
Privacy and Security Benefits of Jailbreaking iOS

Stefan Dimitrov
sdimit01@tufts.edu

Ming Chow
Mentor

December 13, 2013



Abstract

The traditional software distribution channel on the iOS platform is Apple’s own
AppStore, which is known for its stringent app approval policies and quality control.
One of the aims of Apple’s approval process is to prevent malicious software from
reaching its customer base. This preemptive strategy has proven to be relatively
successful, but has been criticized for rejecting benign apps that replace or enhance
core services. Jailbreaking has opened an alternative outlet for this niche of software
offerings by letting users install apps from third party software repositories outside
of Apple’s regulation, however, this lack of security audit theoretically enables the
unhindered distribution of potentially malicious code. Moreover, because jailbreaks
exploit a security vulnerabilities within iOS in order to grant apps root privileges
and unrestricted filesystem access, they effectively disable several security features
in iOS. However, jailbreaking also allows the installation of third-party patches tar-
geting those very vulnerabilities. In addition, jailbreak tweaks that improve privacy
control have surfaced in response to controversial AppStore apps that misuse user
information, yet pass the approval process. These subtle, but significant differences
between the stock and jailbroken flavors of iOS motivate this paper in an attempt
to explore the pros and cons of jailbreaking regarding security and privacy.



.

Contents

1 Introduction 2

2 To the Community 3

3 Sneaking malicious code into the AppStore 4

4 Threats to Privacy in the AppStore 5

5 Action Items 7
5.1 Jailbreaking for improved privacy control . . . . . . . . . . . . . . . . 7
5.2 Changing the default root password . . . . . . . . . . . . . . . . . . . 7
5.3 Installing an outbound connections firewall . . . . . . . . . . . . . . . 8
5.4 Disabling anonymous usage statistics . . . . . . . . . . . . . . . . . . 8
5.5 Jailbreaking for security and privacy research . . . . . . . . . . . . . 8

6 Conclusion 9

1



1 Introduction

The App Store is an integral part of the iOS security model. All applications

on the App Store must go through an approval process, in part to prevent malicious

apps from reaching users. This process involves quality control, static and manual

analysis of the behavior and content of apps. In addition, the use of private APIs,

which typically would allow an app to provide unapproved or malicious functionality

is screened against. Each app on the iOS platform is assigned a unique identifier

and a folder whose contents it can modify, while the rest of the filesystem is out of

reach. Individual apps can communicate with other apps in a very limited fashion

by means of URL Handlers. Access to Apple services such as Push Notifications,

Game Center and Passbook is authenticated through certificates issued by Apple.

Moreover, every application on the App Store is code signed, and code that hasn’t

been signed by Apple cannot run on the device. All these measures ensure that apps

run in a sandboxed environment which ensures that the system and the user data

on the device are protected in case an app attempts malicious activity.

Jailbreaking is the process of modifying iOS through what is most often a security

exploit in order to allow code that hasn’t been signed by Apple to run on the device,

in addition to enabling root access to the filesystem for any app, effectively subverting

the sandboxing on iOS. Since jailbreaking allows the execution of code that has not

been signed by Apple, it makes it possible to download and install apps and tweaks

from sources exempt of Apple’s stringent approval procedures. Such apps and tweaks

typically enhance the functionality of the OS and its stock apps or boast features that

are impossible to implement with the official SDK, as jailbreaking permits developers

2



to use officially unapproved private APIs that provide additional functionality.

2 To the Community

This paper is aimed at iOS researchers and advanced users, and seeks to dispel the

notion that jailbreaking is fundamentally insecure. With this paper I hope to raise

awareness about the dangerous sense of false security and privacy that comes with

Apple’s walled garden model of software distribution.

Jailbreaking can be invaluable when it comes to security and privacy research

on the iOS platform. Unrestricted access to the platform’s internals and filesystem

enables insight into security and privacy strengths and weaknesses, given that iOS

is closed source. Moreover, jailbreaking allows researchers to run code unsigned by

Apple, use Apple’s private frameworks and even patch the OS itself, which can aid

in discovering system vulnerabilities and developing fixes for them.

