Module 5: Disambiguation and K-Normal Form

Introduction

This week you’ll start your journey from a machine-level language to a high-
level language. You’ll implement a language called K-normal form, which is
nearly a subset of Scheme. Then next week, you’ll generate assembly code from
K-normal form, and you’ll be able to run your first high-level-language code.

e What am I doing?

— Understand the three different roles names can play in Scheme code,
and write a compiler pass that uses special-purpose syntax to identify
what role each occurrence of each name is playing.

— Define an ML datatype to represent expressions in K-normal form,
which is a low-level subset of Scheme.

— Define an embedding/projection pair that relates K-normal form to
vScheme syntax.

— Extend the UFT driver with support for K-normal form.
o Why am I doing it?

— Translating names is one of the deepest parts of any compiler, because
it can be done only within some kind of context or environment that
says what each name stands for. Moving the contextual information
into syntax makes all the subsequent compiler passes much, much
easier.

— K-normal form is the next step in our long-term plan of lifting
machine-level code up to something nice. It is the lowest-level
intermediate code that resembles a high-level language more than an
assembly language—and “making machine code look like a high-level
language” is a useful tactic in almost any compiler.

— Embedding and projection make it possible to debug. To get K-
normal form out of your translator, just embed it into vScheme and
use my prettyprinter for vScheme. To get K-normal form into your
translator, write vScheme and project it into K-normal form.

o How?

— Before lab you’ll study the roles of names, and you’ll learn two re-
lated representations of vScheme: VScheme, in which a name’s role
has to be learned by looking up the name in the environment; and
UnambiguousVScheme, in which the name’s role is made explicit in the
abstract syntax.

— In lab you’ll complete the disambiguation pass that looks up each
name in the environment and selects the correct syntax for each oc-
currence. I've done the boring parts; you’ll do the interesting parts.

— After lab you’ll study the grammar of K-normal form and its relation-
ship to Scheme. Then you’ll define its representation, an embedding
into VScheme, and a projection from UnambiguousVScheme.

— Finally you’ll add support to the Universal Forward Translator so
it can read and write K-normal form. At the end of the week,
you’ll deliver a working Universal Forward Translator that includes
a kn-kn pass. This pass reads vScheme, disambiguates it, projects it
to K-normal form, embeds the result back into vScheme, and pret-
typrints it.

You'll also deliver test cases: one that exercises every syntactic form
in KNF, and one each for every possible way that projection can fail.

Detailed instructions are below.

The big picture

K-normal form is about two things: language paradigm and naming.

e Target paradigm (assembly language): imperative code, commands, as-
signment, resembles a subset of C

e Source paradigm (K-normal form): applicative code, function calls,
let bindings, is a subset of Scheme

Once we have K-normal form, we’ll add features until eventually we’ll be com-
piling full Scheme.

Ideas about naming are deeper. The key idea is this: in syntax, all names
look alike, but at run time, different names behave differently. And
those differences can be discovered by inspecting a compile-time environment:

e At run time, a global name refers to a location in the VM state’s globals
table.

e At run time, a local name (one that is bound by let and lambda) refers to
a VM register.

o The name of an ordinary function (like map or foldr) codes for an ordinary
function call.

e The name of a primitive function (like cons or +) codes for a VM instruc-
tion.

In Scheme source code, all these names are written using the same syntax. In
K-normal form, each species of name and each species of call is written using
explicitly different syntax—the syntax instantly identifies which variables are
global vs local and which calls are ordinary vs VM instructions. These syntactic
distinctions are independent of K-normal form; are also made in a high-level
language called “unambiguous vScheme”. Transforming original vScheme into
unambiguous vScheme, a translation I call disambiguation, is the subject of this
week’s lab.

Aside from the explicit distinctions of names and calls, K-normal form adds two
key invariants to unambiguous Scheme:

e The value of every intermediate expression has a name.

o Function definitions do not nest. (That is, no function may refer to pa-
rameters or variables of an enclosing function.)

