CS | 14:Network
Security

Lecture 5 - Public Key Cryptography

Prof. Daniel Votipka
Spring 2023

(some slides courtesy of Prof. Micah Sherr and Prof. Patrick McDaniel)

Tufts

UNIVERSITY

Administrivia

® Homework |, part | due Tonight at | |:59pm

® Homework |, part 2 due Feb. 28th at | I:59pm

Crypto

Confidentiality: Encryption and Decryption
Private Key

Stream | Block
Cipher | Cipher

Integrity and Authentication

Message
Authentication Codes

Crypto Hash

Man-in-the-Middle (MitM) attack

Msg = “network security is not fun!”

Src=Alice, Dest=Bob
Msg = “network security is fun!”

Src=Alice, Dest=Bob]

Eve

Cryptographic Hash Functions

® Properties of good cryptographic hash functions:

® preimage resistance
® 2nd-preimage resistance

® collision resistance

Encryption and Message Authenticity

4 Src = Alice, Dest = Bob)
Msg = Exi{"network security is fun"},

MAC2(Ex{"network security is fun"})
\ /

L)

—

Eve

Without knowing ki,
Eve can’t read Alice’s message.

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!

Message Authentication Codes (MACs)

® MAGC:s provide message integrity and authenticity

® MACk(M) — use symmetric encryption to produce short sequence of
bits that depends on both the message (M) and the key (K)

® MAGC:s should be resistant to existential forgery: Eve should not
be able to produce a valid MAC for a message M' without knowing K

® To provide confidentiality, authenticity, and integrity of a message, Alice
sends

® MAC-then-Encrypt: Ek(M,MACk(M)) where Ex(X) is the encryption
of X using key K; or

® Encrypt-then-MAC: Ex(M),MACk(Ex(M)) €= Best option
or
® Encrypt-and-MAC: Ex(M),MACk(M)

® Proves that M was encrypted (confidentiality) by someone who
knew K (authenticity) and hasn’t been changed (integrity)

7

Encryption and Message Authenticity
4 Src = Alice, Dest = Bob) F 4
Msg = Exi{"network security is fun"}, Wh&% S &ké

MAC2(Exi{"network security is fun"})

N y k&rd P&r

L)

—

Eve

Without knowing ki,
Eve can’t read Alice’s message.

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!

Public Key

?

Public Key

)

Private Key Crypto
S

Public Key Crypto

(10,000 ft view)

® Separate keys for encryption and decryption

® Public key: anyone can know this
® Private key: kept confidential
® Anyone can encrypt a message to you using your public key

® The private key (kept confidential) is required to decrypt the
communication

® Alice and Bob no longer have to have a priori shared a secret key

Public Key Cryptography

® FEach key pair consists of a public and private
component: k™ (public key), k- (private key)

Dy~ (Ej+(m)) =m

® Public keys are distributed (typically)
through public key certificates

® Anyone can communicate secretly with
you if they have your certificate

12

Public Key Cryptography

2

[C"\;? EB+(“cslld is CCD]_:,’_’()

N e
&
Q5
I

Alice
(ATA)

RSA
(Rivest, Shamir; Adelman)

® The dominant public key

. "A method for obtaining Digital
algorithm on

Signatures and Public Key
Cryptosystems”, Communications of

® The algorithm itself is the ACM, Feb. 1978.
conceptually simple

® Why it is secure is very
deep (number theory)

® Uses properties of
exponentiation modulo a
product of large primes

| 4

RSA Key Generation

® Choose distinct primes p and g

e Compute n = pq

* Compute 0() = 0pq) < kaj does
= \P-Iq- . -
® Randomly choose |<e< ®(pq) &!’“ﬁs MO’“M?

such that e and ®(pq) are
coprime. e is the public key

exponent &

® Compute d=e! mod(®(pq)). d
is the private key exponent

Euler’s Totient Function

® coprime: having no common positive factors other than | (also
called relatively prime)

® |6 and 25 are coprime
® 6 and 27 are not coprime

® Euler’s Totient Function: ®(n) = number of integers less
than or equal to n that are coprime with n

1
o(n)=n-[J0-)

pln
where product ranges over distinct primes dividing n

Euler’s Totient Function

1
o(n)=n-[J1-)

pln

®(18) = 18(1-1/3)(1-1/2) = 6

1,5,7,1 113,17

Euler’s Totient Function

® coprime: having no common positive factors other than | (also
called relatively prime)