Privacy and security enhancing software offerings in their essence must be able

to modify or access low level system functionality in order to detect apps leaking

information or misusing privileges and prevent this from happening. Since apps that

access the system internals and private frameworks are strictly forbidden, such apps

have only been available to the users of jailbroken iOS devices.

Considering these important uses of jailbreaking, in the following sections I out-

line the findings of researchers regarding privacy and security on iOS, alongside recent

cases of privacy flaws in iOS and apps from third-party developers. In the section

Action Items I showcase useful tools that can improve the security and privacy of

3



jailbroken iOS users and how they pertain to real threats.

3 Sneaking malicious code into the AppStore

Prior to submitting an app each developer needs to enroll into the paid Apple

Developer Program and disclose their identity. This allows Apple to ban developers

caught committing infractions from submitting apps to the App Store. While this

might discourage developers of malicious apps under the threat of receiving a per-

manent ban from the App Store, it would be unwise to believe in the benevolence of

developers solely due to the existence of a disincentive to misbehaving.

In reality, since the approval process does not require that developers submit

their source code for a review, it is quite possible to use code obfuscation techniques

in order to evade any static or dynamic code analysis tools Apple might be using

to uncover threats. In his paper on iOS privacy[8], Nicolas Seriot demonstrates

several simple techniques that can be used to deliberately circumvent common types

of code analysis likely used by Apple to search for calls to private APIs and system

directories. Seriot suggests that his proof-of-concept SpyPhone app1 in fact does

not rely on private APIs in the first place, and goes on to express concern that the

existence of apps on the App Store collecting personal data is quite likely given the

underground demand for and abundance of personal data on iOS devices.

Another group of researchers from Georgia Institute of Technology present[10]

their ”Jekyll App” which obtained Apple’s approval, despite allowing the researchers

to remotely launch a variety of attacks on their own tests devices. The paper demon-

1https://github.com/nst/spyphone/

4



strates in practice how it is possible to create malicious apps that evade detection by

breaking down malicious code into distinct subroutines termed ”gadgets” which are

not malicious on their own but if remotely supplied the correct execution paths can

be assembled into a malicious routine. Breaking down code with malicious effects

into innocuous looking subroutines practically renders static analysis less useful as

the malicious code no longer appears explicitly. Moreover, since the malicious rou-

tines are enabled remotely, even the effectiveness of manual testing and dynamic

analysis is diminished.

4 Threats to Privacy in the AppStore

Even though researchers have demonstrated techniques such as dynamic [9] and

static [2] analysis targeted at capturing data flows within the application have been

developed, several controversial cases of user data misuse and user profiling have

gained attention2.

A recent case of privacy violations emerged in November 2013, as the developer

Kyle Richter discovered that a popular game app QuizUp transmitted sensitive in-

formation about a players Facebook friends, Address Book contacts and others, in a

plain text format over to the company servers, presumably in an effort to match the

user with other players.3 Despite the fact that thanks to the privacy enhancements

in iOS, the app had to request users’ permission to collect the data, the users are still

not able to fine tune the permissions granted, for example by disallowing access to

2http://mclov.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.html
3http://kylerichter.com/our-responsibility-as-developers/

5



contacts’ email addresses or real names, which wouldn’t be of use to a game matching

algorithm.

While AppStore apps can pose threats to privacy, iOS itself collects large amounts

of data from normal usage. In 2011, a controversy arose due to iOS maintaining

a database of WiFi hotspots and cell towers around the users location in order

to improve its geo-location services beyond complete reliance on the slower GPS

systems which would allow for quickly determining the user’s current location when

using Maps.4 Even though Apple assured that the location data is being sent to

Apple servers in an anonymized manner, the data would remain on the device itself

in a file named consolidated.db which could be easily retrieved.5.