These two invariants are common to many low-level intermediate languages for
many different kinds of compilers.

Here’s a snapshot from the video, cleaned up and with this week’s parts high-
lighted:

Disambiguation Closure conversion K-normalization Code generation Label elimination
Disambiguate.disambiguate
/ N N /\ m
VScheme.def Unambiguous Firstord KNormalForm.exp ObjectCode
T VSehens kg k pitee]
. e ko Y- n
13
parse N~ o / T
¥/ parse unparse
unparse
<S¢ PO e catee B ¢ snpezee
Embedk. det
T AsmLex.tokens]\
s Fllk
4
m NS VO
-
loadfun
o]] . K f
Module 5: Disambiguation and K-normal form %

Figure 1: UFT/SVM system with highlights

05Bvschemex.html
../videos/index.html#highlanguages

The module step by step

Before lab: Understand the big picture, especially names.

(1)

(2)

Download updates. Update your git repository in two steps:
A. Be sure all your own code is committed. Confirm using git status.

B. Update your working tree by running git pull (or you might possibly
need git pull origin main). You should not have any merge conflicts.

Verify your build. Verify that you can build the uft binary with make,
and that it recognizes the translation ho-ho. Any expression with a name
or a function application should exit with an uncaught exception, but
expressions without names and applications should go through:

> echo '(+ 2 2)' | uft ho-ho
Uncaught exception:
LeftAsExercise: disambiguate APPLY

> echo '(if #t 1 0)' | uft ho-ho
(if #t 1 0)

Understand the big picture. The overview video about the high-level lan-
guages of the UFT, including all the transformations we will implement
presents the big picture of the Universal Forward Translator. Watch it
before lab.

Understand the three meanings of names. Read the first part of the hand-
out on Unambiguous vScheme. Follow up by reading the referent type
and referent function defined at the beginning of file disambiguate.sml.

Study vScheme. Look over the handout on vScheme, and study the defi-
nition in module VScheme in file vscheme.sml. Be sure you understand the
forms VAR, SET, and APPLY; these are the forms you will be disambiguating
in lab.

Study Unambiguous vScheme. Complete the handout on Unambiguous
vScheme, and study the definition in module UnambiguousVScheme in file
vscheme.sml. Be sure you understand the forms LOCAL, GLOBAL, SETLOCAL,
SETGLOBAL, FUNCALL, and PRIMCALL; these are the forms that replace the
ambiguous forms in step (6).

Understand eta expansion. In file disambiguate.sml, be sure you under-
stand what function etaExpand is doing. Eta expansion converts a primi-
tive into an ordinary function. If you have not encountered the eta expan-
sion or reduction in CS 105, you can consult any of the following resources:

e Short explanation from MLton, an ML compiler

e Short documentation, from Dotty, a Scala compiler

../videos/index.html#highlanguages
../videos/index.html#highlanguages
05Bvschemex.html#referents-of-names
00vscheme.html
05Bvschemex.html
05Bvschemex.html
http://mlton.org/EtaExpansion
https://dotty.epfl.ch/docs/reference/changed-features/eta-expansion.html

e Long post on Medium about Scala
e YouTube video also about Scala
To paraphrase one of the longer posts,

Eta-expansion is what compiler does “behind the scenes” when
it notices that you need a value, but are provided a primitive.

(8) Review. During lab, the ambiguous forms will be replaced:

e The original VAR form must be disambiguated into either LOCAL or
GLOBAL.

e The original SET form must be disambiguated into either SETLOCAL or
SETGLOBAL.

e The original APPLY form must be disambiguated into either FUNCALL
or PRIMCALL.

Before lab begins, be sure you can answer these questions:

A. For each of the three possible referents of a name (local, primitive,
and other global), what form replaces the VAR form?

B. For each of the three possible referents of a name (local, primitive,
and other global), what form replaces the SET form?

