic law
per form of data—an abstract type has only one
form of data. Instead, to decide on a law, you can
use side conditions from an observer, or you can
even break an observed value down by forms of its
data. For example, in the Abstract Game Solver,
it’s useful to write laws for the advice function by
breaking down the list of legal moves.

7. Case analysis. You can’t do case analysis on a
value of abstract type directly. But you may be
able to do case analysis on the results of calling an
observer in the interface.

8. Coding results. Right-hand sides are coded as
usual.

9. Revisit unit tests. Unit tests can be written as
usual. To construct values for use in unit tests,
you can call creators and producers (and possibly
mutators) for the abstract type.
Unit testing has a pitfall: before writing unit tests,
we have to know how to compare test results for
equality. A well-designed abstraction will include
an equality-testing function, but unit tests often
try to use a built-in equality, which may or may
not work. In particular, the built-in equality de-
fined by Standard ML works on representations,
not abstractions, and it may say two values are
different when they should actually be considered
the same.

Design steps for implementations

Inside an abstract type’s module, code has complete
access to the representation. Here’s how each step of
the design process works in an implementation:

1. Forms of data. The implementation has complete
access to the representation, so forms of data are
available as usual.

2. Example inputs. Example inputs can be written
as usual—but care must be taken to be sure that
every example input satisfies the representation in-
variant.

3. Function’s names. Nothing changes.

4. Function’s contracts. The contract of each function
is given in the interface, and it is written in terms
of the abstraction. But the function itself is written
in terms of the representation. To be confident that
each function fulfills its contract, you must define
the function with the type’s abstraction function
in mind.
Also, each exported function2 has these amend-
ments added to its contract:

• Every input of abstract type satisfies the rep-
resentation invariant for that type.

• Every output of abstract type must satisfy the
representation invariant for that type.

Private functions may, if they wish, deal with argu-
ments and results that don’t satisfy the represen-
tation invariant. Indeed, one common use of pri-
vate functions is to re-establish an invariant before
returning a result. Each private function’s rela-
tionship to and action on representation invariants
must be documented in its contract.

5. Example results. Example results can be written
as usual, as can unit tests.

6. Algebraic laws. Algebraic laws can be written as
usual.

7. Case analysis. Case analysis can be based on alge-
braic laws as usual.

8. Coding. Right-hand sides are coded as usual.

9. Revisit unit tests. Unit tests can be written as
usual.

2A function is exported if it is visible in the interface that is
being implemented. C++ calls these functions “public.”

34

7. Program design with objects

Like abstract data types, objects demand that we adapt
our 9-step design process, which is intended for func-
tions. This lesson explains the adaptations, focusing on
the effects of dynamic dispatch and the limitations on
access to representation. It also discusses each step in
the design process, and it shows how to convert alge-
braic laws to double dispatch.

In order to use this lesson effectively, you should re-
fresh your memory on the basic 9-step process described
in the introduction, as well as the preceding lesson (de-
sign with abstract data types), on which this one builds.

7.1 Designing with abstraction

Many ideas from abstract data types also work with
objects:

• Barbara Liskov’s taxonomy of creators, producers,
observers, and mutators (Ramsey, section 2.5.2 on
page 113) is equally useful for both abstract data
types and objects.

• Whether an abstraction is implemented using ab-
stract data types or objects, abstraction functions
and invariants continue to play a key role.

• Contracts for methods are written for the ab-
straction (“in the world of ideas”), but the meth-
ods themselves are written for the representation
(“in the world of code”).

• Like an abstract data type outside its defining mod-
ule, an object has only one form of data, which is
opaque.

• Whether data abstraction is implemented using ab-
stract data types or objects, program design is es-
sentially interface design. This aspect of program
design is beyond the scope of Comp 105—in 105,
we work with interfaces that are given to us.

These similarities help, but our design and coding are
affected by these key differences:

• With either form of abstraction, our 9-step design
process is useful for designing each piece of the ab-
straction. But the pieces are different: with ab-
stract data types, each piece is a function that
sits inside a module. With objects, each piece is
a method that sits inside a class definition.

