
Lecture 18 - Firewalls and Intrusion Detection Systems

Prof. Daniel Votipka
Spring 2023

(some slides courtesy of Prof. Micah Sherr and Patrick McDaniel)

CS 114: Network
Security

Plan for today

• Administrivia

• Anonymity Review

• Network Defense

• Firewalls

• Intrusion Detection Systems

• Honeypots/Malware Analysis

2

Administrivia
• Homework 1, part 3 is due tonight

• Exam 2 is next Thursday

• Authentication -> Anonymity

• Same format as last time

Anonymity Review

4

DC-Net
• Phase I: Each diner

exchanges secret coin flip
with neighbor

• Phase II:

• If diner didn’t pay,
announces xor of local
coin flips

• If diner did pay,
announces inverse of
xor

• If xor of the announced
xors is 0, then no one
inverted and NSA paid;
otherwise, a diner paid.

5

DC-Net
• Phase I: Each diner

exchanges secret coin flip
with neighbor

• Phase II:

• If diner didn’t pay,
announces xor of local
coin flips

• If diner did pay,
announces inverse of
xor

• If xor of the announced
xors is 0, then no one
inverted and NSA paid;
otherwise, a diner paid.

5

10

0 0

1

DC-Net
• Phase I: Each diner

exchanges secret coin flip
with neighbor

• Phase II:

• If diner didn’t pay,
announces xor of local
coin flips

• If diner did pay,
announces inverse of
xor

• If xor of the announced
xors is 0, then no one
inverted and NSA paid;
otherwise, a diner paid.

5

10

0 0

1

0⊕0=0

0⊕1=1

1⊕0=1

0⊕1=1 1⊕0=1

DC-Net
• Phase I: Each diner

exchanges secret coin flip
with neighbor

• Phase II:

• If diner didn’t pay,
announces xor of local
coin flips

• If diner did pay,
announces inverse of
xor

• If xor of the announced
xors is 0, then no one
inverted and NSA paid;
otherwise, a diner paid.

5

10

0 0

1

0⊕0=0

0⊕1=1

1⊕0=1

0⊕1=1 1⊕0=1

0⊕1⊕1⊕1⊕1=0

DC-Net
• Phase I: Each diner

exchanges secret coin flip
with neighbor

• Phase II:

• If diner didn’t pay,
announces xor of local
coin flips

• If diner did pay,
announces inverse of
xor

• If xor of the announced
xors is 0, then no one
inverted and NSA paid;
otherwise, a diner paid.

5

10

0 0

1

0⊕0=0

0⊕1=1

1⊕0=1

0⊕1=1 1⊕0=1

0⊕1⊕1⊕1⊕1=0

DC-Net
• Phase I: Each diner

exchanges secret coin flip
with neighbor

• Phase II:

• If diner didn’t pay,
announces xor of local
coin flips

• If diner did pay,
announces inverse of
xor

• If xor of the announced
xors is 0, then no one
inverted and NSA paid;
otherwise, a diner paid.

5

10

0 0

1

0⊕0=0

0⊕1=1

1⊕0=1

0⊕1=1 1⊕0=1

0⊕1⊕1⊕1⊕1=0

¬(1⊕0)=0

DC-Net
• Phase I: Each diner

exchanges secret coin flip
with neighbor

• Phase II:

• If diner didn’t pay,
announces xor of local
coin flips

• If diner did pay,
announces inverse of
xor

• If xor of the announced
xors is 0, then no one
inverted and NSA paid;
otherwise, a diner paid.

5

10

0 0

1

0⊕0=0

0⊕1=1

1⊕0=1

0⊕1=1 1⊕0=1

0⊕1⊕1⊕1⊕1=0

¬(1⊕0)=0

0⊕1⊕1⊕0⊕1=1

DC-Nets

• Achieves information-theoretic anonymity
(under certain conditions)

• Limitations:

• Subject to collisions (what if two diners pay?)

• Requires pairwise secret keys

• Last diner who announces message gets to
choose the result

6

DC-Nets

• Achieves information-theoretic anonymity
(under certain conditions)

• Limitations:

• Subject to collisions (what if two diners pay?)