C. If a name appears in function position in APPLY, for each of the three
possible referents of the (local, primitive, and other global), what
form replaces the APPLY form?

D. If a non-name appears in function position in APPLY, what form re-
places the APPLY form?

(9) Consider reading ahead. If you want the opportunity to ask informed
questions during lab, you could consider reading the handout on K-normal
form.

Lab: Disambiguate names

(10) Disambiguate names. In file disambiguate.sml, complete function exp:
Using your answers to the questions in step (8), replace all uses of LeftA-
sExercise with new code, then remove the definition of exception LeftA-
sExercise.

Function exp is nested inside function exp', which tracks context by keep-
ing list locals. The list contains all formal parameters and let-bound
variables. That list is used by function referent to determine the referent
of any vScheme name.

It’s worth revisiting the disambiguation section of the handout on Unam-
biguous vScheme.

You can test your disambiguator by running

https://medium.com/@sinisalouc/on-method-invocations-or-what-exactly-is-eta-expansion-1019b37e010c
https://www.youtube.com/watch?v=rORf1e9Gksg
05Aknf.html
05Aknf.html
05Bvschemex.html#disambiguation

uft ho-ho

After lab: K-normal form

Defining K-normal form

(11)

Define K-normal form. In this step you define an internal representation
(abstract-syntax tree) for K-normal form. Start by reading all about K-
normal form.

Now edit module KNormalForm in file knf.sml. Redefine type 'a exp, which
takes the representation of a name as a type parameter.' In your defini-
tion, each of the metavariables in the K-normal form handout should be
represented as follows:

Table 1: The atomic forms

Metavariable Representation

'a exp
'a
literal
vmop

@ < X O

Types literal and vmop are already defined in the file; they are (respec-
tively) ObjectCode.literal and Primitive.primitive.

If a type called string or name appears anywhere in your repre-
sentation, you are doing it wrong. The type of a name has to be
unknown; it’s type parameter 'a.

Before you move on to the next step, get a sanity check from a classmate
or from a member of the course staff.

Implement the K-normal form utility functions. File knf.sml has place-
holders for two functions setglobal and getglobal. Each is an abbrevi-
ation that creates an expression of the form @(x:, ..., xn, v), where
@ is either Primitive.getglobal or Primitive.setglobal. For getglobal,
n is zero, and for setglobal, n is one.

The abbreviations aren’t strictly necessary, but they will save you some
hassle down the road.

Embedding K-normal form into Scheme

(13)

Embed K-normal form into (ambiguous) vScheme. In file knembed. sml, you
will find a template for two functions, value and def, with these types:

n pScheme source code, a name is a string, but in assembly code, a name will be a register.
Making it a type parameter enables us to use K-normal form on both sides of the house.

05Aknf.html
05Aknf.html
05Aknf.html#the-syntactic-structure-of-k-normal-form

val value : KNormalForm.literal -> VScheme.value
val def : VScheme.name KNormalForm.exp -> VScheme.def

We embed directly into (ambiguous) VScheme because our goal is to reuse
the prettyprinter for VScheme, and it’s actually easier than embedding unto
UnambiguousVScheme.

Implement these functions.

The value function is actually a projection, not an embedding: the

VM code supports fleating-peint-values; string values and nil, neither

of which can be written as vScheme literals. Nonetheless, we're going
to treat it as if it were an embedding—we’re going to cheat.

_ Embed 1 val . . _sine—funet]
Real-+round-

— Embed a string value as a symbol (lame, but the best we can
do).

— Embed nil as the Boolean false.

