
CS 114: Network
Security

Lecture 5 - Public Key Cryptography

Prof. Daniel Votipka
Spring 2023

(some slides courtesy of Prof. Micah Sherr and Prof. Patrick McDaniel)

Administrivia

• Homework 1, part 1 due Tonight at 11:59pm

• Homework 1, part 2 due Feb. 28th at 11:59pm

2

Crypto

Confidentiality: Encryption and Decryption

3

Private Key

Stream
Cipher

Block
Cipher

Integrity and Authentication

Message
Authentication Codes

Crypto Hash

Man-in-the-Middle (MitM) attack

Alice BobEve

4

Src=Alice, Dest=Bob
Msg = “network security is fun!”

Src=Alice, Dest=Bob
Msg = “network security is not fun!”

Cryptographic Hash Functions

• Properties of good cryptographic hash functions:

• preimage resistance

• 2nd-preimage resistance

• collision resistance

5

Encryption and Message Authenticity

Alice BobEve

Src = Alice, Dest = Bob

Msg = Ek1{“network security is fun”},

MACk2(Ek1{“network security is fun”})

6

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!

Without knowing k1,
Eve can’t read Alice’s message.

Message Authentication Codes (MACs)

7

• MACs provide message integrity and authenticity

• MACK(M) – use symmetric encryption to produce short sequence of
bits that depends on both the message (M) and the key (K)

• MACs should be resistant to existential forgery: Eve should not
be able to produce a valid MAC for a message M' without knowing K

• To provide confidentiality, authenticity, and integrity of a message, Alice
sends

• MAC-then-Encrypt: EK(M,MACK(M)) where EK(X) is the encryption
of X using key K; or

• Encrypt-then-MAC: EK(M),MACK(EK(M))

 or

• Encrypt-and-MAC: EK(M),MACK(M)

• Proves that M was encrypted (confidentiality) by someone who
knew K (authenticity) and hasn’t been changed (integrity)

Best option

Encryption and Message Authenticity

Alice BobEve

Src = Alice, Dest = Bob

Msg = Ek1{“network security is fun”},

MACk2(Ek1{“network security is fun”})

8

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!

Without knowing k1,
Eve can’t read Alice’s message.

What’s the
hard part?

Crypto

Confidentiality: Encryption and Decryption

9

Public Key

?
Private Key

Stream
Cipher

Block
Cipher

Integrity and Authentication

Message
Authentication Codes

Crypto Hash

Public Key

?

Private Key Crypto

10

Public Key Crypto
(10,000 ft view)

11

• Separate keys for encryption and decryption

• Public key: anyone can know this

• Private key: kept confidential

• Anyone can encrypt a message to you using your public key

• The private key (kept confidential) is required to decrypt the
communication

• Alice and Bob no longer have to have a priori shared a secret key

Public Key Cryptography

• Each key pair consists of a public and private
component: k+ (public key), k- (private key)

• Public keys are distributed (typically)
through public key certificates

• Anyone can communicate secretly with
you if they have your certificate

12

Alice Bob

13

(B+,B-)(A+,A-)A+ B+

EB+()“cs114 is cool”DB-()

Public Key Cryptography

RSA
(Rivest, Shamir, Adelman)

• The dominant public key
algorithm

• The algorithm itself is
conceptually simple

• Why it is secure is very
deep (number theory)

• Uses properties of
exponentiation modulo a
product of large primes

"A method for obtaining Digital
Signatures and Public Key

Cryptosystems“, Communications of
the ACM, Feb. 1978.

14

RSA Key Generation

15

• Choose distinct primes p and q

• Compute n = pq

• Compute Φ(n) = Φ(pq)
= (p-1)(q-1)

• Randomly choose 1<e< Φ(pq)
such that e and Φ(pq) are
coprime. e is the public key
exponent

• Compute d=e-1 mod(Φ(pq)). d
is the private key exponent

Why does
this work?