• Requires pairwise secret keys

• Last diner who announces message gets to
choose the result

6

https://dedis.cs.yale.edu/dissent/

https://dedis.cs.yale.edu/dissent/

7

If eavesdroppers collude, Eve can correlate ingress
and egress proxy traffic to identify Alice and Bob

initiator

responder

anonymizing
proxy

{message,Bob}k message

response{response}k

Anonymizing proxies

7

If eavesdroppers collude, Eve can correlate ingress
and egress proxy traffic to identify Alice and Bob

initiator

responder

anonymizing
proxy

Eve

{message,Bob}k message

response{response}k

Anonymizing proxies

7

If eavesdroppers collude, Eve can correlate ingress
and egress proxy traffic to identify Alice and Bob

initiator

responder

anonymizing
proxy

Eve

{message,Bob}k message

response{response}k

Eve

Anonymizing proxies

Crowds

8

• Algorithm:

• Relay message to random
jondo

• With probability p, jondo
forwards message to
another jondo

• With probability 1-p, jondo
delivers message to its
intended destination

Crowds

8

• Algorithm:

• Relay message to random
jondo

• With probability p, jondo
forwards message to
another jondo

• With probability 1-p, jondo
delivers message to its
intended destination

{@Bob, “Hello.”}

Crowds

8

• Algorithm:

• Relay message to random
jondo

• With probability p, jondo
forwards message to
another jondo

• With probability 1-p, jondo
delivers message to its
intended destination

{@Bob, “Hello.”}

Crowds

8

• Algorithm:

• Relay message to random
jondo

• With probability p, jondo
forwards message to
another jondo

• With probability 1-p, jondo
delivers message to its
intended destination

{@Bob, “Hello.”}

{@Bob, “Hello.”}

Crowds

8

• Algorithm:

• Relay message to random
jondo

• With probability p, jondo
forwards message to
another jondo

• With probability 1-p, jondo
delivers message to its
intended destination

{@Bob, “Hello.”}

{@Bob, “Hello.”}

Crowds

8

• Algorithm:

• Relay message to random
jondo

• With probability p, jondo
forwards message to
another jondo

• With probability 1-p, jondo
delivers message to its
intended destination

{@Bob, “Hello.”}

“Hello.”

{@Bob, “Hello.”}

Plan for today

• Administrivia

• Anonymity

• Network Defense

• Firewalls

• Intrusion Detection Systems

• Exam 2 review

10

Enterprise Servers

Enterprise Servers

Enterprise Servers

Filtering: Firewalls

• Filtering traffic based on policy

• Policy determines what is acceptable traffic

• Access control over traffic

• Accept or deny

• May perform other duties

• Logging (forensics, SLA)

• Flagging (intrusion detection)

• QoS (differentiated services)

12

IP Firewall Policy
• Specifies what traffic is (not) allowed

• Maps attributes to address and ports

• Example: HTTP should be allowed to any external host, but inbound only to
web-server

• Rules typically refer to IP addresses, not hostnames -- WHY?

13

Default accept vs. Default deny

• Default policy specifies what to do if no other policy applies

• Most OSes default to default accept

• Most organizations default to default deny

14

• Deny list (blacklist)

• Specifies connectivity that is explicitly
disallowed

• E.g., prevent connections from badguys.com

• Accept list (whitelist)

• Specifies connectivity that is explicitly allowed

• E.g., allow connections from goodguys.com

15

Stateless vs. Stateful

• Stateless: each packet considered in isolation

• Single packet contains insufficient data to make
access control decision

• Stateful: allows historical context consideration

• Firewall collects data over time

• e.g., TCP packet is part of established session

• Q: What are the advantages/disadvantages of
stateless and stateful?