® |6 and 25 are coprime
® 6 and 27 are not coprime

® Euler’s Totient Function: ®(n) = number of integers less
than or equal to n that are coprime with n

1
o(n)=n-[J0-)

pln
where product ranges over distinct primes dividing n

® |f m and n are coprime, then ®(mn) = ®(m)P(n)
® |f mis prime,then ®(m) =m - |

|18

RSA Key Generation

Choose distinct primes p and q
Compute n = pq

Compute @(n) = O(pq)
= (p-1)(a-1)

Randomly choose |<e< ®(pq)
such that e and ®(pq) are
coprime. e is the public key
exponent

Compute d=e'! mod(®(pq)). d
is the private key exponent

Example:
let p=3,q=1I1
n=33

®(pq)=(3-1)(11-1)=20
let e=7/

Modular Arithmetic

® Integers Z,=1{0, 1,2,...,n-1}

® x mod n = remainder of x divided by n
® S5mod I3=5
® |3mod>5=3

® yis modular inverse of x iff xy mod n = |
® 4 s inverse of 3in Z)

® /., has modular inverses for all integers n is co-prime
with except O

20

RSA Key Generation

Choose distinct primes p and q

Compute n = pq

Compute @(n) = O(pq)
= (p-1)(a-1)

Randomly choose |<e< ®(pq)

such that e and ®(pq) are
coprime. e is the public key
exponent

Compute d=e'! mod(®(pq)). d
is the private key exponent

21

Example:

let p=3,q=1I1

n=33
®(pq)=(3-1)(11-1)=20
let e=7

ed mod @(pq) = |

/d mod 20 = |

d=3

RSA Encryption/
Decryption

® Public key k* is {e,n} and private key k- is {d,n}
® Encryption and Decryption
E,.(M) : ciphertext = plaintexte mod n
D, (ciphertext) : plaintext = ciphertext? mod n

® Example

® Public key (7,33), Private Key (3,33)

® Plaintext: 4

® E733)(4) = 47 mod 33 = 16384 mod 33 = |6
® Dg33)(16) = 163 mod 33 = 4096 mod 33 = 4

22

Why does it work?

® Difficult to find ®(n) or d using only e and n.
® Finding d is equivalent in difficulty to factoring n as p*q
® No efficient integer factorization algorithm is known

® Example: Took I8 months to factor a 200 digit number into
its 2 prime factors

® |t is feasible to encrypt and decrypt because:

® |t is possible to find large primes.

® |t is possible to find coprimes and their inverses.

® Modular exponentiation is feasible.

23

Modular exponentiation is easy!

410 mod 497

ee'=1.c=(1-4)mod 497 =4 mod 497 = 4.

ee'=2.c=(4-4)mod 497 =16 mod 497 = 16.

e ¢'=3.¢c=(16"-4)mod 497 = 64 mod 497 = 64.

ee'=4 ¢c=(64-4) mod497 =256 mod 497 = 256.
5.¢c= (256 - 4) mod 497 = 1024 mod 497 = 30.
6.c=(30-4) mod 497 = 120 mod 497 = 120.

'=7.¢=(120-4) mod 497 = 480 mod 497 = 480.
8.¢= (480 -4) mod 497 = 1920 mod 497 = 429.
9.¢c=(429 - 4) mod 497 = 1716 mod 497 = 225.

'=10. c=(225 - 4) mod 497 = 900 mod 497 = 403.

24

VWhy do we care about
private key crypto!

® Most public key systems use at least |,024-bit keys

® Key size not comparable to symmetric key algorithms

® RSA is much slower than most symmetric crypto algorithms
o AES: ~161 MB/s
e RSA: ~82 KB/s

® This is t00 slow to use for modern network
communication!

® Solution: Use hybrid encryption

25

Hybrid Cryptosystems

® |n practice, public-key cryptography is used to secure and
distribute session keys.

® These keys are used with symmetric algorithms for
communication.

® Sender generates a random session key, encrypts it using
receiver’s public key and sends it.

® Receiver decrypts the message to recover the session key.

® Both encrypt/decrypt their communications using the same
key.

® Key is destroyed in the end.

26

Hybrid Cryptosystems

4)

Src = Alice, Dest = Bob
Msg = Eg.(k), Ex("COSC235 is awesome!")
- Y

Alice
(B*,B-) is Bob’s long-term public-private key pair.
 is the session key; sometimes called the ephemeral key.

