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Plan for today

• Administrivia

• Anonymity Review

• Network Defense

• Firewalls

• Intrusion Detection Systems

• Honeypots/Malware Analysis
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Administrivia
• Homework 1, part 3 is due tonight

• Exam 2 is next Thursday

• Authentication -> Anonymity

• Same format as last time



Anonymity Review
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DC-Net
• Phase I:  Each diner 

exchanges secret coin flip 
with neighbor

• Phase II:

• If diner didn’t pay, 
announces xor of local 
coin flips

• If diner did pay, 
announces inverse of 
xor

• If xor of the announced 
xors is 0, then no one 
inverted and NSA paid; 
otherwise, a diner paid.
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DC-Nets

• Achieves information-theoretic anonymity 
(under certain conditions)

• Limitations:

• Subject to collisions (what if two diners pay?)

• Requires pairwise secret keys

• Last diner who announces message gets to 
choose the result
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Plan for today

• Administrivia

• Anonymity

• Network Defense

• Firewalls

• Intrusion Detection Systems

• Exam 2 review
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Filtering: Firewalls

• Filtering traffic based on policy

• Policy determines what is acceptable traffic

• Access control over traffic

• Accept or deny

• May perform other duties

• Logging (forensics, SLA)

• Flagging (intrusion detection)

• QoS (differentiated services)
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IP Firewall Policy
• Specifies what traffic is (not) allowed

• Maps attributes to address and ports

• Example: HTTP should be allowed to any external host, but inbound only to 
web-server

• Rules typically refer to IP addresses, not hostnames    -- WHY?
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Default accept vs. Default deny

• Default policy specifies what to do if no other policy applies

• Most OSes default to default accept

• Most organizations default to default deny
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• Deny list (blacklist)

• Specifies connectivity that is explicitly 
disallowed

• E.g., prevent connections from badguys.com

• Accept list (whitelist)

• Specifies connectivity that is explicitly allowed

• E.g., allow connections from goodguys.com
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Stateless vs. Stateful

• Stateless:  each packet considered in isolation

• Single packet contains insufficient data to make 
access control decision

• Stateful:  allows historical context consideration

• Firewall collects data over time

• e.g., TCP packet is part of established session

• Q:  What are the advantages/disadvantages of 
stateless and stateful?
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Practical Issues and Limitations
• Network layer firewalls are dominant

• DMZs allow multi-tiered firewalling

• Tools are widely available and mature

• Personal firewalls gaining popularity

• Issues

• Network perimeters not quite as clear as before:  e.g., 
telecommuters, VPNs, wireless

• Every access point must be protected

• Hard to debug, maintain consistency and correctness

• Often seen by non-security personnel as impediment

• E.g., Just open port X so I can use my wonder widget

18



Firewall Implementations

• Linux iptables (http://www.netfilter.org/documentation/
HOWTO/packet-filtering-HOWTO.html)

• also referred to as Netfilter

• lots of GUIs, higher-level apps, etc.

• e.g., ufw

• PF: OpenBSD Packet Filter

• Mac OS X Application Firewall

• Windows firewall thingy
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iptables Concepts

• Table: all the firewall rules

• Chain: list of rules associated with the chain identifier, e.g., 
hook name

• Match: when all of a rule’s field match the packet

• Target: operation to execute on a packet given a match

The iptables firewall looks in the firewall table to see 
if the chain associated with the current hook matches 
a packet, and executes the target if it does.
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iptables Rule Parameters

• Non-comprehensive list of things you can match on:

• Destination/Source

• Specific IPs, or 

• IP address range and netmask

•  Protocol of packet:  ICMP,  TCP, etc

•  Fragmented only

•  Incoming/outgoing interface

21



Per Protocol Options

• Specialized matching options for rules that 
are specific to a particular protocol

• E.g., for TCP:

• Source/destination ports (also for UDP)

• SYN

• TCP flags
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Targets

•  Define what to do with the packet at this time


•  ACCEPT/DROP


•  QUEUE for user-space application


•  LOG any packet that matches


•  REJECT drops and returns error packet


•  RETURN enables packet to return to previous 
chain
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Examples

  iptables -A INPUT -s 200.200.200.2 -j ACCEPT

  iptables -A INPUT -s 200.200.200.1 -j DROP

  iptables -A INPUT -s 200.200.200.1 -p tcp -j DROP

  iptables -A INPUT -s 200.200.200.1 -p tcp --dport telnet -j 
DROP

  iptables -A INPUT -p tcp --dport telnet -i eth0 -j DROP
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Deep Packet Inspection