16

Enterprise Servers

DMZ (De-militarized Zone)

Enterprise Servers

DMZ (De-militarized Zone)

Enterprise Servers

DMZ (De-militarized Zone)

Practical Issues and Limitations
• Network layer firewalls are dominant

• DMZs allow multi-tiered firewalling

• Tools are widely available and mature

• Personal firewalls gaining popularity

• Issues

• Network perimeters not quite as clear as before: e.g.,
telecommuters, VPNs, wireless

• Every access point must be protected

• Hard to debug, maintain consistency and correctness

• Often seen by non-security personnel as impediment

• E.g., Just open port X so I can use my wonder widget

18

Firewall Implementations

• Linux iptables (http://www.netfilter.org/documentation/
HOWTO/packet-filtering-HOWTO.html)

• also referred to as Netfilter

• lots of GUIs, higher-level apps, etc.

• e.g., ufw

• PF: OpenBSD Packet Filter

• Mac OS X Application Firewall

• Windows firewall thingy

19

http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html

iptables Concepts

• Table: all the firewall rules

• Chain: list of rules associated with the chain identifier, e.g.,
hook name

• Match: when all of a rule’s field match the packet

• Target: operation to execute on a packet given a match

The iptables firewall looks in the firewall table to see
if the chain associated with the current hook matches
a packet, and executes the target if it does.

20

iptables Rule Parameters

• Non-comprehensive list of things you can match on:

• Destination/Source

• Specific IPs, or

• IP address range and netmask

• Protocol of packet: ICMP, TCP, etc

• Fragmented only

• Incoming/outgoing interface

21

Per Protocol Options

• Specialized matching options for rules that
are specific to a particular protocol

• E.g., for TCP:

• Source/destination ports (also for UDP)

• SYN

• TCP flags

22

Targets

• Define what to do with the packet at this time

• ACCEPT/DROP

• QUEUE for user-space application

• LOG any packet that matches

• REJECT drops and returns error packet

• RETURN enables packet to return to previous
chain

23

Examples

 iptables -A INPUT -s 200.200.200.2 -j ACCEPT

 iptables -A INPUT -s 200.200.200.1 -j DROP

 iptables -A INPUT -s 200.200.200.1 -p tcp -j DROP

 iptables -A INPUT -s 200.200.200.1 -p tcp --dport telnet -j
DROP

 iptables -A INPUT -p tcp --dport telnet -i eth0 -j DROP

24

Deep Packet Inspection

• Deep packet inspection looks into the internals of a packet to look for
some application/content context

• e.g., inspect HTTP for URLs that point to malicious websites

• Can have serious privacy issues if done by, say, Comcast

• To specify a match in iptables

•iptables -A INPUT -p tcp -m string --algo bm --
string 'exe'

• matches packet with content containing ‘exe’

•iptables -A INPUT -p tcp -m length --length 10:100

• matches packet with length between 10 and 100 bytes

25

Network Intrusion
Detection Systems

(NIDS)

Intrusion Detection Systems

• Authorized eavesdropper that listens in on network
traffic

• Makes determination whether traffic contains malware

• usually compares payload to virus/worm signatures

• usually looks at only incoming traffic

• If malware is detected, IDS somehow raises an alert

• Intrusion detection is a classification problem

27

Example Setup

28

Example Setup

28

Detection via Signatures

29

• Signature checking

• does packet match some signature

• suspicious headers

• suspicious payload (e.g., shellcode)

• great at matching known signatures

• Problem: not so great for zero-day attacks --
Q: WHY?

Detection via
Machine Learning

30

• Use ML techniques to identify malware

• Underlying assumption: malware will look different from non-malware

• Supervised learning

• IDS requires learning phase in which operator provides pre-classified
training data to learn patterns

• Sometimes called anomaly detection (systems)

• {good, 80, “GET”, “/”, “Firefox”}

• {bad, 80, “POST”, “/php-shell.php?cmd=’rm -rf /’”, “Evil Browser”}

• ML technique builds model for classifying never-before-seen packets

• Problem: is new malware going to look like training malware?

Detection via
Machine Learning

30

• Use ML techniques to identify malware

• Underlying assumption: malware will look different from non-malware

• Supervised learning

• IDS requires learning phase in which operator provides pre-classified
training data to learn patterns

• Sometimes called anomaly detection (systems)

• {good, 80, “GET”, “/”, “Firefox”}

• {bad, 80, “POST”, “/php-shell.php?cmd=’rm -rf /’”, “Evil Browser”}

• ML technique builds model for classifying never-before-seen packets

• Problem: is new malware going to look like training malware?

