Datatype declarations

datatype suit = HEARTS | DIAMONDS | CLUBS | SPADES

datatype 'a list = nil (* copy me NOT! *) |
| op :: of 'a * 'a list

datatype 'a heap = EHEAP |
| HEAP of 'a * 'a heap * 'a heap

type suit val HEARTS : suit, ...
type 'a list val nil : forall 'a . 'a list
val op :: : forall 'a .
| 'a * 'a list -> 'a list

type 'a heap
val EHEAP: forall 'a.
val HEAP : forall 'a.'a * 'a heap * 'a heap -> 'a heap
Eliminate values of algebraic types

New language construct case (an expression)

fun length xs =
 case xs
 of [] => 0
 | (x::xs) => 1 + length xs

Clausal definition is preferred
(sugar for val rec, fn, case)
case works for any datatype

fun toStr t =
 case t
 of EHEAP => "empty heap"
 | HEAP (v, left, right) =>
 "nonempty heap"

But often a clausal definition is better style:

fun toStr' EHEAP = "empty heap"
 | toStr' (HEAP (v, left, right)) =
 "nonempty heap"
Types and their ML constructs

<table>
<thead>
<tr>
<th>Type</th>
<th>Produce</th>
<th>Consume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrow</td>
<td>Lambda (fn)</td>
<td>Application</td>
</tr>
<tr>
<td>Algebraic</td>
<td>Apply constructor</td>
<td>Pattern match</td>
</tr>
<tr>
<td>Tuple</td>
<td>(e₁, ⋯, en)</td>
<td>Pattern match!</td>
</tr>
</tbody>
</table>
Type-directed coding

Common idea in functional programming: “lifting”

val lift : forall 'a . ('a -> bool) -> ('a list -> bool)

What (sensible) functions have this type?
Working...
Type-directed coding (results)

```ocaml
val lift : ('a -> bool) -> ('a list -> bool)
fun lift p = (fn xs => (case xs
    of [] => false
    | z::zs => p z orelse
       lift p zs))
```
Merge top-level `fn` into `fun`

```plaintext
define lift p xs = case xs of [] => false |
  _ z::zs => p z orelse |
  lift p zs
```

Merge top-level case into fun

fun lift p [] = false
 | lift p (z::zs) = p z orelse lift p zs
I know this function!

fun exists p [] = false
 | exists p (z::zs) = p z orelse exists p zs
Frequently overlooked

An algebraic data type is a collection of alternatives

Don’t forget:
 • Each alternative must have a name

The thing named is the value constructor

(Also called “datatype constructor”)
Define algebraic data types for SX_1 and SX_2, where

$$ SX_1 = ATOM \cup LIST(SX_1) $$

$$ SX_2 = ATOM \cup \{ (\text{cons } v_1 \ v_2) \mid v_1 \in SX_2, v_2 \in SX_2 \} $$

(take $ATOM$, with ML type atom as given)
Wait for it . . .
Exercise answers

datatype sx1 = ATOM1 of atom
 | LIST1 of sx1 list

datatype sx2 = ATOM2 of atom
 | PAIR2 of sx2 * sx2
Exception handling in action

loop (evaldef (reader (), rho, echo))
handle EOF => finish ()
 | Div => continue "Division by zero"
 | Overflow => continue "Arith overflow"
 | RuntimeError msg => continue ("error: " ^ msg)
 | IO.Io {name, ...} => continue ("I/O error: " ^ name)
 | SyntaxError msg => continue ("error: " ^ msg)
 | NotFound n => continue (n ^ "not found")
ML Traps and pitfalls
Order of clauses matters

fun take n (x::xs) = x :: take (n-1) xs
 | take 0 xs = []
 | take n [] = []

(* what goes wrong? *)
Gotcha — overloading

- fun plus x y = x + y;
> val plus = fn : int -> int -> int
- fun plus x y = x + y : real;
> val plus = fn : real -> real -> real
Gotcha — equality types

- (fn (x, y) => x = y);
> val it = fn : "a * "a -> bool

Tyvar "a is “equality type variable”:
- values must “admit equality”
- (functions don’t admit equality)
Gotcha — parentheses

Put parentheses around anything with | case, handle, fn

Function application has higher precedence than any infix operator
Syntactic sugar for lists

- 1 :: 2 :: 3 :: 4 :: nil; (* :: associates to the right *)
> val it = [1, 2, 3, 4] : int list

