
Lecture 4 - Hashes and Message Authentication

Prof. Daniel Votipka
Spring 2023

(some slides courtesy of Prof. Patrick McDaniel and Prof. Micah Sherr)

CS 114:
Network Security

Administrivia
• Homework 0 grades are up, everyone did great!

• Homework 1, part 1 due Feb. 2nd at 11:59pm

• Updated output to provide more information

• Incorrect output formatting (don’t add new
lines; use sys.stdout.write(), not print())

• “Address already in use” error means you
didn’t close your socket correctly

2

We have another amazing TA!

3

Andrew Vu
OH: W/F 12-1pm, room 359

Guest Lecture

• Ariana Miran, UCSD (4/11)

• Hack for Hire

• https://arianamirian.com/

4

https://arianamirian.com/

Crypto

Confidentiality: Encryption and Decryption

5

Public Key

?
Private Key

Stream
Cipher

Block
Cipher

What encryption
does and does not

• Does:

• confidentiality

• Doesn’t do:

• data integrity

• source authentication

• Need: ensure that data is not altered and is from
an authenticated source

6

Crypto

Confidentiality: Encryption and Decryption

7

Private Key

Stream
Cipher

Block
Cipher

Integrity and Authentication

Message
Authentication Codes

Public Key

?

Public Key

?

Message Authentication Codes

8

Principals

Alice Bob

Eve

9

Src=Alice, Dest=Bob
Msg = “network security is fun!”

Man-in-the-Middle (MitM) attack

Alice BobEve

10

Src=Alice, Dest=Bob
Msg = “network security is fun!”

Src=Alice, Dest=Bob
Msg = “network security isn’t fun!”

Message Authentication Codes (MACs)

11

• MACs provide message integrity and authenticity

• MACK(M) – use symmetric encryption to produce short sequence of
bits that depends on both the message (M) and the key (K)

• MACs should be resistant to existential forgery: Eve should not
be able to produce a valid MAC for a message M' without knowing K

Message Integrity/Authenticity

Alice BobEve

Src = Alice, Dest = Bob

Msg = {“network security is fun!”,
MACk(“network security is fun!”)}

12

Src = Alice, Dest = Bob

Msg = {“network security isn’t
fun!”, ???}

Without knowledge of k, Eve can’t compute a valid
MAC for her forged message!

Message Authentication Codes (MACs)

13

• MACs provide message integrity and authenticity

• MACK(M) – use symmetric encryption to produce short sequence of
bits that depends on both the message (M) and the key (K)

• MACs should be resistant to existential forgery: Eve should not
be able to produce a valid MAC for a message M' without knowing K

• To provide confidentiality, authenticity, and integrity of a message, Alice
sends

• MAC-then-Encrypt: EK(M,MACK(M)) where EK(X) is the encryption
of X using key K; or

• Encrypt-then-MAC: EK(M),MACK(EK(M))

 or

• Encrypt-and-MAC: EK(M),MACK(M)

• Proves that M was encrypted (confidentiality) by someone who
knew K (authenticity) and hasn’t been changed (integrity)

Encryption + Message Integrity/Authenticity

Alice BobEve

Src = Alice, Dest = Bob

Msg = Ek1{“network security is fun”},
MACk2(Ek1{“network security is fun”})

14

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!

Without knowing k1,
Eve can’t read Alice’s message.

Message Authentication Codes (MACs)

15

• MACs provide message integrity and authenticity

• MACK(M) – use symmetric encryption to produce short sequence of
bits that depends on both the message (M) and the key (K)

• MACs should be resistant to existential forgery: Eve should not
be able to produce a valid MAC for a message M' without knowing K

• To provide confidentiality, authenticity, and integrity of a message, Alice
sends

• MAC-then-Encrypt: EK(M,MACK(M)) where EK(X) is the encryption
of X using key K; or

• Encrypt-then-MAC: EK(M),MACK(EK(M))

 or

• Encrypt-and-MAC: EK(M),MACK(M)

• Proves that M was encrypted (confidentiality) by someone who
knew K (authenticity) and hasn’t been changed (integrity)

Best option

Crypto

Confidentiality: Encryption and Decryption

16

Private Key

Stream
Cipher

Block
Cipher

Integrity and Authentication

Message
Authentication Codes

Crypto Hash

Public Key

?

Public Key

?

Cryptographic Hash

17

Cryptographic Hash Functions

• Hash function h: deterministic one-way function that
takes as input an arbitrary message M (sometimes called a
preimage) and returns as output h(M), a small fixed length
hash (sometimes called a digest)

• Hash functions should have the following two properties:

• compression: reduces arbitrary length string to fixed
length hash

• ease of computation: given message M, h(M) is easy to
compute

18

Cryptographic Hash Functions

• Properties of good cryptographic hash functions:

• preimage resistance: given digest y,
computationally infeasible to find preimage x' such
that h(x')=y

• 2nd-preimage resistance: given preimage x,
computationally infeasible to find preimage x' such
that h(x)=h(x')

• collision resistance: computationally
infeasible to find preimages i,j such that h(i)=h(j)

19

Demo

20

Hash functions are usually fairly inexpensive
(i.e., compared with public key cryptography)