The definition embedding uses only one definition form, VScheme.EXP.
Internally, the main embedding should be

val exp : VScheme.name KNormalForm.exp -> VScheme.exp

The embedding is described by equations for in the KNF handout.
To implement those equations in ML code, you will use these value
constructors:

K-normal form object language embeds in puScheme using metalanguage

v LITERAL
X VAR
getglobal (STRING s) VAR
setglobal(x, STRING s) SET
@(X1, w, Xn) APPLY
@(X1, w, Xn, V) APPLY
X(X1, w, Xn) APPLY
if x then e:1 else e: IF

let x = e in e' LET
(e1; e2) BEGIN

X 1= e SET
while x := e do e’ WHILE and LET
funcode (X1, .., Xn) => e LAMBDA

Constructing vScheme LET forms is a bit of a nuisance, so take ad-
vantage of the let' helper function that I have provided for you.

05Aknf.html#equations-of-embedding-and-projection

The embedding has a few tricky cases:

e The @(x1, ..., xn, v) form has two special cases, where @ is either
getglobal and setglobal. Unfortunately, because @ has an abstract
type (for good reasons), you cannot pattern match on it. Instead you
have to pattern match on the result of calling function P.name.

e The funcode form should embed as lambda even though they don’t
have identical semantics.

One note: my prettyprinter condenses nested let expressions into
Scheme’s let* form, so if you see a let* in your output, it is expected.

Projecting Scheme into K-normal form

(14) Project unambiguous vScheme expressions into K-normal form. In file
knproject.sml, you will find a template for two functions, value and def,
with these types:

val value : UnambiguousVScheme.value -> KNormalForm.literal
val def : UnambiguousVScheme.def -> string KNormalForm.exp Error.error

Internally you will also define
val exp : UnambiguousVScheme.exp -> string KNormalForm.exp Error.error

The projection will enable us to read K-normal form code from disk, using
the Scheme lexer and parser, plus the disambiguator you wrote in step (10).
We project from UnambiguousVScheme because it is easier than going direct
from VScheme.

The projection of expressions is described by equations for in the KNF
handout. The left-hand sides that look ambiguous in those equations are
exactly the ones that you disambiguated in step (10).

The equations don’t specify a projection of values. But every vScheme
value can be represented as a K-normal form literal. And in fact, the value
direction is actually an embedding, as suggested by its type. A vScheme
symbol embeds as a K-normal form string, and the other forms of value
embed one for one.

Important: The projection functions simply change the representation of
vScheme code that is already in K-normal form. You won’t translate gen-
eral Scheme to K-normal form until module 9. For this module, if Scheme
code is not already in K-normal form, the projection should fail for one
of two reasons: either a form is outright unacceptable, or the form has a
non-variable in a position where a variable is expected. The forms that
are outright unacceptable are as follows:

e Any while loop whose condition does not have the form

(let ([x el) y)

05Aknf.html#equations-of-embedding-and-projection
05Aknf.html#equations-of-embedding-and-projection

e Any while loop whose condition has the form
(let (Ix el) y)
but in which x is different from y

e Any begin not of the form (begin e: e2)

e Any let with more than one binding

e Any letrec form

In step (18) you'll write a test for each of these forms, so if you like, you
can start writing those tests now.

Even a good form like if can be rejected if it doesn’t satisfy the invariants
of K-normal form. The key invariant is that many forms are required
to be names. One example is the condition in an if expression: if the
condition isn’t a name, then the if expression isn’t in K-normal form. In
this case the projection should fail. It is useful to define a helper function
that insists on getting a name:

val asName : X.exp -> X.name Error.error
(* project into a name; used where KNF expects a name *)
= fn X.LOCAL x => succeed x
| e =>error ("expected a local variable but instead got " ~ (X.whatIs e))

This function will be used to project FUNCALL and PRIMCALL, which should
be rejected unless every argument is a variable; IFX, which should be
rejected unless the condition is a variable; and SETGLOBAL, which should
be rejected unless the right-hand side is a variable. (A FUNCALL will also
be rejected unless the function being called is a variable.)