• Abstract data types give access to the representa-
tion of every value of abstract type, including pa-
rameters to all functions. This access comes with
an obligation to understand and respect the invari-
ant. Objects give access only to the representation
of the receiver. Each argument must be treated
as an abstraction and dealt with by sending mes-
sages in its public protocol. (If the argument is
supposed to be “like” the receiver, it can also be
sent messages from the private protocol that they
have in common.) This difference is discussed fur-
ther in the textbook in section 10.7, which starts
on page 670.

• With objects, interfaces are designed not just be
used by clients, but also to be inherited from by
subclasses.

• An abstract data type can have any kind of rep-
resentation: an algebraic type, a tuple, or even
a function, for example. An object can have only
one kind of representation: a collection of named
instance variables.

• A function that expects a value of abstract type
can be used only with values of that type. But a
method that expects an object of a given class can
be used with objects of any class, provided those
objects mimic the protocol of the class that the
method is expecting. This mimicry, which is a key
feature of object-oriented systems, is called behav-
ioral subtyping or sometimes “duck typing.”

7.2 How design steps are affected

Our design process is most heavily influenced by two
aspects of object-orientation:

• Dynamic dispatch changes the way we identify
forms of data and the way we code case analysis.
Case analysis in particular is so changed that you
may not recognize it as “coding.” In particular,
we never ask an object, “how were you made?”

• Information hiding denies access to the representa-
tions of other objects, even if we know everything
about their class. In other words, only the receiver
of a message knows from what parts it was made.
We never ask an argument object, “from what parts
were you made?”

35

The effects of dynamic dispatch

A beginning object-oriented programmer must learn
new design techniques for data that take multiple forms:
Booleans, lists, trees, and so on. We can draw on our ex-
periences with with algebraic data types and abstract
data types. For Smalltalk and other class-based lan-
guages, I recommend these design techniques:

• Every abstraction should be associated with a
class. The class defines the abstraction’s proto-
col, which is the Smalltalk name for its interface.
If the abstraction can take multiple forms, which
is common, some messages in the protocol will be
designated as subclass responsibilities. These mes-
sages will be implemented differently for different
forms. An example is the “do something to every
element” (do:) method defined on every form of
Collection.
A class whose methods include subclass responsi-
bilities is an abstract class. It is not itself instanti-
ated; only subclasses are instantiated.
An effective abstract class may also define common
methods which are shared among multiple forms of
the abstraction. An example is the size method
on collections, whose implementation is shared by
lists, sets, dictionaries, and so on.

• When the abstraction has multiple forms, each
form should be implemented by its own subclass.
For example, class Boolean has subclasses True
and False. Class Collection has subclasses Set
and List.

• Case analysis of forms of data is implemented by
dynamic dispatch. The subclass for a form knows
what form it is, and its methods contain code only
for that form.

We do case analysis by dynamic dispatch because in
an object-oriented system, we don’t get to look at the
forms of argument objects. This limitation is part of
what makes object-orientation different from abstract
data types, and it deserves a deeper look.

Forms of data, access to representation

When I’m using abstract data types, and I’m a func-
tion defined in a particular module, I have access to the
representation of every value whose type is defined in-
side that module. When I’m using objects, and I’m a
method defined on a particular class, my level of access
depends on what object I’m looking at:

A. If I’m looking at the receiver, which is an instance
of my class, I have full access to its representation.
This representation, which is the representation of

self, always takes the same form: a collection of
instance variables whose names I know. They are
the variables from my class definition, plus the ones
inherited from the definitions of my superclasses.
I can refer to them by name, and I can mutate
them using set.

B. If I’m looking at another object, I have no access
to its representation: all I can do is send messages
to it. To know what messages, I first consult my
own class’s protocol, which gives me my contract.
My contract tells me what class of object I’m look-
ing at, and I can send any message—but only those
messages—that are in the class’s public protocol.

