CS 114:Network Security

Lecture 12 - Worms and Botnets

Prof. Daniel Votipka Spring 2023

(some slides courtesy of Prof. Micah Sherr)

Administrivia

- Homework I, part 2 due next Tuesday at II:59pm
 - You can ignore errors if you're passing all the test cases

TCP/IP Security Review

Network Stack, revisited

Application
SSL/TLS
Transport
Network
Link
Physical

TCP Sequence Numbers

Bob Barker

- TCP's "three-way handshake":
 - each party selects Initial Sequence Number (ISN)
 - shows both parties are capable of receiving data
 - offers some protection against forgery -- WHY?

TCP Sequence Numbers

Routing Manipulation

- RIP Routing Information Protocol
 - Distance vector routing protocol used for the local network
 - Routers exchange reachability and "distance" vectors for all the sub-networks within (a typically small) domain
 - Use vectors to decide which route is best

ARP Spoofing: Background:ARP

Address Resolution Protocol (ARP): Locates a host's link-layer (MAC) address

- Problem: How does Alice communicate with Bob over a LAN?
 - Assume Alice (10.0.0.1) knows Bob's (10.0.0.2) IP
 - LANs operate at layer 2 (there is no router inside of the LAN)
 - Messages are sent to the switch, and addressed by a host's link-layer (MAC) address
- Protocol:
 - Alice broadcasts: "Who has 10.0.0.2?"
 - Bob responses: "I do! And I'm at MAC f8:1e:df:ab:33:56."

ARP Spoofing

- Each ARP response overwrites the previous entry in ARP table -- <u>last response wins</u>!
- Attack: Forge ARP response
- Effects:
 - Man-in-the-Middle
 - Denial-of-service
- Also called **ARP Poisoning** or **ARP Flooding**

Source Routing

- Standard IP Packet Format (RFC791)
- Source Routing allows sender to specify route
 - Set flag in Flags field
 - Specify routes in *Options* field

Ping-of-Death: Background: IP Fragmentation

- I6-bit "Total Length" field allows 2¹⁶-1=65,535 byte packets
- Data link (layer 2) often imposes significantly smaller Maximum Transmission Unit (MTU) (normally 1500 bytes)
- Fragmentation supports packet sizes greater than MTU and less than 2¹⁶
- 13-bit Fragment Offset specifies offset of fragmented packet, in units of 8 bytes
- Receiver reconstructs IP packet from fragments, and delivers it to Transport Layer (layer 4) after reassembly

4	4 8		16 19	
Version	Length	Type of Service	Total Length	
Identification			Flags	Fragment Offset
Time t	o Live	Protocol	Header Checksum	
		Source A	Address	
		Destination	n Address	
		Optic	ons	
		Dat	а	

Worms

- A worm is a self-propagating program that:
 - Exploits some vulnerability on a target host
 - 2. (often) imbeds itself into a host ...
 - **3.**Searches for other vulnerable hosts ...
 - 4.Goto step 1

The Danger

- What makes worms so dangerous is that infection grows at an exponential rate
 - A simple model:
 - S (search) is the time it takes to find vulnerable host
 - *i* (infect) is the time is take to infect a host
 - Assume that t=0 is the worm outbreak, the number of hosts at t=j is

2(j/(s+i))

The history of worms

The Morris Worm

November 2nd, 1988

- 6pm: someone ran a program at a computer at MIT
- The program collected host, network, and user info...
- ... and then spread to other machines running Sun 3,VAX, and some BSD variants
- ... rinse and repeat

November 2nd, 1988

- Computers became multiply infected
- Systems became overloaded with processes
- Swap space became exhausted, and machines failed
- Wednesday night: UC Berkeley captures copy of program

- 5AM November 3rd: UC Berkeley builds patch to stop spread of worm
- Difficult to spread knowledge of fix
 - Not coincidentally, the Internet was running slow
- Around 6,000 machines (~10% of Internet) infected at cost of \$10M-\$100M

Robert Morris

- 1988: Graduate student at Cornell University
- Son of Robert Morris, chief scientist at National Computer Security Center (division of NSA)

Now a professor at MIT

Morris Worm: Attack Vectors

- rsh: terminal client with network (IP)-based authentication
- fingerd: used gets call without bounds checking
- sendmail: DEBUG mode allows remote user to run commands
 - lots of sendmail daemons running in DEBUG mode

Morris Worm: Propagation

- Worm would ask host if it was infected
 - If answer was no, worm would infect
 - If answer was yes, worm would infect with some small probability (to thwart trivial countermeasure)
- But... bug allowed worm to spread much faster than anticipated, infecting the same machines multiple times
- Lesson: Always thoroughly debug your worms.

