CS II4:Network Security

Lecture 5 - Public Key Cryptography

Prof. Daniel Votipka Spring 2023

(some slides courtesy of Prof. Micah Sherr and Prof. Patrick McDaniel)

Administrivia

- Homework I, part I due **Tonight** at II:59pm
- Homework I, part 2 due Feb. 28th at II:59pm

Crypto

Confidentiality: Encryption and Decryption

Private Key

StreamBlockCipherCipher

Integrity and Authentication

Message Authentication Codes

Crypto Hash

Man-in-the-Middle (MitM) attack

Cryptographic Hash Functions

- Properties of good <u>cryptographic</u> hash functions:
 - preimage resistance
 - 2nd-preimage resistance
 - collision resistance

Encryption and Message Authenticity

Without knowing k2, Eve can't compute a valid MAC for her forged message!

Message Authentication Codes (MACs)

- MACs provide message integrity and authenticity
- MAC_K(M) use symmetric encryption to produce short sequence of bits that depends on both the message (M) and the key (K)
- MACs should be resistant to existential forgery: Eve should not be able to produce a valid MAC for a message M' without knowing K
- To provide confidentiality, authenticity, and integrity of a message, Alice sends
 - MAC-then-Encrypt: E_K(M,MAC_K(M)) where E_K(X) is the encryption of X using key K; or
 - Encrypt-then-MAC: $E_{\kappa}(M)$, MAC_{$\kappa}(E_{\kappa}(M)) Best option or</sub>$
 - Encrypt-and-MAC: $E_{K}(M)$, MAC_K(M)
 - Proves that M was encrypted (confidentiality) by someone who knew K (authenticity) and hasn't been changed (integrity)

Encryption and Message Authenticity Src = Alice, Dest = Bob What's the $Msg = E_{k1}$ {"network security is fun"}, MAC_{k2}(E_{k1}{"network security is fun"}) hard part? Eve Alice Bob

Without knowing kl, Eve can't read Alice's message.

Without knowing k2, Eve can't compute a valid MAC for her forged message!

Crypto Confidentiality: Encryption and Decryption Private Key Stream Cipher Block Cipher

Integrity and Authentication

Message Authentication Codes Crypto Hash

Private Key Crypto

Public Key Crypto (10,000 ft view)

- <u>Separate</u> keys for encryption and decryption
 - Public key: anyone can know this
 - Private key: kept confidential
- Anyone can encrypt a message to you using your public key
- The private key (kept confidential) is required to decrypt the communication
- Alice and Bob no longer have to have a priori shared a secret key

Public Key Cryptography

 Each key pair consists of a public and private component: k⁺ (public key), k⁻ (private key)

$$D_{k^-}(E_{k^+}(m)) = m$$

- Public keys are distributed (typically) through public key certificates
 - Anyone can communicate secretly with you if they have your certificate

Public Key Cryptography

Alice (A+,A-)

RSA

(Rivest, Shamir, Adelman)

- The dominant public key algorithm
 - The algorithm itself is conceptually simple
 - Why it is secure is very deep (number theory)
 - Uses properties of exponentiation modulo a product of large primes

"A method for obtaining Digital Signatures and Public Key Cryptosystems", Communications of the ACM, Feb. 1978.

RSA Key Generation

- Choose distinct primes p and q²
- Compute n = pq
- Compute Φ(n) = Φ(pq) <
 = (p-1)(q-1)
- Randomly choose I <e Φ(pq) such that e and Φ(pq) are coprime. e is the **public key** exponent
- Compute d=e⁻¹ mod(Φ(pq)). d
 is the **private key exponent**

Why does this work?

Euler's Totient Function

coprime: having no common positive factors other than 1 (also called relatively prime)

- 16 and 25 are coprime
- 6 and 27 are not coprime
- Euler's Totient Function: $\Phi(n) =$ number of integers less than or equal to n that are coprime with n

$$\Phi(n) = n \cdot \prod_{p|n} (1 - \frac{1}{p})$$

where product ranges over distinct primes dividing n

Euler's Totient Function

$$\Phi(n) = n \cdot \prod_{p|n} (1 - \frac{1}{p})$$

$$\Phi(18) = 18(1-1/3)(1-1/2) = 6$$

1,5,7,11,13,17

Euler's Totient Function

coprime: having no common positive factors other than 1 (also called relatively prime)

