Examples: Well-formed types

These are types:
- `int`
- `bool`
- `int * bool`
- `int * int -> int`
Examples: Not yet types, or not types at all

These “types in waiting” don’t classify any terms
 • list (but int list is a type)
 • array (but char array is a type)
 • ref (but (int -> int) ref is a type)

These are utter nonsense
 • int int
 • bool * array
Type formation rules

We need a way to classify type expressions into:

• types that classify terms
• type constructors that build types
• nonsense terms that don’t mean anything
Type constructors

Technical name for “types in waiting”

Given zero or more arguments, produce a type:
- Nullary int, bool, char also called base types
- Unary list, array, ref
- Binary (infix) –>

More complex type constructors:
- records/structs
- function in C, uScheme, Impcore
What’s a good type?

Type formation rules for Typed Impcore

\[\tau \in \{\text{UNIT, INT, BOOL}\} \]

\(\tau \) is a type \hspace{1cm} (\text{BASETYPES})

\[\tau \text{ is a type} \]

\[\text{ARRAY}(\tau) \text{ is a type} \] \hspace{1cm} (\text{ARRAYFORMATION})
Type judgments for monomorphic system

Two judgments:
• The old *typing judgment* $\Gamma \vdash e : \tau$
• Today’s judgment “τ is a type”
Type rules for variables

Lookup the type of a variable:

\[
x \in \text{dom } \Gamma \quad \Gamma(x) = \tau \\
\Gamma \vdash x : \tau \quad \text{(VAR)}
\]

Types match in assignment:

\[
x \in \text{dom } \Gamma \quad \Gamma(x) = \tau \quad \Gamma \vdash e : \tau \\
\Gamma \vdash \text{SET}(x, e) : \tau \quad \text{(SET)}
\]
Type rules for control

Boolean condition; matching branches

\[
\begin{align*}
\Gamma \vdash e_1 : \text{BOOL} & \quad \Gamma \vdash e_2 : \tau & \quad \Gamma \vdash e_3 : \tau \\
\hline
\Gamma \vdash \text{IF}(e_1, e_2, e_3) : \tau
\end{align*}
\]

(IF)
Product types: Both x and y

New abstract syntax: PAIR, FST, SND

- τ_1 and τ_2 are types
 - $\frac{\tau_1 \times \tau_2 \text{ is a type}}{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}
 - $\Gamma \vdash \text{PAIR}(e_1, e_2) : \tau_1 \times \tau_2$
 - $\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{FST}(e) : \tau_1}$
 - $\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{SND}(e) : \tau_2}$

Pair rules generalize to product types with many elements ("tuples," "structs," and "records")
Arrow types: Function from x to y

Syntax: \texttt{lambda}, application

Use a tuple to represent a multi-argument function:

\[
\frac{\tau_1, \ldots, \tau_n \text{ and } \tau \text{ are types}}{\tau_1 \times \cdots \times \tau_n \rightarrow \tau \text{ is a type}} \quad \text{(ARROW\textsc{Formation})}
\]
Arrow types: Function from x to y

Eliminate with application:

\[\Gamma \vdash e : \tau_1 \times \cdots \times \tau_n \rightarrow \tau \]
\[\Gamma \vdash e_i : \tau_i, \quad 1 \leq i \leq n \]
\[\Gamma \vdash \text{APPLY}(e, e_1, \ldots, e_n) : \tau \]

Introduce with \textbf{lambda}:

\[\Gamma \{ x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n \} \vdash e : \tau \]
\[\Gamma \vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : \tau_1 \times \cdots \times \tau_n \rightarrow \tau \]
Typical syntactic support for types

Explicit types on lambda and define:
 • For lambda, argument types:
 (lambda ([n : int] [m : int]) (+ (* n n) (* m m)))
 • For define, argument and result types:
 (define int max ([x : int] [y : int])
 (if (< x y) y x))

Abstract syntax:

datatype exp = ...
 | LAMBDA of (name * tyex) list * exp
 ...

datatype def = ...
 | DEFINE of name * tyex * ((name * tyex) list * exp)
 ...
Array types: Array of x

Formation:

\[\tau \text{ is a type} \]

\[\text{ARRAY}(\tau) \text{ is a type} \]

Introduction:

\[\Gamma \vdash e_1 : \text{INT} \quad \Gamma \vdash e_2 : \tau \]

\[\Gamma \vdash \text{AMAKE}(e_1, e_2) : \text{ARRAY}(\tau) \]
Array types continued

Elimination:

\[
\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT} \\
\hline \\
\Gamma \vdash \text{AAT}(e_1, e_2) : \tau
\]

\[
\Gamma \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma \vdash e_2 : \text{INT} \quad \Gamma \vdash e_3 : \tau \\
\hline \\
\Gamma \vdash \text{APUT}(e_1, e_2, e_3) : \tau
\]

\[
\Gamma \vdash e : \text{ARRAY}(\tau) \\
\hline \\
\Gamma \vdash \text{ASIZE}(e) : \text{INT}
\]
References (similar to C/C++ pointers)

Given

\[
\begin{align*}
\text{ref } \tau & \quad \text{REF}(\tau) \\
\text{ref } e & \quad \text{REF-MAKE}(e) \\
*e & \quad \text{REF-GET}(e) \\
e_1 := e_2 & \quad \text{REF-SET}(e_1, e_2)
\end{align*}
\]

Write formation, introduction, and elimination rules.
Reference Types

Formation:

\[\tau \text{ is a type} \]

\[\frac{}{\text{REF}(\tau) \text{ is a type}} \]

Introduction:

\[\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \text{REF-MAKE}(e) : \text{REF}(\tau)} \]

Elimination:

\[\frac{\Gamma \vdash e : \text{REF}(\tau)}{\Gamma \vdash \text{REF-GET}(e) : \tau} \]

\[\frac{\Gamma \vdash e_1 : \text{REF}(\tau) \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{REF-SET}(e_1, e_2) : \tau} \]
From rule to code

Arrow-introduction

\[
\Gamma \{ x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n \} \vdash e : \tau \quad \tau_i \text{ is a type, } 1 \leq i \leq n
\]

\[\Gamma \vdash \text{LAMBDA}(x_1 : \tau_1, \ldots, x_n : \tau_n, e) : \tau_1 \times \cdots \times \tau_n \rightarrow \tau\]
Type-checking LAMBDA

datatype exp = LAMBDA of (name * tyex) list * exp

...

fun ty (Gamma, LAMBDA (formals, body)) =
 let val Gamma’ = (* body gets new env *)
 foldl (fn ((x, ty), g) => bind (x, ty, g))
 Gamma formals
 val bodytype = ty(Gamma’, body)
 val formaltypes =
 map (fn (x, ty) => ty) formals
 in funtype (formaltypes, bodytype)
 end