
Lecture 8 - Authentication Part II

Prof. Daniel Votipka
Spring 2023

(some slides courtesy of Prof. Micah Sherr, Patrick McDaniel, and Vitaly Shmatikov)

CS 114: Network
Security

Administrivia

• Exam 1 on Thursday in class

• Review at the end of this lecture

• Homework 1, part 2 note:

• Encryption and decryption with CBC must be
in the same order

2

Authentication

3

Alice? Bob?

What is Authentication?

• Establishes identity

• Answers the question: To whom am I
speaking?

• Credential – proof of identity

• Evaluation – process that assesses the
correctness of the association between
credential and claimed identity

4

Three Flavors of
Credentials

• … are evidence used to prove identity

• Credentials can be

1.Something I am

2.Something I know

3.Something I have

5

“Salt”ing passwords
• Suppose you want to make an offline dictionary attack more

difficult

• A salt is a random number added to the password

• This is the approach taken by any reasonable system

6

...

Three Flavors of
Credentials

• … are evidence used to prove identity

• Credentials can be

1.Something I am

2.Something I know

3.Something I have

7

User Servers

Authentication

Kerberos

9

Kerberos

• An online system that resists password eavesdropping and
achieves mutual authentication

• First single sign-on system (SSO)

• Easy application integration API

• Most widely used (non-web) centralized password system in
existence

• Now part of Windows network authentication

10

User Servers

User proves his identity;
requests ticket for some service

User receives ticket

Ticket is used to access
desired network service

Knows all users’ and
servers’ passwords

Kerberos Overview

What Should a Ticket Look Like?

User Server

• Ticket cannot include server’s plaintext password

• Otherwise, next time user will access server directly without
proving his identity to authentication service

• Solution: encrypt some information with a key known to the
server (but not the user!)

• Server can decrypt ticket and verify information

• User does not learn server’s key

Ticket gives holder

access to a network
service

12

What should a ticket include?

Server

Encrypted
ticket

Knows passwords of
all users and servers

Encrypted
ticket

User

• User name

• Server name

• Address of user’s workstation -- WHY?

• Ticket lifetime -- WHY?

• A few other things (e.g., session key)

13

Two-Step Authentication

Encrypted TGS ticket

Joe the User

Key distribution
center (KDC)

USER=Joe; service=TGS

• Prove identity once to obtain special TGS ticket
• Use TGS to get tickets for any network service

File server, printer,
other network services

Encrypted
service ticket

Ticket granting
service (TGS)

TGS ticket

Encrypted
service ticket

14

Not quite good enuf...
• Ticket hijacking

• Malicious user may steal the service ticket of another user on the
same workstation and use it

• IP address verification does not help

• Servers must verify that the user who is presenting the ticket is
the same user to whom the ticket was issued

• No server authentication

• Attacker may misconfigure the network so that he receives
messages addressed to a legitimate server

• Capture private information from users and/or deny service

• Servers must prove their identity to users

• We want mutual authentication

15

Symmetric Keys in Kerberos
• Kc is long-term key of client C

• Derived from user’s password

• Known to client and key distribution center (KDC)

• KTGS is long-term key of TGS

• Known to KDC and ticket granting service (TGS)

• Kv is long-term key of network service V

• Known to V and TGS; separate key for each service

• Kc,TGS is short-term session key between C and TGS

• Created by KDC, known to C and TGS

• Kc,v is short-term session key between C and V

• Created by TGS, known to C and V

16

Brace yourself!
It’s Kerberos time!