- 16 and 25 are coprime
- 6 and 27 are not coprime
- Euler's Totient Function: $\Phi(n) =$ number of integers less than or equal to n that are coprime with n

$$\Phi(n) = n \cdot \prod_{p|n} (1 - \frac{1}{p})$$

where product ranges over distinct primes dividing n

- If m and n are coprime, then $\Phi(mn) = \Phi(m)\Phi(n)$
- If m is prime, then $\Phi(m) = m I$

RSA Key Generation

- Choose distinct primes p and q
- Compute n = pq
- Compute Φ(n) = Φ(pq)
 = (p-1)(q-1)
- Randomly choose I <e < Φ(pq) such that e and Φ(pq) are coprime. e is the **public key** exponent
- Compute d=e⁻¹ mod(Φ(pq)). d
 is the **private key exponent**

Example:

```
let p=3, q=11
n=33
Φ(pq)=(3-1)(11-1)=20
let e=7
```

Modular Arithmetic

- Integers $Z_n = \{0, 1, 2, ..., n-1\}$
- x mod n = remainder of x divided by n
 - 5 mod 13 = 5
 - 13 mod 5 = 3
- y is **modular inverse** of x iff xy mod n = 1
 - 4 is inverse of 3 in Z₁₁
- Z_n has modular inverses for all integers n is co-prime with except 0

RSA Key Generation

- Choose distinct primes p and q
- Compute n = pq
- Compute $\Phi(n) = \Phi(pq)$ = (p-1)(q-1)
- Randomly choose I <e < Φ(pq) such that e and Φ(pq) are coprime. e is the **public key** exponent
- Compute d=e⁻¹ mod(Φ(pq)). d
 is the **private key exponent**

Example:

```
let p=3, q=11
n=33
\Phi(pq) = (3-1)(11-1) = 20
let e=7
ed mod \Phi(pq) = I
7d \mod 20 = 1
d = 3
```

RSA Encryption/ Decryption

- Public key k^+ is $\{e,n\}$ and private key k^- is $\{d,n\}$
- Encryption and Decryption

 $E_{k+}(M)$: ciphertext = plaintext^e mod n

 D_{k} (ciphertext) : plaintext = ciphertext^d mod n

- Example
 - Public key (7,33), Private Key (3,33)
 - Plaintext: 4
 - $E_{7,33}(4) = 4^7 \mod 33 = 16384 \mod 33 = 16$
 - $D_{\{3,33\}}(16) = 16^3 \mod 33 = 4096 \mod 33 = 4$

Why does it work?

- Difficult to find $\Phi(n)$ or d using only e and n.
- Finding d is equivalent in difficulty to factoring n as p*q
 - No efficient integer factorization algorithm is known
 - Example: Took 18 months to factor a 200 digit number into its 2 prime factors
- It is feasible to encrypt and decrypt because:
 - It is possible to find large primes.
 - It is possible to find coprimes and their inverses.
 - Modular exponentiation is feasible.

Modular exponentiation is easy! 4¹⁰ mod 497

- e' = 1. $c = (1 \cdot 4) \mod 497 = 4 \mod 497 = 4$.
- e' = 2. $c = (4 \cdot 4) \mod 497 = 16 \mod 497 = 16$.
- e' = 3. $c = (16 \cdot 4) \mod 497 = 64 \mod 497 = 64$.
- e' = 4. $c = (64 \cdot 4) \mod 497 = 256 \mod 497 = 256$.
- e' = 5. $c = (256 \cdot 4) \mod 497 = 1024 \mod 497 = 30$.
- $e' = 6. c = (30 \cdot 4) \mod 497 = 120 \mod 497 = 120.$
- e' = 7. $c = (120 \cdot 4) \mod 497 = 480 \mod 497 = 480$.
- e' = 8. $c = (480 \cdot 4) \mod 497 = 1920 \mod 497 = 429$.
- e' = 9. $c = (429 \cdot 4) \mod 497 = 1716 \mod 497 = 225$.
- $e' = 10. c = (225 \cdot 4) \mod 497 = 900 \mod 497 = 403.$

Why do we care about private key crypto?