Euler’s Totient Function
• coprime: having no common positive factors other than 1 (also

called relatively prime)

• 16 and 25 are coprime

• 6 and 27 are not coprime

• Euler’s Totient Function: Φ(n) = number of integers less
than or equal to n that are coprime with n

where product ranges over distinct primes dividing n

16

Euler’s Totient Function

17

1,5,7,11,13,17

Φ(18) = 18(1-1/3)(1-1/2) = 6

Euler’s Totient Function
• coprime: having no common positive factors other than 1 (also

called relatively prime)

• 16 and 25 are coprime

• 6 and 27 are not coprime

• Euler’s Totient Function: Φ(n) = number of integers less
than or equal to n that are coprime with n

where product ranges over distinct primes dividing n

• If m and n are coprime, then Φ(mn) = Φ(m)Φ(n)

• If m is prime, then Φ(m) = m - 1

18

RSA Key Generation

19

• Choose distinct primes p and q

• Compute n = pq

• Compute Φ(n) = Φ(pq)
= (p-1)(q-1)

• Randomly choose 1<e< Φ(pq)
such that e and Φ(pq) are
coprime. e is the public key
exponent

• Compute d=e-1 mod(Φ(pq)). d
is the private key exponent

Example:
let p=3, q=11

n=33

Φ(pq)=(3-1)(11-1)=20

let e=7

Modular Arithmetic

• Integers Zn = {0, 1, 2, ..., n-1}

• x mod n = remainder of x divided by n

• 5 mod 13 = 5

• 13 mod 5 = 3

• y is modular inverse of x iff xy mod n = 1

• 4 is inverse of 3 in Z11

• Zn has modular inverses for all integers n is co-prime
with except 0

20

RSA Key Generation

21

• Choose distinct primes p and q

• Compute n = pq

• Compute Φ(n) = Φ(pq)
= (p-1)(q-1)

• Randomly choose 1<e< Φ(pq)
such that e and Φ(pq) are
coprime. e is the public key
exponent

• Compute d=e-1 mod(Φ(pq)). d
is the private key exponent

Example:
let p=3, q=11

n=33

Φ(pq)=(3-1)(11-1)=20

let e=7

ed mod Φ(pq) = 1

7d mod 20 = 1

d = 3

RSA Encryption/
Decryption

• Public key k+ is {e,n} and private key k- is {d,n}

• Encryption and Decryption

Ek+(M) : ciphertext = plaintexte mod n

Dk-(ciphertext) : plaintext = ciphertextd mod n

• Example

• Public key (7,33), Private Key (3,33)

• Plaintext: 4

• E{7,33}(4) = 47 mod 33 = 16384 mod 33 = 16

• D{3,33}(16) = 163 mod 33 = 4096 mod 33 = 4

22

Why does it work?

• Difficult to find Φ(n) or d using only e and n.

• Finding d is equivalent in difficulty to factoring n as p*q

• No efficient integer factorization algorithm is known

• Example: Took 18 months to factor a 200 digit number into
its 2 prime factors

• It is feasible to encrypt and decrypt because:

• It is possible to find large primes.

• It is possible to find coprimes and their inverses.

• Modular exponentiation is feasible.

23

Modular exponentiation is easy!

• e′ = 1. c = (1 ⋅ 4) mod 497 = 4 mod 497 = 4.
• e′ = 2. c = (4 ⋅ 4) mod 497 = 16 mod 497 = 16.
• e′ = 3. c = (16 ⋅ 4) mod 497 = 64 mod 497 = 64.
• e′ = 4. c = (64 ⋅ 4) mod 497 = 256 mod 497 = 256.
• e′ = 5. c = (256 ⋅ 4) mod 497 = 1024 mod 497 = 30.
• e′ = 6. c = (30 ⋅ 4) mod 497 = 120 mod 497 = 120.
• e′ = 7. c = (120 ⋅ 4) mod 497 = 480 mod 497 = 480.
• e′ = 8. c = (480 ⋅ 4) mod 497 = 1920 mod 497 = 429.
• e′ = 9. c = (429 ⋅ 4) mod 497 = 1716 mod 497 = 225.
• e′ = 10. c = (225 ⋅ 4) mod 497 = 900 mod 497 = 403.

24

410 mod 497

Why do we care about
private key crypto?

• Most public key systems use at least 1,024-bit keys

• Key size not comparable to symmetric key algorithms

• RSA is much slower than most symmetric crypto algorithms

• AES: ~161 MB/s

• RSA: ~82 KB/s

• This is too slow to use for modern network
communication!