• Three-step process:

• “Logon” -- obtain TGS ticket from KDC

• Obtain “service ticket” from TGS

• Use service

17

“Single Logon” Authentication

User

• Client only needs to obtain TGS ticket once (say, every morning)

• Ticket is encrypted; client cannot forge it or tamper with it

kinit program (client)
Key Distribution
Center (KDC)

password IDc , IDTGS , timec

EncryptKc(Kc,TGS , IDTGS , timeKDC ,
 lifetime , ticketTGS)

Kc

Convert into
client master key

Key = Kc

Key = KTGSTGS

…

All users must
pre-register their

passwords with KDC

Fresh key to be used
between client and TGS

Decrypts with
Kc and obtains

Kc,TGS and
ticketTGS

EncryptKTGS(Kc,TGS , IDc , Addrc ,
 IDTGS , timeKDC , lifetime)
Client will use this unforgeable ticket to

get other tickets without re-authenticating

18

Obtaining a Service Ticket

User

• Client uses TGS ticket to obtain a service ticket and a short-term key for
each network service

• One encrypted, unforgeable ticket per service (printer, email, etc.)

Client Ticket Granting
Service (TGS)

usually lives inside KDC

System command,
e.g. “lpr –Pprint”

IDv , ticketTGS , authC

EncryptKc,TGS(Kc,v , IDv , timeTGS ,
 ticketv)

Fresh key to be used
between client and service

Knows Kc,TGS
and ticketTGS

EncryptKc,TGS(IDc , Addrc , timec)
Proves that client knows key Kc,TGS

contained in encrypted TGS ticket

EncryptKv(Kc,v , IDc , Addrc , IDv ,
 timeTGS , lifetime)
Client will use this unforgeable
ticket to get access to service V

Knows key Kv for
each service

19

EncryptKTGS(Kc,TGS , IDc , Addrc ,
 IDTGS , timeKDC , lifetime)

Use Service

User

• For each service request, client uses the short-term key
for that service and the ticket he received from TGS

Client

Server V

System command,
e.g. “lpr –Pprint”

ticketv , authC

EncryptKc,v(timec+1)

Knows Kc,v
and ticketv

EncryptKc,v(IDc , Addrc , timec)
Proves that client knows key Kc,v

contained in encrypted ticket

Authenticates server to client
Reasoning:

Server can produce this message only if he knows key Kc,v.

Server can learn key Kc,v only if he can decrypt service ticket.

Server can decrypt service ticket only if he knows correct key Kv.

If server knows correct key Kv, then he is the right server.

20

EncryptKv(Kc,v , IDc , Addrc , IDv ,
 timeTGS , lifetime)

User Servers

User proves his identity;
requests ticket for some service

User receives ticket

Ticket is used to access
desired network service

Knows all users’ and
servers’ passwords

Kerberos Overview

Open Authorization (OAuth)

23

24

Open Authorization (OAuth)

25

Review for Exam 1

26

•Closed-book, closed-notes, non-collaborative

•You’ll have 75 minutes to complete the exam
(1:30 - 2:45pm)

•Covers everything from Lecture 2 - 6

27

Crypto

28

Confidentiality: Encryption and Decryption

Public KeyPrivate Key

Stream
Cipher

Block
Cipher

RSA

Integrity and Authentication

Message
Authentication Codes

Crypto Hash

Public Key

Digital Signature

Classic Private Key Crypto

29

•Caesar Cipher
•Substitution Cipher
•One-Time Pad

Kerckhoffs’ Principles

30

•Kerckhoffs’ principles [1883]:

• Assume Eve knows cipher algorithm

• Security should rely on choice of key

• If Eve discovers the key, a new key can be chosen

Crypto

31

Confidentiality: Encryption and Decryption

Public KeyPrivate Key

Stream
Cipher

Block
Cipher

RSA

Integrity and Authentication

Message
Authentication Codes

Crypto Hash

Public Key

Digital Signature

Stream Ciphers
• Key reuse: [C(K) = pseudorandom stream produced using key K]

• E(M1) = M1 ⊕ C(K)

• E(M2) = M2 ⊕ C(K)

• Suppose Eve knows ciphertexts E(M1) and E(M2)

