Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

Logistic Regression

Many slides attributable to: Erik Sudderth (UCI) Finale Doshi-Velez (Harvard)

James, Witten, Hastie, Tibshirani (ISL/ESL books)

Logistics

- Waitlist: We have room, contact me ASAP
- HW3 due Wed
 - Please annotate pages in Gradescope!
 - Remember: Turn in on time!
- Recitation tonight (730-830pm, Room 111B)
 - Practical binary classifiers in Python with sklearn
 - Numerical issues and how to address them

Objectives: Logistic Regression Unit

Refresher: "taste" of 3 Methods

• Logistic Regression, k-NN, Decision Trees

Logistic Regression: A Probabilistic Classifier

- 3 views on why we optimize log loss
 - Upper bound error rate
 - Minimize (cross) entropy
 - Maximize (log) likelihood
- Computing gradients
- Training via gradient descent

Task: Binary Classification

Y

is a binary variable (<mark>red</mark> or <u>blue</u>)

Example: Hotdog or Not

https://www.theverge.com/tldr/2017/5/14/15639784/hbosilicon-valley-not-hotdog-app-download

Binary Prediction

Goal: Predict label (0 or 1) given features x

• Input:
$$x_i \triangleq [x_{i1}, x_{i2}, \dots x_{if} \dots x_{iF}]$$

"features" Entries can be real-valued, or
"covariates" other numeric types (e.g. integer, binary)

• Output:
$$y_i \in \{0, 1\}$$

"responses" or "labels" Binary label (0 or 1)

Probability Prediction

Goal: Predict probability of label given features

• Input:
$$x_i \triangleq [x_{i1}, x_{i2}, \dots x_{if} \dots x_{iF}]$$

"features" Entries can be real-valued, or
"covariates" other numeric types (e.g. integer, binary)
• Output: $\hat{p}_i \triangleq p(Y_i = 1|x_i)$ Value between 0 and 1
"probability" Value between 0 and 1
e.g. 0.001, 0.513, 0.987

>>> yproba_N2 = model.predict_proba(x_NF)
>>> yproba1_N = model.predict_proba(x_NF)[:,1]
>>> yproba1_N[:5]
[0.143, 0.432, 0.523, 0.003, 0.994]

Decision Tree Classifier

Leaves make binary predictions! (but can be made probabilistic)

Decision Tree Classifier

Parameters:

- *at each internal node: x* variable id and threshold

- *at each leaf*: probability of positive *y* label

Prediction:

- identify rectangular region for input **x**
- predict: most common y value in region
- predict_proba: report fraction of each label in regtion

Training:

- minimize error on training set
- often, use greedy heuristics

Decision Tree: Predicted Probas

Mike Hughes - Tufts COMP 135 - Spring 2019

K nearest neighbor classifier

Parameters:

K : number of neighbors

Prediction:

- find K "nearest" training vectors to input *x*
- predict: vote most common *y* in neighborhood
- predict_proba: report fraction of labels

Training:

none needed (use training data as lookup table)

KNN: Predicted Probas

Mike Hughes - Tufts COMP 135 - Spring 2019

Logistic Regression classifier

Parameters:

weight vector $w = [w_1, w_2, \dots w_f \dots w_F]$ bias scalar b

Prediction:

$$\hat{p}(x_i, w, b) = p(y_i = 1 | x_i) \triangleq \text{sigmoid} \left(\sum_{f=1}^F w_f x_{if} + b \right)$$

Training: find weights and bias that minimize error

Logistic Sigmoid Function

Goal: Transform real values into probabilities

Mike Hughes - Tufts COMP 135 - Spring 2019

Logistic Regression: Training

Optimization: Minimize total log loss on train set $\min_{w,b} \sum_{n=1}^{N} \log \log(y_n, \hat{p}(x_n, w, b))$

Algorithm: Gradient descent

Today!