• Deep packet inspection looks into the internals of a packet to look for 
some application/content context

• e.g., inspect HTTP for URLs that point to malicious websites

• Can have serious privacy issues if done by, say, Comcast

• To specify a match in iptables

•iptables -A INPUT -p tcp -m string --algo bm      --
string 'exe' 


• matches packet with content containing ‘exe’

•iptables -A INPUT -p tcp -m length --length 10:100 


• matches packet with length between 10 and 100 bytes
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Network Intrusion 
Detection Systems

(NIDS)



Intrusion Detection Systems

• Authorized eavesdropper that listens in on network 
traffic

• Makes determination whether traffic contains malware

• usually compares payload to virus/worm signatures

• usually looks at only incoming traffic

• If malware is detected, IDS somehow raises an alert

• Intrusion detection is a classification problem
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Example Setup
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Example Setup
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Detection via Signatures
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• Signature checking

• does packet match some signature

• suspicious headers

• suspicious payload  (e.g., shellcode)

• great at matching known signatures

• Problem: not so great for zero-day attacks -- 
Q: WHY?



Detection via 
Machine Learning
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• Use ML techniques to identify malware

• Underlying assumption:  malware will look different from non-malware

• Supervised learning

• IDS requires learning phase in which operator provides pre-classified 
training data to learn patterns

• Sometimes called anomaly detection (systems)

• {good, 80, “GET”, “/”, “Firefox”}

• {bad, 80, “POST”, “/php-shell.php?cmd=’rm -rf /’”, “Evil Browser”}

• ML technique builds model for classifying never-before-seen packets

• Problem:  is new malware going to look like training malware?
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Base Rate Fallacy
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• Occurs when we assess P(X|Y) without considering prior probability 
of X and the total probability of  Y

• Example:

• Base rate of malware is 1 packet in a 10,000

• Intrusion detection system is 99% accurate

• 1% false positive rate  (benign marked as malicious 1% of the 
time)

• 1% false negative rate  (malicious marked as benign 1% of the 
time)

• Packet X is marked by the NIDS as malware.  What is the 
probability that packet X actually is malware?
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Problems with IDSes
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• VERY difficult to get both good recall and precision

• Malware comes in small packages

• Looking for one packet in a million (billion? trillion?)

• If insufficiently sensitive, IDS will miss this packet 
(low recall)

• If overly sensitive, too many alerts will be raised (low 
precision)



Snort
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• Open source IDS

• Signature detection

• Lots of available rulesets

• alert tcp $EXTERNAL_NET any -> $SQL_SERVERS 3306 
(msg:"MYSQL root login attempt"; flow:to_server,established; 
content:"|0A 00 00 01 85 04 00 00 80|root|00|"; classtype:protocol-
command-decode; sid:1775; rev:2;)


• alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS 
(msg:"WEB-PHP Setup.php access"; flow:to_server,established; 
uricontent:"/Setup.php"; nocase; reference:bugtraq,9057; 
classtype:web-application-activity; sid:2281; rev:2;)



Defenses thus far

• Firewalls and Intrusion Prevention 
Systems prevent malicious packets from 
entering the network (in theory)

• Intrusion Detection Systems alert 
network administrators to intrusion 
attempts

• Both systems work best when malware is 
well-understood and easily fingerprinted
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How do we learn about 
and study malware?
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Honeypots

• Honeypot:  a controlled 
environment constructed to trick 
malware into thinking it is running 
in an unprotected system

• collection of decoy services 
(fake mail, web, ftp, etc.)

• decoys often mimic behavior of 
unpatched and vulnerable 
services
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Honeypots

• Three main uses:

• forensic analysis:  better understand how malware works; 
collect evidence for future legal proceedings

• risk mitigation:  

• provide “low-hanging fruit” to distract attacker while 
safeguarding the actually important services

• tarpits:  provide very slow service to slow down the 
attacker

• malware detection:  examine behavior of incoming request in 
order to classify it as benign or malicious
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Honeypots

• Two main types:

• Low-interaction:  emulated services

• inexpensive

• may be easier to detect

• High-interaction:  no emulation; honeypot 
maintained inside of real OS

• expensive

• good realism

40



Example Honeypot Workflow
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• Trace system calls:

• most OSes support method to trace sequence of 
system calls

• e.g., ptrace, strace, etc.