• Solution: Use hybrid encryption

25

Hybrid Cryptosystems

• In practice, public-key cryptography is used to secure and
distribute session keys.

• These keys are used with symmetric algorithms for
communication.

• Sender generates a random session key, encrypts it using
receiver’s public key and sends it.

• Receiver decrypts the message to recover the session key.

• Both encrypt/decrypt their communications using the same
key.

• Key is destroyed in the end.

26

Hybrid Cryptosystems

27

Alice Bob

Src = Alice, Dest = Bob

Msg = EB+(k), Ek(“COSC235 is awesome!”)

(B+,B-) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

Crypto

Confidentiality: Encryption and Decryption

28

Private Key

Stream
Cipher

Block
Cipher

Integrity and Authentication

Message
Authentication Codes

Crypto Hash

Public Key

?

Public Key

RSA!

Digital Signatures

29

Digital Signatures

• A digital signature serves the same purpose as a real signature.

• It is a mark that only sender can make

• Other people can easily recognize it as belonging to the
sender

• Digital signatures must be:

• Unforgeable: If Alice signs message M with signature S, it is
impossible for someone else to produce the pair (M, S).

• Authentic: If Bob receives the pair (M, S) and knows Alice’s
public key, he can check (“verify”) that the signature is really
from Alice

30

Encryption using private key

Ek-(M) : ciphertext = plaintextd mod n

Dk+(ciphertext) : plaintext = ciphertexte mod n

31

How can Alice sign a digital document?

• Digital document: M

• Since RSA is slow, hash M to compute digest: m = h(M)

• Signature: Sig(M) = Ek-(m) = md mod n

• Since only Alice knows k-, only she can create the signature

• To verify: Verify(M,Sig(M))

• Bob computes h(m) and compares it with Dk+(Sig(M))

• Bob can compute Dk+(Sig(M)) since he knows k+ (Alice’s public key)

• If and only if they match, the signature is verified (otherwise, verification
fails)

32

Properties of a
Digital Signature

• No forgery possible: No one can forge a
message that is purportedly from Alice. If you get a
signed message you should be able to verify that it’s
really from Alice

• No alteration/Integrity: No party can
undetectably alter a signed message

• Provides authentication, integrity, and non-
repudiation (cannot deny having signed a signed
message)

33

Non-Repudiation

34

Alice Bob

Src = Alice, Dest = Bob

Msg = {“network security is fun!”,

MACk(“network security is fun!”)}

Alice Bob

Src = Alice, Dest = Bob

Msg = {“network security is fun!”,

EA-(h(“network security is fun!”))}

Which of these
offer non-

repudiation?

Putting it all together

35

Alice Bob

Src = Alice, Dest = Bob

Msg = EB+(k), Ek(m, EA-(h(m)))

(A+, A-) is Alice’s long-term public-private key pair.
(B+,B-) is Bob’s long-term public-private key pair.

k is the session key; sometimes called the ephemeral key.

Define m = “cs114 is awesome”

Putting it all together

36

Alice Bob

Src = Alice, Dest = Bob

Msg = EB+(k), Ek(m, EA-(h(m)))

(A+, A-) is Alice’s long-term public-private key pair.
(B+,B-) is Bob’s long-term public-private key pair.

k is the session key; sometimes called the ephemeral key.

Define m = “cs114 is awesome”

Putting it all together

37

Alice Bob

Src = Alice, Dest = Bob

Msg = EB+(k), Ek(m, EA-(h(m)))

(A+, A-) is Alice’s long-term public-private key pair.
(B+,B-) is Bob’s long-term public-private key pair.

k is the session key; sometimes called the ephemeral key.

Define m = “cs114 is awesome”

Putting it all together

38

Alice Bob

Src = Alice, Dest = Bob

Msg = EB+(k), Ek(m, EA-(h(m)))

(A+, A-) is Alice’s long-term public-private key pair.
(B+,B-) is Bob’s long-term public-private key pair.

k is the session key; sometimes called the ephemeral key.

Define m = “cs2114 is awesome”

Key Management

39

But how do we verify we’re
using the correct public key?

40

Alice

Bob’s public key is . Trust me.

Not Bob

Short answer:
We can’t.

41

It’s turtles all
the way down.

(more on this next week)