Avoid overfitting: Use L2 or L1 penalty on weights

Logistic Regr: Predicted Probas

Summary of Methods

	Function class flexibility	Knobs to tune	Interpret?
Logistic Regression	Linear	L2/L1 penalty on weights	Inspect weights
Decision Tree Classifier	Axis-aligned Piecewise constant	Max. depth Min. leaf size Goal criteria	Inspect tree
K Nearest Neighbors Classifier	Piecewise constant	Number of Neighbors Distance metric How neighbors vote	Inspect neighbors

Optimization Objective Why minimize log loss? An upper bound justification

Log loss upper bounds error rate

$$\operatorname{error}(y, \hat{y}) = \begin{cases} 1 & \text{if } y \neq \hat{y} \\ 0 & \text{if } y = \hat{y} \end{cases}$$
$$\log_{-} \operatorname{loss}(y, \hat{p}) = -y \log \hat{p} - (1 - y) \log(1 - \hat{p})$$

Mike Hughes - Tufts COMP 135 - Spring 2019

Optimization Objective Why minimize log loss? An information-theory justification

Entropy of Binary Random Var.

Goal: Entropy of a distribution captures the amount of uncertainty

entropy $(X) = -p(X = 1) \log_2 p(X = 1) - p(X = 0) \log_2 p(X = 0)$

Log base 2: Units are "bits" Log base e: Units are "nats"

1 bit of information is always needed to represent a binary variable X

Entropy tells us how much of this one bit is uncertain

Entropy of Binary Random Var.

Goal: Entropy of a distribution captures the amount of uncertainty

$$entropy(X) = -p(X = 1) \log_2 p(X = 1) - p(X = 0) \log_2 p(X = 0)$$

$$[X] = -\sum_{x \in \{0,1\}} p(X = x) \log_2 p(X = x)$$
$$= -\mathbb{E}_{x \sim p(X)} \left[\log_2 p(X = x) \right]$$

Entropy is the **average** number of bits needed to encode an outcome

Want: low entropy (low cost storage and transmission!)

Cross Entropy

Goal: Measure cost of using estimated q to capture true distribution p

Entropy
$$[p(X)] = -\sum_{x \in \{0,1\}} p(X = x) \log_2 p(X = x)$$

Cross-Entropy $[p(X), q(X)] = -\sum_{x \in \{0,1\}} p(X = x) \log_2 q(X = x)$

Info theory interpretation: Average number of bits needed to encode samples from a true distribution p(X) with codes defined by a model q(X)

Goal: Want a model q that uses fewer bits! Lower entropy!

Log loss is cross entropy!

Let our "true" distribution p(Y) be **empirical** distribution of labels in the training set

Let our "model" distribution q(Y) be the estimated probabilities from logistic regression

Cross-Entropy
$$[p(Y), q(Y)] = \mathbb{E}_{y \sim p(Y)} \left[-\log q(Y = y) \right]$$

$$= \frac{1}{N} \sum_{n=1}^{N} -y_n \log \hat{p}_n - (1 - y_n) \log(1 - \hat{p}_n)$$
Same as the "log loss"!

Info Theory Justification for log loss: Want to set logistic regression weights to provide best encoding of the training data's label distribution

The log loss metric

Log loss (aka "binary cross entropy") from sklearn.metrics import log_loss

Mike Hughes - Tufts COMP 135 - Spring 2019

Optimization Objective Why minimize log loss? A **probabilistic** justification

Likelihood of labels under LR

We can write the probability for each outcome of Y as:

$$p(Y_i = 1 | x_i) = \operatorname{sigmoid}(w^T x_i + b)$$
$$p(Y_i = 0 | x_i) = 1 - \operatorname{sigmoid}(w^T x_i + b)$$

We can write the probability mass function of Y as:

$$p(Y_i = y_i | x_i) = \left[\sigma(w^T x_i + b)\right]^{y_i} \left[1 - \sigma(w^T x_i + b)\right]^{1 - y_i}$$

Interpret: p(y | x) is the "likelihood" of label y given input features x Goal: Fit model to make the training data as likely as possible

Maximizing likelihood

$$\max_{w,b} \prod_{n=1}^{N} p(Y_n = y_n | x_n, w, b)$$

Why might this be hard in practice?

Think about datasets with 1000s of examples N

Maximizing **log** likelihood

The logarithm (with any base) is a monotonic transform

a > b implies log(a) > log(b)

Thus, the following are equivalent problems

$$w^{*}, b^{*} = \arg \max_{w, b} \prod_{n=1}^{N} p(Y_{n} = y_{n} | x_{n}, w, b)$$
$$w^{*}, b^{*} = \arg \max_{w, b} \log \left[\prod_{n=1}^{N} p(Y_{n} = y_{n} | x_{n}, w, b) \right]$$

Log likelihood for LR

We can write the probability mass function of Y as:

$$p(Y_i = y_i | x_i) = \left[\sigma(w^T x_i + b)\right]^{y_i} \left[1 - \sigma(w^T x_i + b)\right]^{1 - y_i}$$

Our training objective is to maximize log likelihood

$$w^*, b^* = \arg \max_{w,b} \log \left[\prod_{n=1}^N p(Y_n = y_n | x_n, w, b) \right]$$

J(w, b)

Pair Exercise: Simplify the training objective J(w,b)!