[dvotipka@NotLinux 05:30 PM] ~> openssl speed sha
Doing sha1 for 3s on 16 size blocks: 4470649 sha1's in 3.00s
Doing sha1 for 3s on 64 size blocks: 3442313 sha1's in 2.99s
Doing sha1 for 3s on 256 size blocks: 2040819 sha1's in 3.00s
Doing sha1 for 3s on 1024 size blocks: 773189 sha1's in 3.00s
Doing sha1 for 3s on 8192 size blocks: 114222 sha1's in 3.00s
...
Doing sha512 for 3s on 16 size blocks: 2849624 sha512's in 2.99s
Doing sha512 for 3s on 64 size blocks: 2837564 sha512's in 3.00s
Doing sha512 for 3s on 256 size blocks: 1281416 sha512's in 3.00s
Doing sha512 for 3s on 1024 size blocks: 481337 sha512's in 3.00s
Doing sha512 for 3s on 8192 size blocks: 71397 sha512's in 3.00s
OpenSSL 1.0.0d 8 Feb 2011
built on: Tue Feb 15 16:03:54 EST 2011
options:bn(64,64) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) idea(int) blowfish(idx)
compiler: /usr/bin/gcc-4.2 -fPIC -fno-common -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS
-D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -arch x86_64 -O3 -DL_ENDIAN -DMD32_REG_T=int -Wall
The 'numbers' are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
sha1 23843.46k 73681.62k 174149.89k 263915.18k 311902.21k
sha256 18572.85k 47224.32k 89395.29k 115009.19k 125728.09k
sha512 15248.82k 60534.70k 109347.50k 164296.36k 194961.41k

21

How do we use crypto
to make a MAC?

• MACK(M) = h(M|K)

• Only computable if you know K

• Any change in data will cause change in hash

22

Birthday Attack
• Birthday Paradox: chances that 2+ people

share birthday in group of 23 > 50%.

• General formulation

• function f() whose output is uniformly distributed over H
possible outputs

• Number of experiments Q(H) until we find a collision is
approximately:

• E.g.,

• Why is this relevant to hash sizes?

23

Some common
cryptographic hash functions

• MD5 (128-bit digest) [don’t use this]

• SHA-1 (160-bit digest) [don’t use this]

• SHA-256 (256-bit digest)

• SHA-512 (512-bit digest)

• ...

24

Using hashes as authenticators

25

Using hashes as
authenticators

• Consider the following scenario

• Prof. Frizzle has not decided if she will cancel the next lecture.

• When she does decide, she communicates to Bob the student through Mandark, her evil TA.

• Prof. Frizzle does not trust Mandark to deliver the message.

• She does not care if Bob shows up to a cancelled class, but she does not want students to not
show up if the class hasn’t been cancelled

26

“Class Cancelled!” “Class Cancelled!”

Using hashes as
authenticators

• Prof. Frizzle and Bob use the following protocol:

• Prof. Frizzle invents a secret t

• Prof. Frizzle gives Bob h(t), where h() is a crypto hash function

• If she cancels class, she gives t to Mandark to give to Bob

• If she does not cancel class, she does nothing

• If Bob receives the token t, he knows that Prof. Frizzle sent it
27

t t

h(t)

t’

Hash chain
• Now, consider the case where Prof. Frizzle wants to do the same

protocol, only for all 26 classes (the semester)

• Prof. Frizzle and Bob use the following protocol:

1.Prof. Frizzle invents a secret t

2.She gives Bob H26(t), where H26() is 26 repeated uses of H().

3.If she cancels class on day d, she gives H(26-d)(t) to Mandark, e.g.,

If cancels on day 1, she gives Mandark H25(t)

If cancels on day 2, she gives Mandark H24(t)

…….

If cancels on day 25, she gives Mandark H1(t)

If cancels on day 26, she gives Mandarks t

4.If Prof. Frizzle does not cancel class, she does nothing

– If Bob receives the token t, he knows that Prof. Pants sent it

28

Hash Chain (cont.)
• Why is this protocol secure?

• On day d, H(26-d)(t) acts as an authenticated value (authenticator)
because Mandark could not create t without inverting H()
because for any Hk(t) she has k>(26-d)

• That is, Mandark potentially has access to the hash values for all
days prior to today, but that provides no information on today’s
value, as they are all post-images of today’s value

• Note: Mandark can again convince Bob that class is occurring by
not delivering H(26-d)(t)

• Chain of hash values are ordered authenticators

• Important that Bob got the original value H26(t) from
Prof. Pants directly (was provably authentic)

29

Prof. Pedantic decides to use SHA256
to authenticate messages

• Protocol:

• Sender:

• Input: message M

• Output: M | SHA256(M)

• Receiver:

• Input: M | SHA256(M)
(from the Sender)

• Computes hash over M and checks that
it matches value from sender

30

why is this terrible?
...and how can it be

improved?

Let’s Review!

31

Alice BobEve

32

Without knowing k2, Eve can’t compute a valid
MAC for her forged message.

Without knowing k1, Eve can’t read Alice’s message.

What’s the
hard part?

Src = Alice, Dest = Bob

Msg = Ek1{“network security is fun”},
MACk2(Ek1{“network security is fun”})

Encryption + Message Integrity/Authenticity

Src = Alice, Dest = Bob

Msg = Ek1{“network security is fun”},
h(Ek1{“network security is fun”}|k2)