C. If my contract tells me that I’m looking at an ob-
ject of the same class that I am, I still can’t ac-
cess its representation—this is the big limitation in
an object-oriented system—but in addition to the
messages in our shared, public protocol, I can also
send it private messages. Private messages are in-
cluded in all the arithmetic protocols, for example.

Behavioral subtyping—mimicry of a protocol by an ob-
ject of a different class—can be extended to include pri-
vate messages.

With the restrictions on access to representation in
mind, we can now examine the design steps.

Design steps

Here’s how each step of the design process works with
objects:

1. Forms of data. Our thinking about forms of data
is unchanged: we still want to know the different
ways data can be formed, and this question is still
the starting point for every design. Our coding is
different: every form of data corresponds to a class,
and each part from which that form is made corre-
sponds to one instance variable of the class.

2. Example inputs. As with abstract data types, ex-
ample inputs can be made only by calling creators,
producers, and mutators. (In Smalltalk, mutation
and mutable abstractions are common.)

3. Method’s name. We’re dealing with methods,
not functions, but the criteria for naming are un-
changed.

4. Method’s contract. As with abstract data types,
each contract is written on the level of the abstrac-
tion, not the representation.

5. Example results. Like example inputs, example re-
sults must be expressed indirectly, using creators,
producers, and mutators.

36

6. Algebraic laws. Perhaps surprisingly, algebraic
laws involving forms of data are just as useful as
in any other setting. The key is to know what val-
ues you need to do case analysis on. If it’s just
one value, make that value the receiver, and you’re
good to go. If you need to do case analysis on mul-
tiple values, you need to rewrite the laws to support
multiple dispatch. To see how, read section 7.3 of
this lesson.

7. Case analysis. In an object-oriented language, case
analysis is not what you find in a functional lan-
guage or an imperative language:

• It’s not in a syntactic form like if or case.
• We can do case analysis only on the receiver

of a message.
• Instead of all cases appearing in the same

function, different cases appear in different
method definitions.

• By the time a method’s code is running, the
case analysis is already done.

You predetermine the case analysis when you write
the code, by putting the right method definition
on the right class. (The compiler does the actual
case analysis at run time, by dispatching to that
method.) But you can still translate algebraic laws.
Here’s a simple example for append, with laws writ-
ten in ML notation:

append [] ys = ys
append (x::xs) ys = x :: append xs ys

Each form of data is its own subclass, and each sub-
class gets the case with its form. Here’s a subclass
for a cons cell:

(class MLCons
[subclass-of Object]
[ivars first rest]
(class-method first:rest: (z zs) ...)

; allocate & initialize a cons cell

(method append: (ys)
(MLCons first:rest:

first
(rest append: ys)))

)

And here’s one for an empty list:

(class MLNil
[subclass-of Object]
(method append: (ys)

ys)
)

8. Coding results. Once you’ve done your case analy-
sis, the right-hand sides of your algebraic laws are
coded more or less as usual—instead of passing val-
ues to functions, you are sending messages to ob-
jects, but the design is the same.
In Smalltalk, other things are changing that
affect coding: control flow is implemented in
continuation-passing style, mutable abstractions
are common, and you might use loops or muta-
tion. These changes affect our coding technique,
but they don’t influence the design process.1

9. Revisit unit tests. Unit tests can be written as
usual. To get objects for use in unit tests, you may
write the occasional numeric literal or array literal,
but mostly you send messages to objects.

7.3 Laws for double dispatch

What if you want to do case analysis on two or more
forms of data? You code your analysis using multi-
ple dispatch. This section shows a short example cod-
ing case analysis on two forms, using double dispatch.
The example is multiplication of signed integers.

A signed integer is one of the following:
• :+ n, where n is a natural number
• :- n, where n is a natural number

Signed integers are multiplied according to these alge-
braic laws:

(:+ n) * (:+ m) = :+ (n * m)
(:+ n) * (:- m) = :- (n * m)
(:- n) * (:+ m) = :- (n * m)
(:- n) * (:- m) = :+ (n * m)

On the left, * stands for multiplication of signed inte-
gers; on the right, it stands for multiplication of natural
numbers.