• E(M1) ⊕ E(M2) = M1 ⊕ C(K) ⊕ M2 ⊕ C(K) = M1 ⊕ M2

• M1 and M2 can be derived from M1 ⊕ M2 using frequency analysis

• Countermeasure is to use IV (initialization vector)

• IV sent in clear and is combined with K to produce pseudorandom sequence

• E.g., replace C(K) with C(K⊕IV) or C(f(K,IV))

• IVs should never be reused and should be sufficiently large

• WEP broken partly because IVs were insufficiently large

• modern stream ciphers take IVs, but it's up to the programmer to generate them

32

Block Ciphers
• Plaintext broken into fixed-sized blocks

• Each block individually encrypted

• Substitution-Permutation Networks

• S-Box

• Input: sequence of x bits

• Output: new sequence of x bits

• Mapping from one bit string to another

• Permutation

• Input: sequence of x bits

• Output: permutation of the input

• Symmetric key encryption typically uses many rounds of
S-Boxes and permutations, incorporating the key

33

Modes of Operation:
Electronic Codebook (ECB)

34

• Blocks are individually encrypted and concatenated together

• Problems:

• Identical plaintext blocks produce identical ciphertext blocks

• Encrypted blocks can be shuffled without detection

Plaintext ECB Other modes

Modes of Operation:
Cipher-block Chaining (CBC)

35

• Each block xor'd with ciphertext of previous block before encrypting

• Uses initialization vector (IV) to kickoff randomness

• IVs sent in the clear; should be randomly chosen for each session

Modes of Operation:
Counter Mode (CTR)

36

• Allows random-access encryption/decryption

• Encrypts the IV plus a counter (incremented with each block), and
xor the result with the plaintext

• Causes block cipher to function as a stream cipher

Crypto

37

Confidentiality: Encryption and Decryption

Public KeyPrivate Key

Stream
Cipher

Block
Cipher

RSA

Integrity and Authentication

Message
Authentication Codes

Crypto Hash

Public Key

Digital Signature

Message Authentication Codes (MACs)

38

• MACs provide message integrity and authenticity

• MACK(M) – use symmetric encryption to produce short sequence of
bits that depends on both the message (M) and the key (K)

• MACs should be resistant to existential forgery: Eve should not
be able to produce a valid MAC for a message M' without knowing K

• To provide confidentiality, authenticity, and integrity of a message, Alice
sends

• MAC-then-Encrypt: EK(M,MACK(M)) where EK(X) is the encryption
of X using key K; or

• Encrypt-then-MAC: EK(M),MACK(EK(M))

 or

• Encrypt-and-MAC: EK(M),MACK(M)

• Proves that M was encrypted (confidentiality) by someone who
knew K (authenticity) and hasn’t been changed (integrity)

Best option

Cryptographic Hash Functions

• Hash function h: deterministic one-way function that
takes as input an arbitrary message M (sometimes called a
preimage) and returns as output h(M), a small fixed length
hash (sometimes called a digest)

• Hash functions should have the following two properties:

• compression: reduces arbitrary length string to fixed
length hash

• ease of computation: given message M, h(M) is easy to
compute

39

Cryptographic Hash Functions

• Properties of good cryptographic hash functions:

• preimage resistance: given digest y,
computationally infeasible to find preimage x' such
that h(x')=y

• 2nd-preimage resistance: given preimage x,
computationally infeasible to find preimage x' such
that h(x)=h(x')

• collision resistance: computationally
infeasible to find preimages i,j such that h(i)=h(j)

40

How do we use to make a MAC?

• MACK(M) = h(M|K)

• Only computable if you know K

• Any change in data will cause change in hash

41

Encryption and Message Authenticity

Alice BobEve

42

Without knowing k2, Eve can’t compute a valid
MAC for her forged message.

Without knowing k1, Eve can’t read Alice’s message.

What’s the
hard part?

