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Probability and
Statistical Decision Theory

Many slides attributable to: .
Erik Sudderth (UCD) Prof. Mike Hughes

Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)


https://www.cs.tufts.edu/comp/135/2019s/

Logistics

 Recitation tonight: 730-830pm, Halligan 111B
» More on pipelines and feature transforms
* Cross validation



Unit Objectives

 Probability Basics
e Discrete random variables
e Continuous random variables

* Decision Theory: Making optimal predictions

 Limits of learning
* The curse of dimensionality
 The bias-variance tradeoff
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Task: Regression

Supervised
Learning

y 1s a numeric variable
e.g. salesin $$

regression




Model Complexity vs Error
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Today: Bias and Variance
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Credit: Scott Fortmann-Roe
http://scott.fortmann-roe.com/docs/BiasVariance.html



Model Complexity vs Error
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Discrete Random Variable

Examples:
* Coin flip! Heads or tails?
* Diceroll! 1or2or... 6?

In general, random variable is defined by:
» Countable set of all possible outcomes
- Probability value for each outcome



Probability Mass Function

Notation:
- X is random variable
- x 1s a particular observed value
- Probability of observation: p(X = x)
Function p is a probability mass function (pmf)
Maps possible values to probabilities in [0, 1]
0.3 l

o

Must sum to one over domain of X o051
1 3 7



Pair exercise

» Draw the pmf for a normal 6-sided dice roll

« Draw pmtf if there are:
2 sides with 1 pip

* 0 sides with 2 pips o

%



Expected Values

What is the expected value of a dice roll?

Expected means probability-weighted average

2X] =) p(X =)




Joint Probability

X
Candidate A Candidate B

Young voters 0.28 042
Senior voters 024\ 0.06

p(X = candidate A AND Y = young)




Marginal Probability

X
Candidate A Marginal p(Y):
Young voters 0.28 042 0.7
Senior voters 0.24 0.06 0.3

Marginal p(X): 052 048



Conditional Probability

What is the probability of support for candidate
A, if we assume that the voter is young?

Goal: p(X = candidate A|Y = young)

. X
Candidate A Candidate B Marginal p(Y):

‘ Young voters 0.28 042 0.7

Senior voters 0.24 0.06 0.3

Try it with your partner!



Conditional Probability

What is the probability of support for candidate
A, if we assume that the voter is young?

Goal: p(X = candidate A|Y = young)

, X
Candidate A  Candidate B Marginal p(Y):
Young voters 0.28 042 0.7
Senior voters 0.24 0.06 0.3

Candidate A  Candidate B
\ Young voters 0.4 0.6

Answer:



The Rules of Probability

sum rule p(X) = Zp(X, Y)
Y

product rule p(X,Y)=p(Y|X)p(X)
= p(X[Y)p(Y)



Continuous Random Variables

Any r.v. whose possible outcomes are not a discrete
set, but take values on a number line

Examples:
uniform draw between 0 and 1

draw from Gaussian “bell curve” distribution



Probability Density Function

» Generalizes pmf for discrete r.v. to continuous
» Any pdf p(x) must satisty two properties:

Vo :p(x) >0

mean 0, stddev 0.2 /x
mean 0, stddev 1
mean 1, stddev 0.5




Example

Consider a uniform distribution over entire real line
(from -inf to + inf)

Draw the pdf, verify that it can meet the required
conditions (nonnegative, integrates to one).

Is there a problem here?



Plots of Gaussian pdf
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Probability Density Function

» Generalizes pmf for discrete r.v. to continuous
» Any pdf p(x) must satisty two properties:

Vo :p(x) >0

/:Cp(:z;)d:c =1

Value of p(x) can take ANY value > 0, even sometimes larger than 1
Should NOT interpret as “probability of drawing exactly x”

Should interpret as “density at vanishingly small interval around x”
Remember: density = mass / volume



Continuous Expectations

LI X = / rp(x)dx
xedomain(X)

)= . Pt




Approximating Expectations

Use “Monte Carlo”: average of a sample!
1) Draw S i.1.d. samples from distribution

xl 2?2~ p(x)

 2) Compute mean of these sampled values

1 S
Eh(X)] = 5 Zh(af;s)

For any function h, the mean of this random estimator is unbiased.
As number of samples S increases, variance of estimator decreases.




Statistical Decision Theory

« See ESL textbook in Ch. 2 and Ch. 7



How to predict best if we know
conditional probability?

Assume we have: a specific x input of interest
a known “true” conditional p(Y | X)
error metric we care about

How should we set our predictor :Q? Minimize the expected error!

min Elerr(Y,9)|X = x|
Y
Key ideas:

prediction will be a scalar
conditional distribution p(Y|X) tells us everything we need to know



Expected y at a given fixed x

LY X =1z = /y p(y|X = x)dy



Recall from HW1

 Two constant value estimators
« Mean of training set
« Median of training set

« Two possible error metrics
* Squared error
 Absolute error

Which estimator did best under which error metric?