A new feature in iOS7, called Frequent Locations relies on a similar location data

storage, which contains the users most frequently visited locations. The idea behind

the feature is to enable Next Destination, a user-end feature that lets Apple provide

relevant commute information such as travel time to work.6 Despite users being able

to disable those features, they are enabled by default and the data collection is not

apparent.

4http://www.networkworld.com/community/blog/apple-officially-responds-ios-consolidateddb-
5https://www.sans.org/reading-room/whitepapers/forensics/forensic-analysis-ios-devices-34092
6http://www.idownloadblog.com/2013/10/20/how-to-use-frequent-locations-and-next-

destination-features-in-ios-7/

6



5 Action Items

5.1 Jailbreaking for improved privacy control

Before address book permissions were first added to iOS 6, the well publicized case of

the social networking app Path drew attention to the issue of privacy in the AppStore.

It was discovered that Path collected personal information from the user’s address

book and sent it to company servers without the users consent and it did not list

this activity in the privacy agreement. The creators of Path have since removed

the behavior and settled the ensuing FTC charges.7 In response to this, a tweak

for jailbroken iOS devices named ContactPrivacy appeared. It allowed the user to

control access to the address book.

As of iOS7 Apple doesn’t request the users permission whenever malicious apps

request to use the came for capturing video or photos. There are proof of concept

spyware apps that allow surreptitious camera captures[7] By hooking the methods

for requesting the camera, I developed a tweak for MobileSubstrate (the code injec-

tion platform on most jailbroken devices). The simple tweak, named CameraSentry,

allows the user to deny camera access to malicious spy apps.

5.2 Changing the default root password

Users with jailbroken devices are advised to change the default root password -

the well known ”alpine”. Since an attacker can install a remote login utility such

as SSH and gain full control over the device, in case a device is jailbroken by an

7http://www.ftc.gov/news-events/press-releases/2013/02/path-social-networking-app-settles-
ftc-charges-it-deceived

7



attacker, the default password (if left unchanged) can be used to access the filesystem,

bypassing any lock screen passwords the user might be using (passwords are stored

in \var\Keychain)[6]

5.3 Installing an outbound connections firewall

Since iOS doesn’t come with a user configurable firewall, it is impossible for the end

user to monitor the outbound connections that apps attempt. In the case of privacy

leaking applications this is of utmost importance as the user can prevent the leaking

of information to third party servers shall they notice any suspicious data transfers

(e.g. a game connecting to a server different than Apple’s Game Center servers) A

solution (Firewall iP 2.0) for outbound connection monitoring and control can be

downloaded from the Cydia jailbreak app.

5.4 Disabling anonymous usage statistics

Developers use code from third-parties to collect usage statistics for their apps just

like websites use third party solutions like Google Analytics to obtain insight about

their customer base. Installing a jailbreak tweak like PrivaCy8 allows end users to

effectively disable sending such statistics.

5.5 Jailbreaking for security and privacy research

In order to perform any sort of dynamic analysis on a device, root access or at least

filesystem access is necessary. Apple does not grant those on unmodified iOS devices

8http://cydia.saurik.com/package/com.saurik.privacy

8



and even developers are not granted direct access to the filesystem of the device.

Jailbreaking is useful here as it provides researchers with unrestricted access to the

OS. A group of researchers from Vienna University of Technology and UC Santa

Barbara[9], developed a method for dynamic analysis that relies on a VNC server for

the automation of UI manipulation which is necessary to make sure that all code is

being run while testing. Since the App Store restrictions pose technical limitations

to implementing VNC servers, only the dynamic analysis method developed can only

be used on jailbroken devices. Nevertheless, even more traditional tools such as gdb

cannot be installed on iOS unless a jailbreak is in place.

6 Conclusion

While the AppStore is well known for its stringent approval policies, in light of

the security research and controversial cases presented in this paper it is clear that

stringent approval policies alone are not sufficient to protect users. Better static and

dynamic analysis techniques are being researched[9] thanks to the runtime access

provided by jailbreaking and can be used to enhance the Apple’s screening process.