Managing all the potential sources of error requires a lot of plumbing, but
we can hide the details by using the same abstraction we used in the lexer
and parser: an “applicative functor.” The code I give you includes suitable
abbreviations:

infix 3 <*> val op <*> = Error.<*>
infixr 4 <$> val op <$> = Error.<$>
val succeed = Error.succeed

val error = Error.ERROR

val errorList = Error.list

Using these functions, the bureaucracy of error handling becomes manage-
able. For example, here’s my code for projecting if expressions:

fun exp (X.IFX (el, e2, e3)) =
curry3 K.IF <$> asName el <*> exp e2 <*> exp e3

You are now ready to define the projection function for expressions.

(15) Project unambiguous vScheme definitions into K-normal form. The last
step is to project definitions. This step is easier because the val, check-
expect, and check-assert forms simply aren’t in K-normal form; the pro-
jection fails. There are really only a couple of special cases, to do with
functions.

e The main case is X.EXP; you just pass the payload to your internal
exp function. This case will cover 90% of your needs, and you can
write it first.

(let ([t (lambda (xs) e)]) (set f t))
hold . T he K L

let t = funcode xs => [Je[] in setglobal("f", t)

(let ([t (lambda (xs) e)]) (set f t'))

let t = funcode xs => [Je[] in setglobal("f", t)
T-then-handle-the-tambdacase-with

fundef <$> exp e

e Strictly speaking, define isn’t in K-normal form, but it can be handy
to pretend. Try inventing a t, like say

val t = "$tl1"

and then project

(define f (xs) e)

as

let t = funcode xs => [Je[] in setglobal("f", t)

You're now ready to extend the UFT to handle your new functions.

10

Adding a pass to the Universal Forward Translator

(16) Add a new pass to the UFT. Once you have defined your embedding,
disambiguation, and projection functions, you can extend the UFT driver
by adding support for K-normal form.

A. Begin with the handout on the UFT driver. It explains how the UFT
driver works and what code has to be written to incorporate a new
language.

B. Define reader function KN_of file, which should work by compos-
ing the reader schemex0fFile with the projection code you wrote in
step (15). Its type should be
val KN_of_file : instream -> string KNormalForm.exp list error

C. Define materializer function KN_text of, which should materialize K-
normal form. It should look almost exactly like VS_of: read the code
from a file or bleat that there is no translation.

D. Define emitter function emitkN by composing emitScheme with your
embedding function.

E. Add a case to translate to handle the case when outlLang is KN.

Testing

(17) Preliminary testing. Your UFT should now be capable of running your
embedding and projection. Test by running
uft kn-kn
Here are some cases for you to test:

(+ 2 2) ;; should be rejected

(let* ([$r0 2] [$r1 2]) (+ $r0 $rl)) ;; should be OK

(if (< n 0) #t #f) ;; reject

(let* ([$r0 n] [$r1 O] [r2 (< $r0 $rl)]) (if $ro0 #f #t)) ,;; accept

(18) Systematic testing.

Create a test file for each of the forms that should be rejected by the
projection function in step (14), plus one more file that contains all the
good forms.

bad.while.scm Condition in while isn’t the right let

bad.whilevars.scm In let in while condition, names don’t match

bad.begin.scm begin with wrong number of subexpressions

bad.let.scm let with wrong number of bindings

11

05Cuft.html

bad.letrec.scm Any letrec

bad.lambda.scm Any lambda that is not a global definition

good.scm One each of every good KNF form (as embedded into Scheme)
The good.scm should contain Scheme versions of x, v, @(x1, ..., Xn),
X(X1, ..., Xn), if X then e1 else ez let x = e in e', (e1; ez2), x := e,

and while x := e do e' forms. It is ok if the “VM operation with literal”
and funcode/lambda forms are omitted.

18b. Round-trip testing

Testing success and failure in step (17) is likely sufficient. But if
you want to test semantics, you can do it by comparing round-trip
results from your UFT/SVM combo with result from the vscheme
interpreter.