Code Red - 2001

- Exploited a Microsoft IIS web-server buffer overflow
 - Scans for vulnerabilities over random IP addresses
 - Sometimes would deface the compromised website
- Initial outbreak on July 16th, 2001
 - version I: contained bad randomness (fixed IPs searched)
 - version 2: fixed the randomness,
 - added DDoS of www.whitehouse.gov
 - Turned itself off and on (on 1st and 19th of month, attack 20-27th, dormant 28-31st)
- August 4 Code Red II
 - Different code base, same exploit
 - Added local scanning (biased randomness to local IPs)
 - Killed itself in October of 2001

Stuxnet

- First reported June 2010
- Exploited **zero-day vulnerabilit**ies
 - four zero-days!
 - print spooler bug
 - handful of escalation-of-privilege vulnerabilities

Stuxnet

- Spread through infected USB drives
 - bypasses "air gaps"
- Worm actively targeted SCADA systems (i.e., industrial control systems)
 - looked for WINCC or PCS 7 SCADA management system
 - attempted 0-day exploit
 - also tried using default passwords
 - apparently, specifically targeted Iran's nuclear architecture

Stuxnet

- Once SCADA system compromised, worm attempts to reprogram Programmable Logic Controllers (PLCs)
- Forensics aggravated by lack of logging in SCADA systems

Worms and infection

- The effectiveness of a worm is determined by how good it is at identifying vulnerable machines
- Multi-vector worms use lots of ways to infect: e.g., network, email, drive by downloads, etc.
- Example scanning strategies:
 - Random IP: select random IPs; wastes a lot of time scanning "dark" or unreachable addresses (e.g., Code Red)
 - Signpost scanning: use info on local host to find new targets (e.g., Morris)
 - Local scanning: biased randomness
 - **Permutation scanning:** "hitlist" based on shared pseudorandom sequence; when victim is already infected, infected node chooses new random position within sequence

Worms: Defense Strategies

- (Auto) **patch** your systems: most large worm outbreaks have exploited known vulnerabilities (Stuxnet is an exception)
- Heterogeneity: use more than one vendor for your networks
- **IDS**: provides filtering for known vulnerabilities, such that they are protected immediately (analog to virus scanning)

• Filtering: look for unnecessary or unusual communication patterns, then drop them on the floor

Botnets

Botnets

- A botnet is a network of software robots (bots) run on zombie machines which are controlled by command and control networks
 - IRCbots command and control over IRC
 - **Bot master** owner/controller of network

What are botnets being used for?

Activities we have seen

piracy Stealing CD Keys:

ying!ying@ying.2.tha.yang PRIVMSG #atta :BGR|0981901486 \$getcdkeys BGR|0981901486!nmavmkmyam@212.91.170.57 PRIVMSG #atta :Microsoft Windows Product ID CD Key: (55274-648-5295662-23992). BGR|0981901486!nmavmkmyam@212.91.170.57 PRIVMSG #atta :[CDKEYS]: Search completed.

mining | Reading a user's clipboard:

B][!Guardian@globalop.xxx.xxx PRIVMSG ##chem## :~getclip Ch3m|<u>784318!~zbhibvn@xxx-7CCCB7AA.click-network.com</u> PRIVMSG ##chem## :-[Clipboard Data]- Ch3m|<u>784318!~zbhibvn@xxx-7CCCB7AA.click-network.com</u> PRIVMSG ##chem## :If You think the refs screwed the seahawks over put your name down!!!