Moreover, since mobile devices are highly personal, they contain valuable personal

data which makes any potential security risk a serious privacy risk first and foremost.

In this sense security and privacy are tightly related on iOS and the problem of

privacy is somewhat intractable even when knowingly trusting data to a third party

because there are no guarantees about how the data will be used. However, it is

important that platforms evolve towards more power to the users when deciding

9



whether to give their data in the first place, complemented by the ability to fine

tune the flow of sensitive data. Overall the enhancements that jailbreaking brings

provide more control over privacy and can help uncover security threats by allowing

unhindered security research on Apple’s otherwise source platform.

10



References

[1] Dimitrios Damopoulos, Georgios Kambourakis, and Stefanos Gritzalis. iSAM:

An iPhone Stealth Airborne Malware. In Jan Camenisch, Simone Fischer-

Hübner, Yuko Murayama, Armand Portmann, and Carlos Rieder, editors, Fu-

ture Challenges in Security and Privacy for Academia and Industry, volume 354

of IFIP Advances in Information and Communication Technology, pages 17–28.

Springer Berlin Heidelberg, 2011.

[2] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. PiOS:

Detecting Privacy Leaks in iOS Applications. In NDSS 2011, 18th Annual

Network and Distributed System Security Symposium, 6-9 February 2011, San

Diego, CA, USA, San Diego, USA, 02 2011.

[3] Stefan Esser. Exploiting the iOS Kernel. In Black Hat USA, 2011.

[4] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David

Wagner. A Survey of Mobile Malware in the Wild. In Proceedings of the 1st

ACM Workshop on Security and Privacy in Smartphones and Mobile Devices,

SPSM ’11, pages 3–14, New York, NY, USA, 2011. ACM.

[5] Jin Han, SuMon Kywe, Qiang Yan, Feng Bao, Robert Deng, Debin Gao, Yingjiu

Li, and Jianying Zhou. Launching Generic Attacks on iOS with Approved Third-

Party Applications. In Michael Jacobson, Michael Locasto, Payman Mohassel,

and Reihaneh Safavi-Naini, editors, Applied Cryptography and Network Security,

11



volume 7954 of Lecture Notes in Computer Science, pages 272–289. Springer

Berlin Heidelberg, 2013.

[6] Matthias Boll Jens Heider. Lost iPhone? Lost Passwords. Fraunhofer Institute

for Secure Information Technology (SIT), 2011.

[7] Keith Lee. iPhone Espionage. http://reverse.put.as/wp-

content/uploads/2011/06/D2-SIGINT-Keith-Lee-iPhone-Espionage.pdf, 2011.

[8] Nicolas Seriot. iPhone Privacy. In Black Hat DC, 2010.

[9] Martin Szydlowski, Manuel Egele, Christopher Kruegel, and Giovanni Vigna.

Challenges for Dynamic Analysis of iOS Applications. In Jan Camenisch and

Dogan Kesdogan, editors, Open Problems in Network Security, volume 7039 of

Lecture Notes in Computer Science, pages 65–77. Springer Berlin Heidelberg,

2012.

[10] Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, and Wenke Lee. Jekyll on

iOS: When Benign Apps Become Evil. In USENIX Security ’13, 2013.

[11] Tim Werthmann, Ralf Hund, Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten

Holz. PSiOS: Bring Your Own Privacy & Security to iOS Devices (Distin-

guished Paper Award). In 8th ACM Symposium on Information, Computer and

Communications Security (ASIACCS 2013), May 2013. Distinguished Paper

Award.

12


	Introduction
	To the Community
	Sneaking malicious code into the AppStore
	Threats to Privacy in the AppStore
	Action Items
	Jailbreaking for improved privacy control
	Changing the default root password
	Installing an outbound connections firewall
	Disabling anonymous usage statistics
	Jailbreaking for security and privacy research

	Conclusion