Coding these laws requires nested case analysis.
To do it in Scheme, you write nested if expressions.
To do it in ML, you write tuple patterns (which the com-
piler translates into nested ifs). To do it in Smalltalk,
you need nested dispatch—in this case, double dispatch.

To implement a method using double dispatch, we be-
gin by extending an object’s protocol with new, private
messages. Each message encodes two pieces of informa-
tion: the name of the original method, and the form
of the original receiver. In our example, the original
method is *, and the original receiver can have one of
two forms: :+ n or :- n. So I’ll use two new messages:

• Message timesPos: means * was sent to a receiver
of the form :+ n

1Mutable state actually does influence a design process, but
designing with mutable state is beyond the scope of Comp 105.

37

• Message timesNeg: means * was sent to a receiver
of the form :- n

Using these messages, I write “laws of dispatch:”

(:+ n) * A = (A timesPos: (:+ n))
(:- n) * A = (A timesNeg: (:- n))

In these laws, there’s no case analysis on the argu-
ment A. The only case analysis is on :+ n versus :- n,
which should be coded by dynamic dispatch of * on the
class of the receiver. We implement the * method by
sending timesPos: or timesNeg: to the argument A.

To design timesPos: and timesNeg:, we need laws.
To get them, we combine the dispatch laws with the
original laws for *. We start by expanding the dis-
patch laws, noting that argument A can take two forms.
I make two copies of each dispatch law—one where A is
:+ m, and one when A is :- m:

(:+ n) * (:+ m) = ((:+ m) timesPos: (:+ n))
(:+ n) * (:- m) = ((:- m) timesPos: (:+ n))

(:- n) * (:+ m) = ((:+ m) timesNeg: (:- n))
(:- n) * (:- m) = ((:- m) timesNeg: (:- n))

By design, the expanded dispatch laws have the same
left-hand sides as the original laws for *. So the corre-
sponding right-hand sides must be equal:

((:+ m) timesPos: (:+ n)) = :+ (n * m)
((:- m) timesPos: (:+ n)) = :- (n * m)

((:+ m) timesNeg: (:- n)) = :- (n * m)
((:- m) timesNeg: (:- n)) = :+ (n * m)

Now I can write one method definition for each law.
Here are two of the four:
(method timesPos: (plus-n) ; self is :+ m
(LargePositiveInteger

withMagnitude:
(magnitude * (plus-n magnitude))))

(method timesPos: (plus-n) ; self is :- m
(LargeNegativeInteger

withMagnitude:
(magnitude * (plus-n magnitude))))

Which method goes on which class? You figure it out.

38

Acknowledgements

The design process presented in this monograph is a
direct descendant of the six-step “design recipe” devel-
oped by Felleisen, Findler, Flatt, and Krishnamurthi
(second edition, 2018). The process and some individ-
ual lessons also draw on the work of Tony Hoare on
abstract data types, the work of John Guttag and Jean-
nette Wing on algebraic specification, and the work of
Will Cook on data abstraction.

The first draft of Lesson 1 was written by Nate Bragg.

39

	Introduction: Why program design?
	Proof systems and program design
	Formal judgment toand sequents
	Proofs and inference rules
	Five proof systems
	From proof system to algebraic specification
	From algebraic laws to recursive function
	Complete process examples
	Mistakes to avoid in algebraic laws

	Scheme values and more algebraic laws
	Describing Scheme data
	Laws for Scheme data
	More uses of algebraic laws
	Common issues using algebraic laws with Scheme

	Higher-order functions
	Designing with functions as arguments
	Designing with functions as results

	ML types and pattern matching
	Design steps

	Syntax help for Standard ML
	Program design with typing rules
	Overall program design
	Design steps for one function
	Translating rules to code

	Program design with abstract data types
	Creator, producer, observer, mutator
	Representation, abstraction, invariant
	Two examples
	Suggestions
	How design steps are affected

	Program design with objects
	Designing with abstraction
	How design steps are affected
	Laws for double dispatch

	Acknowledgements