Base Rate Fallacy

31

• Occurs when we assess P(X|Y) without considering prior probability
of X and the total probability of Y

• Example:

• Base rate of malware is 1 packet in a 10,000

• Intrusion detection system is 99% accurate

• 1% false positive rate (benign marked as malicious 1% of the
time)

• 1% false negative rate (malicious marked as benign 1% of the
time)

• Packet X is marked by the NIDS as malware. What is the
probability that packet X actually is malware?

Base Rate Fallacy

32

• 1% false positive rate (benign marked as malicious 1% of the time);
TPR=99%

• 1% false negative rate (malicious marked as benign 1% of the time)

• Base rate of malware is 1 packet in 10,000

• Find Pr(IsMalware|MarkedAsMalware)

Base Rate Fallacy

32

• 1% false positive rate (benign marked as malicious 1% of the time);
TPR=99%

• 1% false negative rate (malicious marked as benign 1% of the time)

• Base rate of malware is 1 packet in 10,000

• Find Pr(IsMalware|MarkedAsMalware)

• Pr(Is|Marked) = Pr(Marked|Is)Pr(Is) / Pr(Marked)

Base Rate Fallacy

32

• 1% false positive rate (benign marked as malicious 1% of the time);
TPR=99%

• 1% false negative rate (malicious marked as benign 1% of the time)

• Base rate of malware is 1 packet in 10,000

• Find Pr(IsMalware|MarkedAsMalware)

• Pr(Is|Marked) = Pr(Marked|Is)Pr(Is) / Pr(Marked)

• Pr(Marked|Is)Pr(Is) = 0.99*1/10,000

Base Rate Fallacy

32

• 1% false positive rate (benign marked as malicious 1% of the time);
TPR=99%

• 1% false negative rate (malicious marked as benign 1% of the time)

• Base rate of malware is 1 packet in 10,000

• Find Pr(IsMalware|MarkedAsMalware)

• Pr(Is|Marked) = Pr(Marked|Is)Pr(Is) / Pr(Marked)

• Pr(Marked|Is)Pr(Is) = 0.99*1/10,000

• Pr(Marked) = Pr(Marked|Is)Pr(Is) + Pr(Marked|IsNot)Pr(IsNot)

Base Rate Fallacy

32

• 1% false positive rate (benign marked as malicious 1% of the time);
TPR=99%

• 1% false negative rate (malicious marked as benign 1% of the time)

• Base rate of malware is 1 packet in 10,000

• Find Pr(IsMalware|MarkedAsMalware)

• Pr(Is|Marked) = Pr(Marked|Is)Pr(Is) / Pr(Marked)

• Pr(Marked|Is)Pr(Is) = 0.99*1/10,000

• Pr(Marked) = Pr(Marked|Is)Pr(Is) + Pr(Marked|IsNot)Pr(IsNot)

• Pr(Marked) = (.99*1/10,000) + (0.01*9,999/10,000)

Base Rate Fallacy

32

• 1% false positive rate (benign marked as malicious 1% of the time);
TPR=99%

• 1% false negative rate (malicious marked as benign 1% of the time)

• Base rate of malware is 1 packet in 10,000

• Find Pr(IsMalware|MarkedAsMalware)

• Pr(Is|Marked) = Pr(Marked|Is)Pr(Is) / Pr(Marked)

• Pr(Marked|Is)Pr(Is) = 0.99*1/10,000

• Pr(Marked) = Pr(Marked|Is)Pr(Is) + Pr(Marked|IsNot)Pr(IsNot)

• Pr(Marked) = (.99*1/10,000) + (0.01*9,999/10,000)

• Pr(Is|Marked) = 0.98%

Problems with IDSes

33

• VERY difficult to get both good recall and precision

• Malware comes in small packages

• Looking for one packet in a million (billion? trillion?)

