Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

Binary Classification

Many slides attributable to: Erik Sudderth (UCI) Finale Doshi-Velez (Harvard) James, Witten, Hastie, Tibshirani (ISL/ESL books)

Prof. Mike Hughes

Logistics

- Waitlist: We have some room, contact me
- HW2 due TONIGHT (Wed 2/6 at 11:59pm)
 - What you submit: PDF and zip
 - Please annotate pages in Gradescope!
- HW3 out later tonight, due a week from today
 - What you submit: PDF and zip
 - Please annotate pages in Gradescope!
- Next recitation is Mon 2/11
 - Practical binary classifiers in Python with sklearn
 - Numerical issues and how to address them

Objectives: Classifier Overview

- 3 steps of a classification task
 - Prediction
 - Making hard binary decisions
 - Predicting class probabilities
 - Training
 - Evaluation
 - Performance Metrics
- A "taste" of 3 Methods
 - Logistic Regression
 - K-Nearest Neighbors
 - Decision Tree Regression

Before: Regression

Mike Hughes - Tufts COMP 135 - Spring 2019

50

 \mathcal{X}

60

Task: Binary Classification

Y

is a binary variable (<mark>red</mark> or <u>blue</u>)

Example: Hotdog or Not

Task: Multi-class Classification

Y

Supervised Learning

multi-class classification

Unsupervised Learning

Reinforcement Learning is a discrete variable (<mark>red</mark> or <u>blue or green or purple</u>)

Classification Example: Swype

Predict words from keyboard trajectories

Many possible letters: Multi-class classification

Binary Prediction Step

Goal: Predict label (0 or 1) given features x

- Input: $x_i \triangleq [x_{i1}, x_{i2}, \dots x_{if} \dots x_{iF}]$ "features" Entries can be real-valued, or other "covariates" numeric types (e.g. integer, binary) "predictors" "attributes"
- Output: $y_i \in \{0, 1\}$ Binary label (0 or 1) "responses" "labels"

Binary Prediction Step

>>> # Given: pretrained regression object model
>>> # Given: 2D array of features x

- >> x_NF.shape
 (N, F)
- >>> yhat_N = model.predict(x_NF)
 >>> yhat_N[:5] # peek at predictions
 [0, 0, 1, 0, 1]

```
>>> yhat_N.shape
(N,)
Mike Hughes - Tufts COMP 135 - Spring 2019
```

Types of binary predictions

TN : true negative FN : false negative

		classifier calls	
		"negative" "positive" C=0 C=1	
true outcome	Y=0	TN	FP
	Y=1	FN	TP

Example:		Which outcome is this?	
		classifi "negative"	er calls "positive" C=1
true outcome	Y=0	TN	FP
	Y=1	FN	TP

Example:		Which outcome	
		is this?	
		Answer:	
		True Positive	
		classifier calls	
		"negative"	"positive"
		C=0	C=1 🌽
true outcome	Y=0	TN	FP
	Y=1	FN	TP

Example:		Which outcome is this?	
		classifier calls	
		"negative"	"positive"
		C=0	C=1 🧭
true outcome	Y=0	TN	FP
	Y=1	FN	TP

Example:		Which outcome	
		is this?	
		Answe True N	er: Negative (TN)
		classifier calls	
		"negative"	"positive" C=1
true outcome	Y=0	TN	FP
	Y=1	FN	TP

Example:		Which outcome is this?	
		classifi	er calls
		"negative"	"positive"
	and the second	C=0	C=1 🧭
true outcome	Y=0	TN	FP
	Y=1	FN	TP

Example	•	Whic	h outcome
		is this?	
		Answer: False Negative (FN)	
		classifier calls	
		"negative" C=0	"positive" C=1
true outcome	Y=0	TN	FP
	Y=1	FN	TP

Example:		Which outcome is this?	
		classifi	er calls
		"negative"	"positive" C=1
true outcome	Y=0	TN	FP
	Y=1	FN	TP

Example	•	Whic	h outcome
		is this	5?
10		Answe	er:
	B. K.	False]	Positive (FP)
		classifier calls	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AN S	"negative"	"positive"
		C=0	C=1 🎸
true outcome	Y=0	TN	FP
	Y=1	FN	TP

Probability Prediction Step

Goal: Predict probability p(Y=1) given features x

- Input: $x_i \triangleq [x_{i1}, x_{i2}, \dots x_{if} \dots x_{iF}]$ "features" Entries can be real-valued, or other "covariates" Entries (e.g. integer, binary) "predictors" "attributes"
- Output: \hat{p}_i *"probabilities"*

Probability between 0 and 1 e.g. 0.001, 0.513, 0.987

Probability Prediction Step

>>> # Given: pretrained regression object model
>>> # Given: 2D array of features x

>>> x_NF.shape
(N, F)

Thresholding to get Binary Decisions

Thresholding to get Binary Decisions

Thresholding to get Binary Decisions

Pair Exercise

<u>Interactive Demo:</u> <u>https://research.google.com/bigpicture/attacking-discrimination-in-ml/</u>

Loan and pay back: +\$300 Loan and not pay back: -\$700

Goals:

- What threshold maximizes accuracy?
- What threshold maximizes profit?
- What needs to be true of costs so threshold is the same for profit and accuracy?

