6.6. POLYMORPHIC TYPE SYSTEMS AND TYPED μSCHEME

Type checking

This book does not provide a type checker for Typed μScheme; its implementation is left as Exercise 14. Type checking requires an expression or definition, a type environment, and a kind environment. Calling $\texttt{elabdef}(t, \Gamma, \Delta)$ should return a pair (Γ', s), where $(t, \Gamma) \rightarrow \Gamma'$ and s is a string that represents the type of the thing defined.

\begin{verbatim}
(type checking for Typed \mu Scheme \[prototype\] \[283\a\] =

exception LeftAsExercise of string
fun typeof _ = raise LeftAsExercise "typeof"
fun elabdef _ = raise LeftAsExercise "elabdef"
\end{verbatim}

6.6.7 The rest of an interpreter for Typed μScheme

Evaluation

Here is an appropriate place to dispose of the evaluation rules for Typed μScheme. The rules for expressions are exactly the same as the rules for μScheme; at run time, the types have no effect whatever. We require new rules for type abstraction and application, but the evaluator behaves exactly as if these constructs aren’t there.

\begin{align*}
\langle e, \rho, \sigma \rangle & \Downarrow \langle v, \sigma' \rangle & \text{(TYAPPLY)} \\
\langle \text{TYP}\text{APPLY}(e, \tau_1, \ldots, \tau_n), \rho, \sigma \rangle & \Downarrow \langle v, \sigma' \rangle \\
\langle e, \rho, \sigma \rangle & \Downarrow \langle v, \sigma' \rangle & \text{(TYLAMBDA)} \\
\langle \text{TY}\text{LAB}\text{MA}\text{N}\text{DA}(\tau_1, \ldots, \tau_n, e), \rho, \sigma \rangle & \Downarrow \langle v, \sigma' \rangle
\end{align*}

Most of the evaluator for Typed μScheme is just like the evaluator for μScheme in Chapter 5. The code for the two new cases acts as if TYAPPLY and TYLAMBDA aren’t there.

\begin{verbatim}
(alternatives for \texttt{ev} for TYAPPLY and TYLAMBDA \[283\b\] \[715\d\] =
| \texttt{ev} (TYAPPLY (_, _)) = \texttt{ev} e \\
| \texttt{ev} (TYLAMBDA (_, e)) = \texttt{ev} e
\end{verbatim}

The rest of the evaluator appears in Appendix C.

The rules for definitions are slightly different from those in μScheme; as described in Exercise 38 in Chapter 3, VAL must always create a new binding. Otherwise, we could subvert the type system by using VAL to change the type of an existing value. The VAL rule must use the old environment; VAL-Rec uses the new one.

\begin{align*}
\ell \not\in \text{dom} \sigma \\
\langle e, \rho, \sigma \rangle & \Downarrow \langle v, \sigma' \rangle & \text{(VAL)} \\
\langle \text{VAL}(x, e), \rho, \sigma \rangle & \rightarrow \langle \rho\{x \mapsto \ell\}, \sigma'\{\ell \mapsto v\} \rangle \\
\ell \not\in \text{dom} \sigma \\
\langle e, \rho\{x \mapsto \ell\}, \sigma\{\ell \mapsto \text{unspecified}\} \rangle & \Downarrow \langle v, \sigma' \rangle & \text{(VAL-Rec)} \\
\langle \text{VAL-REC}(x, \tau, e), \rho, \sigma \rangle & \rightarrow \langle \rho\{x \mapsto \ell\}, \sigma'\{\ell \mapsto v\} \rangle
\end{align*}

The code that implements these rules is in Appendix C.