• If insufficiently sensitive, IDS will miss this packet
(low recall)

• If overly sensitive, too many alerts will be raised (low
precision)

Snort

34

• Open source IDS

• Signature detection

• Lots of available rulesets

• alert tcp $EXTERNAL_NET any -> $SQL_SERVERS 3306
(msg:"MYSQL root login attempt"; flow:to_server,established;
content:"|0A 00 00 01 85 04 00 00 80|root|00|"; classtype:protocol-
command-decode; sid:1775; rev:2;)

• alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-PHP Setup.php access"; flow:to_server,established;
uricontent:"/Setup.php"; nocase; reference:bugtraq,9057;
classtype:web-application-activity; sid:2281; rev:2;)

Defenses thus far

• Firewalls and Intrusion Prevention
Systems prevent malicious packets from
entering the network (in theory)

• Intrusion Detection Systems alert
network administrators to intrusion
attempts

• Both systems work best when malware is
well-understood and easily fingerprinted

35

How do we learn about
and study malware?

36

Plan for today

• Administrivia

• Anonymity Review

• Network Defense

• Honeypots

• Overview

• Malware analysis

• Setting up honeypots
37

Honeypots

• Honeypot: a controlled
environment constructed to trick
malware into thinking it is running
in an unprotected system

• collection of decoy services
(fake mail, web, ftp, etc.)

• decoys often mimic behavior of
unpatched and vulnerable
services

38

Honeypots

• Three main uses:

• forensic analysis: better understand how malware works;
collect evidence for future legal proceedings

• risk mitigation:

• provide “low-hanging fruit” to distract attacker while
safeguarding the actually important services

• tarpits: provide very slow service to slow down the
attacker

• malware detection: examine behavior of incoming request in
order to classify it as benign or malicious

39

Honeypots

• Two main types:

• Low-interaction: emulated services

• inexpensive

• may be easier to detect

• High-interaction: no emulation; honeypot
maintained inside of real OS

• expensive

• good realism

40

Example Honeypot Workflow

41

Start

Example Honeypot Workflow

41

Start

Create
honeypot
services

Example Honeypot Workflow

41

Start

Create
honeypot
services

Malware
attacks service

Example Honeypot Workflow

41

Start

Create
honeypot
services

Malware
attacks service

Honeypot
mimics vulnerable

service

Example Honeypot Workflow

41

Start

Create
honeypot
services

Malware
attacks service

Honeypot
mimics vulnerable

service

Analyst
inspects
malware

Example Honeypot Workflow

41

Start

Create
honeypot
services

Malware
attacks service

Honeypot
mimics vulnerable

service

Analyst
inspects
malware

Reset
honeypot

Plan for today

• Administrivia

• Anonymity Review

• Network Defense

• Honeypots

• Overview

• Malware analysis

• Setting up honeypots
42

43

• Trace system calls:

• most OSes support method to trace sequence of
system calls

• e.g., ptrace, strace, etc.

• all “interesting” behavior (e.g., networking, file I/O,
etc.) must go through system calls

• capturing sequence of system calls (plus their
arguments) reveals useful info about malware’s
behavior

Examining Malware

44

• Observe filesystem changes and
network IO:

• “diff” the filesystem before and after

• which files are the malware reading/
writing?

• capture network packets

• to whom is the malware communicating

Examining Malware

Internet Background Radiation

45

• Internet Background Radiation or
Backscatter: Traffic that is sent to addresses
on which no device is set up (these unused
portions of the Internet are called darknets)

• Backscatter primarily originates from spam,
worms, and port scans

• Estimated at 5.5Gbps

• Estimated that 70% of background radiation
due to Conficker Worm

Plan for today

• Administrivia

• Anonymity Review

• Network Defense

• Honeypots

• Overview

• Malware analysis

• Setting up honeypots
46

Challenges

• Honeypot must resemble actual machine

• simulate actual services (Apache, MySQL,
etc.)

• but not too much... bad form to actually
help propagate the worm (legal risks!)