Classifier: Training Step

Goal: Given a labeled dataset, learn a **function** that can perform prediction well

- Input: Pairs of features and labels/responses $\{x_n,y_n\}_{n=1}^N$
- Output: $\hat{y}(\cdot) : \mathbb{R}^F \to \{0, 1\}$

Useful to break into two steps:

- 1) Produce probabilities in [0, 1] OR real-valued scores
- 2) Threshold to make binary decisions

Classifier: Training Step

>>> # Given: 2D array of features x
>>> # Given: 1D array of binary labels y

>>> y_N.shape
(N,)
>>> x_NF.shape
(N, F)

>>> model = BinaryClassifier()
>>> model.fit(x_NF, y_N)
>>> # Now can call predict or predict_proba

Classifier: Evaluation Step

Goal: Assess quality of predictions

Many ways in practice:

1) Evaluate probabilities / scores directly logistic loss, hinge loss, ...

2) Evaluate binary decisions at specific threshold accuracy, TPR, TNR, PPV, NPV, etc.

3) Evaluate across range of thresholds ROC curve, Precision-Recall curve

Metric: Confusion Matrix Counting mistakes in binary predictions

#TN : num. true negative
#FN : num. false negative

#TP : num. true positive
#FP : num. false positive

		classifier calls	
		"negative" C=0	"positive" C=1
true outcome	Y=0	#TP	#FP
	Y=1	#FN	#TP

Metric: Accuracy

accuracy = fraction of correct predictions = $\frac{TP + TN}{TP + TN + FN + FP}$

Potential problem:

Suppose your dataset has 1 positive example and 99 negative examples What is the accuracy of the classifier that always predicts "negative"?

Metric: Accuracy

accuracy = fraction of correct predictions = $\frac{TP + TN}{TP + TN + FN + FP}$

Potential problem:

Suppose your dataset has 1 positive example and 99 negative examples What is the accuracy of the classifier that always predicts "negative"? 99%!

Metrics for Binary Decisions

METRIC	FORMULA	IN WORDS	EXPRESSION
		"Probability that …" Or "How often the …"	
True Positive Rate (TPR) <i>"sensitivity", "recall"</i>	TP TP + FN	subject who is positive will be called positive	Pr(C = 1 Y = 1)
True Negative Rate (TNR) <i>"specificity", 1 - FPR</i>	TN FP + TN	subject who is negative will be called negative	Pr(C = 0 Y = 0)
Positive Predictive Value (PPV) <i>"precision"</i>	TP TP + FP	subject called positive will actually be positive	Pr(Y = 1 C = 1)
Negative Predictive Value (NPV)	TN TN + FN	subject called negative will actually be negative	Pr(Y = 0 C = 0)

Emphasize the metrics appropriate for your application.

Goal: App to classify cats vs. dogs from images

Which metric might be most important? Could we just use accuracy?

METRIC	FORMULA	IN WORDS	EXPRESSION
		"Probability that …" Or "How often the …"	
True Positive Rate (TPR)	TP TP + FN	subject who is positive will be called positive	Pr(C = 1 Y = 1)
True Negative Rate (TNR)	TN FP + TN	subject who is negative will be called negative	Pr(C = 0 Y = 0)
Positive Predictive Value (PPV)	TP TP + FP	subject called positive will actually be positive	Pr(Y = 1 C = 1)
Negative Predictive Value (NPV)	TN 	subject called negative will actually be negative	Pr(Y = 0 C = 0)

Goal: Classifier to find relevant tweets to list on website

Which metric might be most important? Could we just use accuracy?

METRIC	FORMULA	IN WORDS	EXPRESSION
		"Probability that …" Or "How often the …"	
True Positive Rate (TPR)	TP TP + FN	subject who is positive will be called positive	Pr(C = 1 Y = 1)
True Negative Rate (TNR)	TN FP + TN	subject who is negative will be called negative	Pr(C = 0 Y = 0)
Positive Predictive Value (PPV)	TP TP + FP	subject called positive will actually be positive	Pr(Y = 1 C = 1)
Negative Predictive Value (NPV)	TN 	subject called negative will actually be negative	Pr(Y = 0 C = 0)

Goal: Detector for tumors based on medical image

Which metric might be most important? Could we just use accuracy?