- Most public key systems use at least 1,024-bit keys
 - Key size not comparable to symmetric key algorithms
- RSA is much slower than most symmetric crypto algorithms
 - AES: ~161 MB/s
 - RSA: ~82 KB/s
 - This is **too** slow to use for modern network communication!
 - Solution: Use hybrid encryption

Hybrid Cryptosystems

- In practice, public-key cryptography is used to secure and distribute session keys.
- These keys are used with symmetric algorithms for communication.
- Sender generates a random session key, encrypts it using receiver's public key and sends it.
- Receiver decrypts the message to recover the session key.
- Both encrypt/decrypt their communications using the same key.
- Key is destroyed in the end.

Hybrid Cryptosystems

(B⁺,B⁻) is Bob's long-term public-private key pair. k is the session key; sometimes called the **ephemeral key**.

Integrity and Authentication

Message Authentication Codes Crypto Hash

Digital Signatures

Digital Signatures

- A digital signature serves the same purpose as a real signature.
 - It is a mark that only sender can make
 - Other people can easily recognize it as belonging to the sender
- Digital signatures must be:
 - Unforgeable: If Alice signs message M with signature S, it is impossible for someone else to produce the pair (M, S).
 - Authentic: If Bob receives the pair (M, S) and knows Alice's public key, he can check ("verify") that the signature is really from Alice

Encryption using private key

 $E_{k-}(M)$: ciphertext = plaintext^d mod n $D_{k+}(ciphertext)$: plaintext = ciphertext^e mod n

How can Alice sign a digital document?

- Digital document: M
- Since RSA is slow, hash M to compute digest: m = h(M)
- Signature: $Sig(M) = E_{k}(m) = m^{d} \mod n$
 - Since only Alice knows k-, only she can create the signature
- To verify: Verify(M,Sig(M))
 - Bob computes h(m) and compares it with D_{k+}(Sig(M))
 - Bob can compute D_{k+}(Sig(M)) since he knows k⁺ (Alice's public key)
 - If and only if they match, the signature is verified (otherwise, verification fails)

Properties of a Digital Signature

- No forgery possible: No one can forge a message that is purportedly from Alice. If you get a signed message you should be able to verify that it's really from Alice
- No alteration/Integrity: No party can undetectably alter a signed message
- Provides authentication, integrity, and nonrepudiation (cannot deny having signed a signed message)

Non-Repudiation

Define m = "cs114 is awesome"

(A+,A-) is Alice's long-term public-private key pair.
 (B+,B-) is Bob's long-term public-private key pair.
 k is the session key; sometimes called the **ephemeral key**.

Define m = "cs114 is awesome"

(A+,A-) is Alice's long-term public-private key pair.
 (B+,B-) is Bob's long-term public-private key pair.
 k is the session key; sometimes called the **ephemeral key**.

Define m = "cs114 is awesome"

(A+,A-) is Alice's long-term public-private key pair.
(B+,B-) is Bob's long-term public-private key pair.
k is the session key; sometimes called the **ephemeral key**.

Define m = "cs2114 is awesome"

(A+,A-) is Alice's long-term public-private key pair.
 (B+,B-) is Bob's long-term public-private key pair.
 k is the session key; sometimes called the **ephemeral key**.

Key Management

MIT PGP Key Server ×
← → C ☆ ③ pgp.mit.edu Q ☆ ④ ♥ ◎ ♀ ●
🕓 SecDocs 🔧 G-Scholar 🙀 G-Cal 🏂 G-Maps 🕓 G-Voice 🖪 G+ 🖲 NYT и MSNBC 🛛 🔤 Other Bookmarks
MIT PGP Public Key Server Help: Extracting keys / Submitting keys / Email interface / About this server / FAQ Related Info: Information about PGP / MIT distribution site for PGP
Extract a key
Search String: micah sherr 🔮 Do the search!
Index: Verbose Index:
□ Show PGP fingerprints for keys
□ Only return exact matches
Submit a key
Enter ASCII-armored PGP key here:
Clear Submit this key to the keyserver!
Remove a key
Search String: Remove the key!
Please send bug reports or problem reports to $< bug-pks@mit.edu>$ only after reading our <u>FAQ</u> . This page is a modified version of the examples provided by <u>Brian LaMacchia</u> and <u>Marc Horowitz</u> .

But how do we verify we're using the correct public key?

Short answer: We can't.

It's turtles all the way down.

(more on this next week)