• all “interesting” behavior (e.g., networking, file I/O, 
etc.) must go through system calls

• capturing sequence of system calls (plus their 
arguments) reveals useful info about malware’s 
behavior

Examining Malware
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• Observe filesystem changes and 
network IO:

• “diff” the filesystem before and after

• which files are the malware reading/
writing?

• capture network packets

• to whom is the malware communicating

Examining Malware



Internet Background Radiation
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• Internet Background Radiation or 
Backscatter:  Traffic that is sent to addresses 
on which no device is set up   (these unused 
portions of the Internet are called darknets)

• Backscatter primarily originates from spam, 
worms, and port scans

• Estimated at 5.5Gbps

• Estimated that 70% of background radiation 
due to Conficker Worm
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Challenges

• Honeypot must resemble actual machine

• simulate actual services (Apache, MySQL, 
etc.)

• but not too much...  bad form to actually 
help propagate the worm  (legal risks!)

• Some worms do a reasonably good job of 
detecting honeypots
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Honeynets

• Honeynet:   also called honeyfarms

• Collection of honeypots that simulate a 
network; or

• Single honeypot that emulates services on 
multiple emulated “machines” (that is, on 
a network)
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Example Deployment
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honeyd

• Open-source virtual honeynet

• creates virtual hosts on network

• services actually run on a single host

• scriptable services

50



honeyd example:
FTP service  (ftp.sh)
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echo "$DATE: FTP started from $1 Port $2" >> $log
echo -e "220 $host.$domain FTP server (Version wu-2.6.0(5) $DATE) ready."
...
case $incmd_nocase in

            QUIT* )     
                echo -e "221 Goodbye.\r"
                exit 0;;
            SYST* )     
                echo -e "215 UNIX Type: L8\r"
                ;;
            HELP* )
                echo -e "214-The following commands are recognized (* =>'s unimplemented).\r"
                echo -e "   USER    PORT    STOR    MSAM*   RNTO    NLST    MKD     CDUP\r"
                echo -e "   PASS    PASV    APPE    MRSQ*   ABOR    SITE    XMKD    XCUP\r"
                echo -e "   ACCT*   TYPE    MLFL*   MRCP*   DELE    SYST    RMD     STOU\r"
                echo -e "   SMNT*   STRU    MAIL*   ALLO    CWD     STAT    XRMD    SIZE\r"
                echo -e "   REIN*   MODE    MSND*   REST    XCWD    HELP    PWD     MDTM\r"
                echo -e "   QUIT    RETR    MSOM*   RNFR    LIST    NOOP    XPWD\r"
                echo -e "214 Direct comments to ftp@$domain.\r"
                ;;
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Virtual Machines

• Virtual machine:  isolated virtual hardware running within a single 
operating system

• i.e., a software implementation of hardware

• usually provides emulated hardware which runs OS and other 
applications

• i.e., a computer inside of a computer

• What’s the point?

• extreme software isolation -- programs can’t easily interfere with 
one another if they run on separate machines
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applications

• i.e., a computer inside of a computer

• What’s the point?
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• much better hardware utilization than with separate machines

• power savings

• easy migration -- no downtime for hardware repairs/improvements
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Virtual Machines
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Honeypots and Virtual Machines
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• Most virtual machines provide checkpointing features

• Checkpoint (also called snapshot) consists of all VM state (disk, 
memory, etc.)

• In normal VM usage, user periodically creates snapshots before 
making major changes

• Rolling back (“restoring”) to snapshot is fairly inexpensive

• Checkpointing features are very useful for honeypots

• Let malware do its damage

• Pause VM and safely inspect damage from virtual machine monitor

• To reset state, simply restore back to the checkpoint



Honeypots and Virtual Machines
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• Virtual Machines are also very useful for analyzing 
malware:

• execute malware one instruction at a time

• pause malware

• easily detect effects of malware by looking at 
“diffs” between current state and last snapshot

• execute malware on one VM and uninfected 
software on another;  compare state



Detecting VMs

• Lots of research into detecting when you’re in a 
virtual machine

• examine hardware drivers

• time certain operations

• look at ISA support

• Malware does this too!

• if not in VM, wreak havoc

• if in VM, self-destruct
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