Minimize expected squared error

Assume we have: a specific x input of interest
a known “true” conditional p(y | x)

Elerr(Y, §)|X = ] = / (y— 9)? pyIX = z)dy

Y

What is your intuition from HWi1? Express in terms of p(Y|X=x)...

How should we set our predictor 7/ to minimize the expected error?

min
Y

Sferr(Y, )| X = ]




Minimize expected squared error

Assume we have: a specific x input of interest
a known “true” conditional p(y | x)

Elerr(Y, §)|X = ] = / (y— 9)? pyIX = z)dy

How should we set our predictor Q to minimize the expected error?

min Elerr(Y,7)| X = x|

A

Y

Optimal predictor for squared error: mean y value under p(Y|X=x)

SENE | F) _ In practice, mean of sampled
y = 1 [Y | X - CE] y values at/around x




Minimize expected absolute error

Assume we have: a specific x input of interest
a known “true” conditional p(y | x)

How should we set our predictor Q to minimize the expected error?

min Elerr(Y,9)|X = x|
J

What is your intuition from HW 1?



Minimize expected absolute error

Assume we have: a specific x input of interest
a known “true” conditional p(y | x)

How should we set our predictor Q to minimize the expected error?

min Elerr(Y,9)|X = x|
J

Optimal predictor for squared error: median y value under p(Y|X=x)

In practice, median of

@* — median(p(Y|X — .CC)) sampled y values

at/around x



Minimizing error with K-NN

Ideal Approximation
« know “true” conditional p(y | x) ¢ Use neighborhood around x
« Take average of y values in
neighborhood

If we have enough training data, K-NN is good approximation

Some theorems say KNN estimate ideal as # examples (N) gets
infinitely large

Problem in practice: we never have enough data, esp. if feature
dimensions are large



Curse of Dimensionality
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FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.



MSE as dimension 1increases
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-- Linear Regression
« K Neighbors Regression

Credit: ISL textbook, Fig 3.20



Write MSE via Bias & Variance

y is known “true” response value at given fixed input x

?; is a Random Variable obtained by fitting estimator to random

sample of N training data examples, then predicting at fixed x




Write MSE via Bias & Variance

E[ (9", y™) — y)ﬂ = E:(z) - y)ﬂ

Add net value of zero
Picko=-a + a

=E|§°| — 25y + v°

—E|?| - 72+ 72— 20y +




Write MSE via Bias & Variance

E[ (9", y™") — y)z} = E:(:& - y)ﬂ

bias = § — y

b

bias




MSE = Variance + Bias”2

E[ (9", y™") — y)z} = E:(:& - y)ﬂ

J° — 20y + yQ]

?)2} — 20y + y°

Var[X] = E[X?] — E-

E(9?| - 5% 5% — 20y + o

Var(9)+ (7 —y)°




Punchline

mean squared error = variance + bias”™2

We can use this framing to explain tradeoffs of
different prediction approaches on finite training
datasets.



Toy example: ESL Fig. 7.3

Figure 7.3 shows the bias-—variance tradeoff for two simulated examples.
There are 80 observations and 20 predictors, uniformly distributed in the
hypercube [0, 1]2°. The situations are as follows:

Left panels: Y is 0 if X1 < 1/2 and 1 if X; > 1/2, and we apply k-nearest
neighbors.
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Toy example: ISL Fig. 6.5

Why Does Ridge Regression Improve Over Least Squares?

Ridge regression’s advantage over least squares is rooted in the bias-variance
trade-off. As A increases, the flexibility of the ridge regression fit decreases,
leading to decreased variance but increased bias. This is illustrated in the
left-hand panel of Figure 6.5, using a simulated data set containing p = 45
predictors and n = 50 observations. The green curve in the left-hand panel



Mean Squared Error

total error
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Can Also Treat True Y as R.V.

Y = f(X)+e

True signal function =~ Noise Random Variable
Symmetric (zero mean)

Often, Gaussian



The Final MSE decomposition

E[MSE] = Var(¢) + bias® + irreducible error

For more, see Sec. 7.3 of ESL textbook...

As in Chapter 2, if we assume that ¥ = f(X) + ¢ where E(¢) = 0 and

Var(g) = o2, we can derive an expression for the expected prediction error

of a regression fit f(X) at an input point X = z;, using squared-error loss:
Err(zo) = E[(Y — f(0))?|X = xo]
= 02+ [Ef(zo) — f(z0)]* + E[f(z0) — Ef(x0)]>
= o2 + Bias®(f(z0)) + Var(f(zo))
— Irreducible Error + Bias® + Variance. (7.9)



Bias and Variance

Low Variance High Variance

Low Bias

High Bias

Credit: Scott Fortmann-Roe
http://scott.fortmann-roe.com/docs/BiasVariance.html