attacks DDoS someone:

devil!evil@admin.of.hell.network.us PRIVMSG #t3rr0r0Fc1a :!pflood 82.147.217.39
443 1500 s7n|2K503827!s7s@221.216.120.120 PRIVMSG #t3rr0r0Fc1a :\002Packets\002
\002D\002one \002;\002>\n s7n|2K503827!s7s@221.216.120.120 PRIVMSG #t3rr0r0Fc1a
flooding....\n

hosting | Set up a web-server (presumably for phishing):

[DeXTeR]!alexo@185-130-136-193.broadband.actcom.net.il PRIVMSG [Del]29466 :.http 7564 c:\\ [Del]38628!zaazbob@born113.athome233.wau.nl PRIVMSG _[DeXTeR] :[HTTPD]: Server listening on IP: 10.0.2.100:7564, Directory: c:\\.

IRC

- Internet Relay Chat
 - before AOL chat rooms
 - equally creepy
- Supports one-to-many or many-to-many chat
- Supports many channels (sometimes password protected)
- Client/server architecture

IRC botnets

Denial-of-Service

Denial-of-Service (DoS)

- Intentional prevention of access to valued resource
 - CPU, memory, disk (system resources)
 - DNS, print queues, NIS (services)
 - Web server, database, media server (applications)
- This is an attack on availability
- Launching DoS attacks is easy
- Preventing DoS attacks is wicked hard

Canonical DoS - Request Flood

- Overwhelm some resource with requests
- e.g., web-server,
 phone system
- Most effective when processing request is expensive

Smurf Attacks

Example: SMURF Attacks

- Simple DoS attack:
 - Send a large number PING packets to a network's broadcast IP addresses (e.g., 192.168.27.254)
 - Set the source packet IP address to be your victim
 - All hosts will reflexively respond to the ping at your victim
 - ... and it will be crushed under the load.
 - This is an **amplification attack** and a **reflection attack**

Example: Middlebox Attacks

https://www.youtube.com/watch?v=OSfgTbjb3og

Example: Middlebox Attacks

https://www.youtube.com/watch?v=OSfgTbjb3og

Distributed Denial of Service

- DDoS: Network oriented attacks aimed at preventing access to network, host or service
 - Saturate the target's network with traffic
 - Consume all network resources (e.g., SYN flooding)
 - Overload a service with requests
 - Use "expensive" requests (e.g., "sign this data")
 - Can be extremely costly
- Result: service/host/network is unavailable
- Criminals sometimes use DDoS for racketeering
- Note: IP addresses of perpetrators are often hidden (spoofed)

DDoS Mitigations

Q:An easy fix?

How do you solve distributed denial of service?

Simple DDoS Mitigation

- Ingress/Egress Filtering: Helps spoofed sources, not much else
- Better Security
 - Limit availability of zombies (not feasible)
 - Prevent compromise and viruses (maybe in wonderful magic land where it rains chocolate and doughnuts)
- Quality of Service Guarantees (QoS)
 - Pre- or dynamically allocated bandwidth (e.g., diffserv)
 - Helps where such things are available
- Content replication
 - E.g., CDS
 - Useful for static content

Pushback

- Initially, detect the DDoS and flag the sources/types/links of DDoS traffic
- **Pushback** on upstream routers
 - Contact upstream routers using PB protocol
 - Indicate some filtering rules (based on observed flows)
- Repeat as necessary towards sources
- Works well in wonderful magic land where it rains chocolate and doughnuts

http://www.icir.org/pushback/pushback-tohotnets.pdf

Traceback

- With small probability (e.g., 1/20,000), routers include identity of previous hop with packet data
- For large flows, targets can reconstruct path to source
- Statistics say that the path will be exposed

https://people.eecs.berkeley.edu/~dawnsong/papers/ iptrace.pdf

DDoS Reality

- None of the "protocol oriented" solutions have really seen any adoption
 - too many untrusting, ill-informed, mutually suspicious parties must play together
- Real Solution
 - Large ISPs police their ingress/egress points very carefully
 - Watch for DDoS attacks and filter appropriately
 - Develop products that coordinate view from many vantage points in the network to identify upswings in traffic