METRIC	FORMULA	IN WORDS	EXPRESSION
		"Probability that …" Or "How often the …"	
True Positive Rate (TPR)	TP TP + FN	subject who is positive will be called positive	Pr(C = 1 Y = 1)
True Negative Rate (TNR)	TN FP + TN	subject who is negative will be called negative	Pr(C = 0 Y = 0)
Positive Predictive Value (PPV)	TP TP + FP	subject called positive will actually be positive	Pr(Y = 1 C = 1)
Negative Predictive Value (NPV)	TN TN + FN	subject called negative will actually be negative	Pr(Y = 0 C = 0)

Area under ROC curve (aka AUROC or AUC or "C statistic") Area varies from 0.0 - 1.0. 0.5 is random guess. 100% 1.0 is perfect. TPR Graphical: (sensitivity) 0% 100% **FPR Probabilistic:** (1 - specificity)

AUROC
$$\triangleq \Pr(\hat{y}(x_i) > \hat{y}(x_j) | y_i = 1, y_j = 0)$$

For random pair of examples, one positive and one negative, What is probability classifier will rank positive one higher?

Precision-Recall Curve

recall (= TPR)

AUROC not always best choice

Why the C-statistic is not informative to evaluate early warning scores and what metrics to use

Santiago Romero-Brufau^{1,2*}, Jeanne M. Huddleston^{1,2,3}, Gabriel J. Escobar⁴ and Mark Liebow⁵

AUROC: red is better

Blue much better for alarm fatigue

Classifier: Evaluation Metrics

https://scikit-learn.org/stable/modules/model_evaluation.html

1) To evaluate predicted scores / probabilities

log_loss (y_true, y_pred[, eps, normalize, ...])Log loss, aka logistic loss or cross-entropy loss.hinge_loss (y_true, pred_decision[, labels, ...])Average hinge loss (non-regularized)

2) To evaluate specific binary decisions

'precision' etc.	metrics.precision_score
'recall' etc.	metrics.recall_score

3) To make ROC or PR curves and compute areas

'average_precision'	<pre>metrics.average_precision_score</pre>
'roc_auc'	metrics.roc_auc_score

Objectives: Classifier Overview

- 3 steps of a classification task
 - Prediction
 - Making hard binary decisions
 - Predicting class probabilities
 - Training
 - Evaluation
 - Performance Metrics
- A "taste" of 3 Methods
 - Logistic Regression
 - K-Nearest Neighbors
 - Decision Tree Regression

Logistic Sigmoid Function

Goal: Transform real values into probabilities

Mike Hughes - Tufts COMP 135 - Spring 2019

Logistic Regression

Parameters:

weight vector
$$w = [w_1, w_2, \dots w_f \dots w_F]$$

bias scalar b

Prediction:

$$\hat{p}(x_i, w, b) = p(y_i = 1 | x_i) \triangleq \text{sigmoid} \left(\sum_{f=1}^F w_f x_{if} + b \right)$$

Training: find weights and bias that minimize error

Measuring prediction quality for a probabilistic classifier

Use the log loss (aka "binary cross entropy", related to "logistic loss") from sklearn.metrics import log_loss

Mike Hughes - Tufts COMP 135 - Spring 2019

Logistic Regression: Training

Optimization: Minimize total log loss on train set $\min_{w,b} \sum_{n=1}^{N} \log \log(y_n, \hat{p}(x_n, w, b))$

Algorithm: Gradient descent

More in next class!

Avoid overfitting: Use L2 or L1 penalty on weights

Nearest Neighbor Classifier

Parameters:

none

Prediction:

find "nearest" training vector to given input *x* predict *y* value of this neighbor

Training:

none needed (use training data as lookup table)

K nearest neighbor classifier

Parameters:

K : number of neighbors

Prediction:

- find K "nearest" training vectors to input *x*
- predict: vote most common *y* in neighborhoodpredict_proba: report fraction of labels
- Training:

none needed (use training data as lookup table)

Decision Tree Classifier

Leaves make binary predictions! (but can be made probabilistic)

Decision Tree Classifier

Parameters:

- *at each internal node: x* variable id and threshold

- *at each leaf*: probability of positive *y* label

Prediction:

- identify rectangular region for input **x**
- predict: most common y value in region
- predict_proba: report fraction of each label in regtion

Training:

- minimize error on training set
- often, use greedy heuristics

Summary of Methods

	Function class flexibility	Knobs to tune	Interpret?
Logistic Regression	Linear	L2/L1 penalty on weights	Inspect weights
Decision Tree Classifier	Axis-aligned Piecewise constant	Max. depth Min. leaf size Goal criteria	Inspect tree
K Nearest Neighbors Classifier	Piecewise constant	Number of Neighbors Distance metric How neighbors vote	Inspect neighbors