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CV & Penalized LR Objectives

• Regression with transformations of features

• Cross Validation

• L2 penalties

• L1 penalties
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What will we learn?

4Mike Hughes - Tufts COMP 135 - Spring 2019

Supervised
Learning

Unsupervised 
Learning

Reinforcement 
Learning

Data, Label Pairs
Performance

measureTask

data 
x

label
y

{xn, yn}Nn=1

Training

Prediction

Evaluation
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Task: Regression
Supervised
Learning

Unsupervised 
Learning

Reinforcement 
Learning

regression

x

y

y is a numeric variable 
e.g. sales in $$
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Review: Linear Regression

min
w,b

NX

n=1

⇣
yn � ŷ(xn, w, b)

⌘2

Optimization problem: “Least Squares”

Exact formula for optimal values of w, b exist!

Math works in 1D and for many dimensions

[w1 . . . wF b]T = (X̃T
X̃)�1

X̃

T
y

X̃ =

2

664

x11 . . . x1F 1
x21 . . . x2F 1

. . .

xN1 . . . xNF 1

3

775



Recap: solving linear regression
• More examples than features (N > F) 

• Same number of examples and features (N=F)

• Fewer examples than features (N < F) or low rank
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Then:
Infinitely many optimal weight vectors exist with zero error
Inverse of X^T X does not exist (naïvely, formula will fail) 

And if inverse of X^T X exists (needs to be full rank):
Then an optimal weight vector exists, can use formula
Will have zero error on training set.

And if inverse of X^T X exists (needs to be full rank)
Then an optimal weight vector exists, can use formula
Likely has non-zero error (overdetermined)



Recap

• Squared error is special
• Exact formulas for estimating parameters

• Most metrics do not have exact formulas
• Take derivative, set to zero, try to solve, …. HARD!
• Example: absolute error

• General algorithm: Gradient Descent!
• As long as first derivative exists, we can do 

iterations to estimate optimal parameters
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Transformations of Features



Fitting a line isn’t always ideal  
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Can fit linear functions to 
nonlinear features

11Mike Hughes - Tufts COMP 135 - Spring 2019

ŷ(xi) = ✓0 + ✓1xi + ✓2x
2
i + ✓3x

3
i

A nonlinear function of x:

Can be written as a linear function of 

“Linear regression” means linear in the parameters (weights, biases)

Features can be arbitrary transforms of raw data

�(xi) = [1 xi x
2
i x

3
i ]

ŷ(xi) =
4X

g=1

✓gφg(xi) = ✓

T
φ(xi)



What feature transform to use?
• Anything that works for your data!

• sin / cos for periodic data

• polynomials for high-order dependencies

• interactions between feature dimensions

• Many other choices possible
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�(xi) = [1 xi x
2
i . . .]

�(xi) = [1 xi1xi2 xi3xi4 . . .]
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Linear Regression with 
Transformed Features

Optimization problem: “Least Squares”

Exact solution:

ŷ(xi) = ✓

T
φ(xi)

�(xi) = [1 �1(xi) �2(xi) . . . �G�1(xi)]

min✓
PN

n=1(yn � ✓

T
φ(xi))

2

✓

⇤ = (�T�)−1�T
y

� =

2

6664

1 �1(x1) . . . �G�1(x1)
1 �1(x2) . . . �G�1(x2)
...

. . .

1 �1(xN ) . . . �G�1(xN )

3

7775

N x G matrix



Cross Validation
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Generalize: sample to population



Labeled dataset

16Mike Hughes - Tufts COMP 135 - Spring 2019

x y
Each row represents one 
example

Assume rows are arranged 
“uniformly at random” 
(order doesn’t matter)



Split into train and test
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x y

train

test



Model Complexity vs Error
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OverfittingUnderfitting



How to fit best model?
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Option: Fit on train, select on validation
1) Fit each model to training data
2) Evaluate each model on validation data
3) Select model with lowest validation error
4)Report error on test set

train

test

validation

x y



How to fit best model?
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Option: Fit on train, select on validation
1) Fit each model to training data
2) Evaluate each model on validation data
3) Select model with lowest validation error
4)Report error on test set

train

test

validation

x y

Concerns
• Will train be too small?
• Make better use of data?



Estimating Heldout Error with 
Fixed Validation Set
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Credit: ISL Textbook, Chapter 5

10 other random splitsSingle random split



3-fold Cross Validation
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train

validation

x y x yx y

x y
Divide labeled dataset 
into 3 even-sized parts

Fit model 3 independent times.
Each time leave one fold as validation and keep remaining as training

fold 1

fold 2

fold 3

Heldout error estimate:  average of the validation error across all 3 fits 



K-fold CV: How many folds K?

• Can do as low as 2 fold 
• Can do as high as N-1 folds (“Leave one out”)
• Usual rule of thumb: 5-fold or 10-fold CV

• Computation runtime scales linearly with K
• Larger K also means each fit uses more train data, 

so each fit might take longer too

• Each fit is independent and parallelizable
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9 separate splits
Each one with 10 foldsLeave-one-out (N-1 folds)

Credit: ISL Textbook, Chapter 5

Estimating Heldout Error with 
Cross Validation



What to do about underfitting?

• Increase model complexity 
• Add more features!
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What to do about overfitting?

• Select complexity with cross validation

• Control single-fit complexity with a penalty!
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Zero degree polynomial
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Credit: Slides from course by Prof. Erik Sudderth (UCI)



1st degree polynomial
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Credit: Slides from course by Prof. Erik Sudderth (UCI)



3rd degree polynomial
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Credit: Slides from course by Prof. Erik Sudderth (UCI)



9th degree polynomial
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Credit: Slides from course by Prof. Erik Sudderth (UCI)



Error vs Complexity
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polynomial degree

sqrt
of

mean
squared

errror
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Polynomial degree
0 1 3 9

Credit: Slides from course by Prof. Erik Sudderth (UCI)



Idea: 
Penalize magnitude of weights
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J(✓) =
1

2

NX

n=1

(yn � ✓

T
x̃n)

2 + ↵

X

f

✓

2
f

↵ � 0Penalty strength:

Larger alpha means we prefer smaller magnitude weights



Idea: 
Penalize magnitude of weights
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J(✓) =
1

2

NX

n=1

(yn � ✓

T
x̃n)

2 + ↵

X

f

✓

2
f

J(✓) =
1

2
(y � X̃✓)T (y � X̃✓) + ↵✓

T
✓

Written via matrix/vector product notation:



Exact solution for
L2 penalized linear regression
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Optimization problem: “Penalized Least Squares”

min
✓

1

2
(y � X̃✓)T (y � X̃✓) + ↵✓

T
✓

Solution:

✓

⇤ = (X̃T
X̃ + ↵I)−1

X̃

T
y

If alpha > 0 , this is always invertible!



Slides on L1/L2 penalties

See slides 71-82 from UC-Irvine course here:
https://canvas.eee.uci.edu/courses/8278/files/2
735313/
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Pair Coding Activity
https://github.com/tufts-ml-courses/comp135-19s-
assignments/blob/master/labs/GradientDescentDemo.ipynb

• Try existing gradient descent code:
• Optimizes scalar slope to produce minimum error
• Try step sizes of 0.0001, 0.02,  0.05, 0.1

• Add L2 penalty with alpha > 0
• Write calc_penalized_loss and calc_penalized_grad
• What happens to estimated slope value w?

• Repeat with L1 penalty with alpha > 0
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