- "the" :: "ML" :: "follies" :: [];
> val it = ["the", "ML", "follies"] : string list

> concat it;
val it = "theMLfollies" : string
ML from 10,000 feet
The value environment

Names bound to immutable values

Immutable `ref` and `array` values point to mutable locations

ML has no binding-changing assignment

Definitions add new bindings (hide old ones):

```
val pattern = exp
val rec pattern = exp
fun ident patterns = exp
datatype ... = ...
```
Nesting environments

At top level, definitions

Definitions contain expressions:

\[\text{def} ::= \text{val pattern} = \text{exp} \]

Expressions contain definitions:

\[\text{exp} ::= \text{let defs in exp end} \]

Sequence of \textit{defs} has let-star semantics
What is a pattern?

\[
\text{pattern ::= variable}
\]

| wildcard
| value-constructor \ [pattern] |
| tuple-pattern
| record-pattern
| integer-literal
| list-pattern

Design bug: no lexical distinction between
- VALUE CONSTRUCTORS
- variables

Workaround: programming convention
Function peculiarities: 1 argument

Each function takes 1 argument, returns 1 result

For “multiple arguments,” use tuples!

fun factorial n =
 let fun f (i, prod) =
 if i > n then prod else f (i+1, i*prod)
 in f (1, 1)
end

fun factorial n = (* you can also Curry *)
 let fun f i prod =
 if i > n then prod else f (i+1) (i*prod)
 in f 1 1
end
Mutual recursion

Let-star semantics will not do.

Use \textbf{and (different from andalso)}!

\begin{align*}
 \text{fun } a \ x &= \ldots \ b \ (x-1) \ldots \\
 \text{and } b \ y &= \ldots \ a \ (y-1) \ldots
\end{align*}
Syntax of ML types

Abstract syntax for types:

\[ty \Rightarrow TYVAR \text{ of string} \quad \text{type variable} \]
\[\quad \text{| TYCON of string * ty list} \quad \text{apply type constructor} \]

Each tycon takes fixed number of arguments.

- nullary: \{ int, bool, string, ... \}
- unary: \{ list, option, ... \}
- binary: \{ \text{->} \}
- \(n \)-ary: \{ tuples (infix *) \}
Syntax of ML types

Concrete syntax is baroque:

\[
\begin{align*}
ty & \Rightarrow tyvar \quad \text{type variable} \\
& \quad | \quad tycon \quad \text{(nullary) type constructor} \\
& \quad | \quad ty \ tycon \quad \text{(unary) type constructor} \\
& \quad | \quad (ty, \ldots, ty) tycon \quad \text{(n-ary) type constructor} \\
& \quad | \quad ty \ast \ldots \ast ty \quad \text{tuple type} \\
& \quad | \quad ty \rightarrow ty \quad \text{arrow (function) type} \\
& \quad | \quad (ty) \\
\end{align*}
\]

\[
\begin{align*}
tyvar & \Rightarrow ' \text{identifier} \quad 'a, 'b, 'c, \ldots \\
tycon & \Rightarrow \text{identifier} \quad \text{list, int, bool,} \ldots
\end{align*}
\]
Polymorphic types

Abstract syntax of type scheme σ:

$$\sigma \Rightarrow \text{FORALL of tyvar list } \ast \text{ ty}$$

Bad decision: \forall left out of concrete syntax

$$(\text{fn } (f,g) \Rightarrow \text{fn } x \Rightarrow f \ (g \ x))$$

: $\forall \ 'a, \ 'b, \ 'c$.

$$('a \ \rightarrow \ 'b) \ast ('c \ \rightarrow \ 'a) \rightarrow ('c \ \rightarrow \ 'b)$$

Key idea: substitute for quantified type variables
Old and new friends

\[\text{op o} : \forall \ 'a, \ 'b, \ 'c . \]
\[(\ 'a \to \ 'b) \times (\ 'c \to \ 'a) \to \ 'c \to \ 'b \]

\[\text{length} : \forall \ 'a . \ 'a \text{ list} \to \ \text{int} \]

\[\text{map} : \forall \ 'a, \ 'b . \]
\[(\ 'a \to \ 'b) \to (\ 'a \text{ list} \to \ 'b \text{ list}) \]

\[\text{curry} : \forall \ 'a, \ 'b, \ 'c . \]
\[(\ 'a \times \ 'b \to \ 'c) \to \ 'a \to \ 'b \to \ 'c \]

\[\text{id} : \forall \ 'a . \ 'a \to \ 'a \]