• Some worms do a reasonably good job of
detecting honeypots

47

Honeynets

• Honeynet: also called honeyfarms

• Collection of honeypots that simulate a
network; or

• Single honeypot that emulates services on
multiple emulated “machines” (that is, on
a network)

48

Example Deployment

49

honeyd

• Open-source virtual honeynet

• creates virtual hosts on network

• services actually run on a single host

• scriptable services

50

honeyd example:
FTP service (ftp.sh)

51

echo "$DATE: FTP started from $1 Port $2" >> $log
echo -e "220 $host.$domain FTP server (Version wu-2.6.0(5) $DATE) ready."
...
case $incmd_nocase in

 QUIT*)
 echo -e "221 Goodbye.\r"
 exit 0;;
 SYST*)
 echo -e "215 UNIX Type: L8\r"
 ;;
 HELP*)
 echo -e "214-The following commands are recognized (* =>'s unimplemented).\r"
 echo -e " USER PORT STOR MSAM* RNTO NLST MKD CDUP\r"
 echo -e " PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP\r"
 echo -e " ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU\r"
 echo -e " SMNT* STRU MAIL* ALLO CWD STAT XRMD SIZE\r"
 echo -e " REIN* MODE MSND* REST XCWD HELP PWD MDTM\r"
 echo -e " QUIT RETR MSOM* RNFR LIST NOOP XPWD\r"
 echo -e "214 Direct comments to ftp@$domain.\r"
 ;;

honeyd example:
FTP service (ftp.sh)

51

echo "$DATE: FTP started from $1 Port $2" >> $log
echo -e "220 $host.$domain FTP server (Version wu-2.6.0(5) $DATE) ready."
...
case $incmd_nocase in

 QUIT*)
 echo -e "221 Goodbye.\r"
 exit 0;;
 SYST*)
 echo -e "215 UNIX Type: L8\r"
 ;;
 HELP*)
 echo -e "214-The following commands are recognized (* =>'s unimplemented).\r"
 echo -e " USER PORT STOR MSAM* RNTO NLST MKD CDUP\r"
 echo -e " PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP\r"
 echo -e " ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU\r"
 echo -e " SMNT* STRU MAIL* ALLO CWD STAT XRMD SIZE\r"
 echo -e " REIN* MODE MSND* REST XCWD HELP PWD MDTM\r"
 echo -e " QUIT RETR MSOM* RNFR LIST NOOP XPWD\r"
 echo -e "214 Direct comments to ftp@$domain.\r"
 ;;

Virtual Machines

52

Virtual Machines

• Virtual machine: isolated virtual hardware running within a single
operating system

• i.e., a software implementation of hardware

• usually provides emulated hardware which runs OS and other
applications

• i.e., a computer inside of a computer

• What’s the point?

• extreme software isolation -- programs can’t easily interfere with
one another if they run on separate machines

52

Virtual Machines

• Virtual machine: isolated virtual hardware running within a single
operating system

• i.e., a software implementation of hardware

• usually provides emulated hardware which runs OS and other
applications

• i.e., a computer inside of a computer

• What’s the point?

• extreme software isolation -- programs can’t easily interfere with
one another if they run on separate machines

• much better hardware utilization than with separate machines

• power savings

• easy migration -- no downtime for hardware repairs/improvements

52

Virtual Machines

53

Honeypots and Virtual Machines

54

• Most virtual machines provide checkpointing features

• Checkpoint (also called snapshot) consists of all VM state (disk,
memory, etc.)

• In normal VM usage, user periodically creates snapshots before
making major changes

• Rolling back (“restoring”) to snapshot is fairly inexpensive

• Checkpointing features are very useful for honeypots

• Let malware do its damage

• Pause VM and safely inspect damage from virtual machine monitor

• To reset state, simply restore back to the checkpoint

Honeypots and Virtual Machines

55

• Virtual Machines are also very useful for analyzing
malware:

• execute malware one instruction at a time

• pause malware

• easily detect effects of malware by looking at
“diffs” between current state and last snapshot

• execute malware on one VM and uninfected
software on another; compare state

Detecting VMs

• Lots of research into detecting when you’re in a
virtual machine

• examine hardware drivers

• time certain operations

• look at ISA support

• Malware does this too!

• if not in VM, wreak havoc

• if in VM, self-destruct

56

Plan for today

• Administrivia

• Anonymity Review

• Network Defense

• Honeypots

• Overview

• Malware analysis

• Setting up honeypots
57