For example, if test.scm evaluates a begin, a couple of let bindings,
and a few primitives, it might look like this:

(begin
(let* ([tmp 2]
[tmp (+ tmp tmp)])
(check tmp 'two-plus-two))
(let ([tmp 41)
(expect tmp 'four)))

This code can be run through vscheme without using embedding and
projection, and then again with embedding and projection:

$ cat test.scm | vscheme

The only test passed.

$ cat test.scm | uft kn-kn | vscheme
The only test passed.

The call to uft kn-kn puts my code through embedding and projec-
tion, which doesn’t change the test results.

What and how to submit

(19) On Monday, submit the homework. In the src/uft directory you’ll find a
file SUBMIT.05. That file needs to be edited to answer the same questions
you answer every week.

To submit, you’ll need to copy your working tree to the department servers.
We recommend using rsync, but scp also works.

Now log into a department server, change to your working tree, and submit
your entire src directory:

12

provide csl106 hwO5 src

(20) On Tuesday, submit your reflection. Create a plain text file REFLECTION,
which will hold your claims for project points and depth points.

For each project point you claim, write the number of the point, plus
whatever is called for in the section “How to claim the project points”—
usually a few sentences.

Now copy your REFLECTION file to a department server and submit it using
provide:

provide cs106 reflection05 REFLECTION

Reading in depth

Occasionally T'll suggest reading that may enrich your view of programming-
language implementation.

e Normal forms. K-normal form is defined by Birkedal, Tofte, and Veilstrup
(1996), who use it to infer properties about memory use. It is based on the
more famous A-normal form of Flanagan et al. (1993), which is definitely
worth reading.

e Prettyprinting. My prettyprinter uses an interface designed by Wadler
(1998), who pitches his design as an improved version of the original by
Hughes (1995). Both papers are well worth reading.

My code uses only Wadler’s interface; my back end is a clean-room imple-
mentation of an algorithm by Pugh and Sinofsky (1987). If you like that
sort of thing, it’s a nice application of dynamic programming.

13

https://dl.acm.org/doi/10.1145/237721.237771
https://dl.acm.org/doi/10.1145/237721.237771
https://www.cs.tufts.edu/~nr/cs257/archive/cormac-flanagan/anormal.pdf
https://homepages.inf.ed.ac.uk/wadler/papers/prettier/prettier.pdf
https://homepages.inf.ed.ac.uk/wadler/papers/prettier/prettier.pdf
http://www.cse.chalmers.se/~rjmh/Papers/pretty.html
https://ecommons.cornell.edu/bitstream/handle/1813/6648/87-808.pdf?sequence=1&isAllowed=y

Learning outcomes

Outcomes available for points

You can claim a project point for each of the learning outcomes listed here.
Instructions about how to claim each point are found below.

1.

7.
8.
9.

You

Global and local names. You can create a term in which a single name
appears as both a global variable and a local variable.

K-normal form. You can write simple K-normal form by hand.

K-normal form embedding. You can, by hand, embed simple K-normal
form into Scheme.

Names in K-normal form. You can say which names in the source code
show up as what types in K-normal form.

Embedding, projection, and language design. You can justify the fact that
K-normal form has fewer expressions but more literals than Scheme.

Eta-expansion. You can say which of the K-normal form invariants is
satisfied by the body of an eta-expanded primitive.

UFT driver. Your uft builds and understands what kn-kn is asking for.
Testing. You can explain the results of your tests.
Notation. You can use Oxford brackets to write translation equations.

can claim a depth point for floating let out of let, and two more for

improving the Scheme prettyprinter.

10.

11.

Let-floating transformation [1 point/. When variable y is chosen so it is
distinet-fromx-and the same as x or not free in es, the following expressions
are equivalent:

let x = (let y = e1 in e2) in es

let y = ex1 in (let x = e2 in es)

But the second expression results in code that is easier to read and that
runs faster on some platforms (Peyton Jones, Partain, and Santos 1996).
Implement let-floating on K-normal form. See what sort of difference it
makes to the generated VM code.