Src = Alice, Dest = Bob

Msg = Ek1{“network security is fun”},
MACk2(Ek1{“network security is fun”})

Crypto

43

Confidentiality: Encryption and Decryption

Public KeyPrivate Key

Stream
Cipher

Block
Cipher

RSA

Integrity and Authentication

Message
Authentication Codes

Crypto Hash

Public Key

Digital Signature

Alice Bob

44

(B+,B-)(A+,A-)A+ B+

EB+()“cs114 is cool”DB-()

Public Key Cryptography

RSA Key Generation

45

• Choose distinct primes p and q

• Compute n = pq

• Compute Φ(n) = Φ(pq)
= (p-1)(q-1)

• Randomly choose 1<e< Φ(pq)
such that e and Φ(pq) are
coprime. e is the public key
exponent

• Compute d=e-1 mod(Φ(pq)). d
is the private key exponent

Example:
let p=3, q=11

n=33

Φ(pq)=(3-1)(11-1)=20

let e=7

ed mod Φ(pq) = 1

7d mod 20 = 1

d = 3

RSA Encryption/
Decryption

• Public key k+ is {e,n} and private key k- is {d,n}

• Encryption and Decryption

Ek+(M) : ciphertext = plaintexte mod n

Dk-(ciphertext) : plaintext = ciphertextd mod n

• Example

• Public key (7,33), Private Key (3,33)

• Plaintext: 4

• E{7,33}(4) = 47 mod 33 = 16384 mod 33 = 16

• D{3,33}(16) = 163 mod 33 = 4096 mod 33 = 4

46

Hybrid Cryptosystems

47

Alice Bob

Src = Alice, Dest = Bob

Msg = EB+(k), Ek(“CS114 is awesome!”)

(B+,B-) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

How can Alice sign a digital document?

• Digital document: M

• Since RSA is slow, hash M to compute digest: m = h(M)

• Signature: Sig(M) = Ek-(m) = md mod n

• Since only Alice knows k-, only she can create the signature

• To verify: Verify(M,Sig(M))

• Bob computes h(m) and compares it with Dk+(Sig(M))

• Bob can compute Dk+(Sig(M)) since he knows k+ (Alice’s public key)

• If and only if they match, the signature is verified (otherwise, verification
fails)

48

Non-Repudiation

49

Alice Bob

Src = Alice, Dest = Bob
Msg = {“network security is fun!”,
MACk(“network security is fun!”)}

Alice Bob

Src = Alice, Dest = Bob
Msg = {“network security is fun!”,
EA-(h(“network security is fun!”))}

Which of these
offer non-

repudiation?

But how do we verify we’re
using the correct public key?

50

Alice

Bob’s public key is . Trust me.

Not Bob

Key Distribution and Key Agreement

• Key Distribution is the process where
we assign and transfer keys to a participant

• Key Agreement is the process whereby
two or more parties negotiate a key

51

Diffie-Hellman (DH) Key Agreement
• Proposed by Whitfield Diffie and Martin Hellman in 1976

• g=base, p=prime, a=Alice's secret, b=Bob's secret

• Eve cannot compute K without knowing either a or b (neither of which is
transmitted), even if she (passively) intercepts all communication!

52

Alice

a, g, p
A = ga mod p

Bob

b
g, p, A B = gb mod p

K = Ab mod pBK = Ba mod p

Certificate Validation

…

Root

CA1 CA2

CA11 CA12 CA21CA1n

Cert11a Cert11b Cert11c … …

Sig{CA11-,{Cert11a+,Cert11aID}

{Cert11a+, Cert11aID}

53

*

*.tufts.edu

*.cs.tufts.edu

tsp.cs.tufts.edu

Sig{CA1-,{CA11+,CA11ID}

Sig{Root-,{CA1+,CA1ID}

Logistics for Exam 1

54

•Closed-book, closed-notes, non-collaborative

•You’ll have 75 minutes to complete the exam
(1:30 - 2:45pm)

•Covers everything from Lecture 2 - 6