27

Public Key

)

Digital Signatures
e

Digital Signatures

® A digital signature serves the same purpose as a real signature.
® |t is a mark that only sender can make

® Other people can easily recognize it as belonging to the
sender

® Digital signatures must be:

® Unforgeable: If Alice signs message M with signature S, it is
impossible for someone else to produce the pair (M, S).

® Authentic: If Bob receives the pair (M, S) and knows Alice’s

public key, he can check (“verify”) that the signature is really
from Alice

30

Encryption using private key

E,.(M) : ciphertext = plaintextd mod n

D, .(ciphertext) : plaintext = ciphertexte mod n

31

How can Alice sign a digital document!?

® Digital document: M
® Since RSA is slow, hash M to compute digest: m = h(M)
e Signature: Sig(M) =E, _(m) = mdmod n
® Since only Alice knows k-, only she can create the signature
® TJo verify: Verify(M,Sig(M))
e Bob computes h(m) and compares it with D, , (Sig(M))

e Bob can compute D, (Sig(M)) since he knows k* (Alice’s public key)

® |f and only if they match, the signature is verified (otherwise, verification
fails)

32

Properties of a
Digital Signature

® No forgery possible: No one can forge a
message that is purportedly from Alice If you get a
signed message you should be able to verify that it’s
really from Alice

® No alteration/Integrity: No party can
undetectably alter a sighed message

® Provides authentication, integrity,and hon-
repudiation (cannot deny having signed a signed
message)

33

Non-Repudiation

4 Src = Alice, Dest = Bob)
Msg = {"network security is funl”,
MAC("network security is fun!")}j

Which of these

< : offer non-
" Src= Alice, Dest = Bob

Msg = {"network security is fun!”,) r’ePUCI |at|0n?
KEA_(h(“ne’rwork security is fun!"))}) ‘

Putting it all together

Define m =“csl 14 is awesome”

4 Src = Alice, Dest = Bob A
/, % Msg = EB+(k), Ek(m, EA—(h(m)))
\ ~ \/ g

Alice

(A*,A%) is Alice’s long-term public-private key pair.
(B*,B-) is Bob’s long-term public-private key pair.

k is the session key; sometimes called the ephemeral key.
35

Putting it all together

Define m =“csl 14 is awesome”

4 Src = Alice, Dest = Bob A
; % Msg = EB+(k), Ek(m, EA—(h(m)))
\ ~ \/ g

Alice

(A*,A%) is Alice’s long-term public-private key pair.
(B*,B-) is Bob’s long-term public-private key pair.

k is the session key; sometimes called the ephemeral key.
36

Putting it all together

Define m =“csl 14 is awesome”

4 Src = Alice, Dest = Bob A
/, % Msg = EB+(k), Ek(m, EA—(h(m)))
\ ~ \/ g

Alice

(A*,A%) is Alice’s long-term public-private key pair.
(B*,B-) is Bob’s long-term public-private key pair.

k is the session key; sometimes called the ephemeral key.
37

Putting it all together

Define m =“cs21 14 is awesome”

4 Src = Alice, Dest = Bob A
; % Msg = EB+(k), Ek(m, EA-(h(m)))
\ ~ \/ g

Alice

(A*,A%) is Alice’s long-term public-private key pair.
(B*,B-) is Bob’s long-term public-private key pair.

k is the session key; sometimes called the ephemeral key.
38

Key Managemen

(") MIT PGP Key Server

€ 9 C i © pgp.mitedu Qv 4 ¢ O @D
»

(. secbocs P G-scholar [G-cal ¥ G-Maps (%) G-voice E¥G+ & NYT & MSNBC
MIT PGP Public Key Server

Help: Extracting keys / Submitting keys / Email interface / About this server / FAQ
Related Info: Information about PGP / MIT distribution site for PGP

D Other Bookmarks

Extract a key

Search String: micah sherr ¢ (Do the search!)
Index: ® Verbose Index: O
() Show PGP fingerprints for keys

() Only return exact matches

Submit a key

Enter ASCII-armored PGP key here:

(Clear) (Submit this key to the keyserver!)

Remove a key

Search String: ¢ (‘Remove the key!)

Please send bug reports or problem reports to <bug-pks@mit.edu> only after reading our FAQ.
This page is a modified version of the examples provided by Brian LaMacchia and Marc Horowitz

39

But how do we verify we're
using the correct public key?

" Bob'spublickeyis J T . Trustme.
evil

- /

40

Short answer:
We can'’t.

It’s turtles all
the way down.

(more on this next week)

4]