Prettyprinting [2 points]. The indentation and line breaks for the vScheme
prettyprinter are just barely tolerable. Improve them.

How to claim the project points

Each of the numbered learning outcomes 1 to N is worth one point, and the
points can be claimed as follows:

14

05Aknf.html#knf-invariants
05Aknf.html#oxford-brackets

. To claim this point, write an expression in vScheme in which x appears
both as a GLOBAL variable and as a LOCAL variable.

. To claim this point, write an expression, using the ML-like syntax of K-
normal form from the handout on K-normal form, that corresponds to the
ML expression n + 1, where n is a local variable.

. To claim this point, embed the previous expression into valid vScheme.
That is, write an expression in vScheme that is the embedding of an expres-
sion in K-normal form; the expression that is embedded must correspond
to the Scheme expression (+ n 1), where n is a local variable.

. You must understand all the relevant categories of the ways names can
be used in Scheme: formal parameter, local variable, global variable, user-
defined function, and primitive function. And in your ML representation
of K-normal form, you must understand the use of each of these types:

e Type 'a
e Type vmop
o Type literal

To claim the point, for each of the three types listed, say what categories
of Scheme names are represented by values of that type.

. Observe that expressions in K-normal form are a subset of vScheme ex-
pressions, but literals in K-normal form are a superset of (Unambiguous)
Scheme values. It seems strange to have the relation point in opposite
directions. To claim this point, answer these two questions:

e In a system that is targeting the SVM but does not necessarily want
to be locked into translating Scheme, why is it a good idea to have
K-normal form expressions be a subset of Scheme expressions?

e In a system that is targeting the SVM but does not necessarily want
to be locked into translating Scheme, why is it a good idea to have
K-normal form literals be a superset of Scheme values?

. To claim this point, analyze the eta-expansions produced by function eta-
Expand in file disambiguate.sml. This function returns a lambda written in
Disambiguated vScheme. Analyze the body of the lambda and say which
of the K-normal-form invariants it satisfies and why.

. To claim this point, submit code that compiles and runs so that uft kn-kn
produces a sensible result, better than “I don’t know how to translate.”
This point is awarded for running the translation; you get the point even
if one or more of the functions have bugs.

. To claim this point, say in a few short sentences what your tests tell you
about what parts of your code do and don’t work. This point is awarded
for understanding the results of your tests; you get the point even if your
UFT does not yet behave the way you hope.

15

05Aknf.html#ml-like-form
05Aknf.html#ml-like-form
05Aknf.html#knf-invariants

9. To demonstrate the Oxford brackets, you should be able to specify a key
element of a translation you already know well: the translation from as-
sembly language to object code that you implemented you implemented
in the previous module. This translation is specified by a function

A : AssemblyCode.instr -> int -> (name -> int) -> Object-
Code.instr

The parameter of type int is the position that the instruction occupies
in the instruction stream. The parameter of type name -> int is the
environment p; it is the mathematician’s way of writing an environment
of type int Env.env.

To demonstrate ability with Oxford brackets, it is sufficient to write an
equation that describes the translation of just one instruction: the GOTO
instruction. When function A is given an assembly-language GOTO with a
label, it turns an object-language GOTO with a PC-relative offset. To claim
the point, use Oxford brackets to write an equation that describes just
the translation of the GOTO instruction. Notate the position parameter
as k and the environment parameter as p.

16

	Introduction
	The big picture
	The module step by step
	Before lab: Understand the big picture, especially names.
	Lab: Disambiguate names
	After lab: K-normal form
	Defining K-normal form
	Embedding K-normal form into Scheme
	Projecting Scheme into K-normal form
	Adding a pass to the Universal Forward Translator
	Testing

	What and how to submit

	Reading in depth
	Learning outcomes
	Outcomes available for points
	How to claim the project points