Can you recover a familiar form?

Minimize **negative** log likelihood

Two equivalent optimization problems:

$$w^*, b^* = \arg \max_{w,b} \sum_{n=1}^N \log p(Y_n = y_n | x_n, w, b)$$

 $w^*, b^* = \arg \min_{w,b} -\sum_{n=1}^N \log p(Y_n = y_n | x_n, w, b)$

Summary of "Likelihood interpretation"

- LR defines a probabilistic model for Y given x
- We want to maximize probability of training data (the "likelihood") under this model
- We can show that an another optimization problem ("maximize log likelihood") is easier numerically but produces the same optimal values for weights and bias
- Turns out, minimizing log loss is precisely the same thing as minimizing negative log likelihood

Computing gradients

Simplified LR notation

• Feature vector with first entry constant

$$\tilde{x}_n = \begin{bmatrix} 1 \ x_{n1} \ x_{n2} \ \dots \ x_{nF} \end{bmatrix}$$

• Weight vector (first entry is the "bias")

$$w = \begin{bmatrix} w_0 & w_1 & w_2 \dots w_F \end{bmatrix}$$

• "Score" value z (real number, -inf to +inf)

$$z_n = w^T \tilde{x}_n$$

Simplifying the log likelihood

$$J(z_n) \triangleq \log p(Y_n = y_n | z_n)$$

= $y_n \log \sigma(z_n) + (1 - y_n) \log(1 - \sigma(z_n))$
= $y_n \log \sigma(z_n) + (1 - y_n) \log \sigma(-z_n)$
= $y_n \log \frac{e^{z_n}}{1 + e^{z_n}} + (1 - y_n) \log \frac{1}{1 + e^{z_n}}$
= $y_n z_n - \log(1 + e^{z_n})$

Gradient of the log likelihood

$$z_n = w^T \tilde{x}_n$$

Log likelihood

$$J(z_n(w)) = y_n z_n - \log(1 + e^{z_n})$$

Gradient w.r.t. weight on feature f

$$\frac{d}{dw_f} J(z_n(w)) = \frac{d}{dz_n} J(z_n) \cdot \frac{d}{dw_f} z(w)$$

Simplifying yields: $= (y_n - \sigma(z_n)) x_{nf}$

Partner Activity

Try the notebook here:

https://github.com/tufts-ml-courses/comp135-19sassignments/blob/master/labs/LogisticRegressionDemo.ipynb

Goals: Build understanding

- What is the optimal w for the 1D example?
- What is the optimal w for the 2D example?
- Why is regularization important here?

STOP: End of class 2/11

Gradient descent for LR

Gradient descent for L2 penalized LR

$$\min_{\boldsymbol{w}, w_0} \frac{-\sum_i \log p(y_i | \boldsymbol{x}_i; \boldsymbol{w}, w_0)}{J(w, w_0)} + \frac{\lambda}{2} \| \boldsymbol{w} \|_2^2$$

Start with
$$\mathbf{w}^0 = 0, w_0^0 = 0$$
, step size *s*
for $t = 0, ..., (T - 1)$
 $\mathbf{w}^{t+1} = \mathbf{w}^t - s \nabla J(\mathbf{w}^t, w_0^t) - \lambda \mathbf{w}^t$
 $w_0^{t+1} = w_0^t - s \nabla J(\mathbf{w}^t, w_0^t)$

if
$$L(w^{t+1}, w_0^{t+1}) - L(w^t, w_0^t) < \delta$$

break
return w^T, w_0^T

Will gradient descent always find same solution?

Intuition: 1D minimization

Log likelihood vs iterations

Mike Hughes - Tufts COMP 135 - Spring 2019

If step size is **too small**

Mike Hughes - Tufts COMP 135 - Spring 2019

If step size is **large**

Mike Hughes - Tufts COMP 135 - Spring 2019

If step size is **too large**

Mike Hughes - Tufts COMP 135 - Spring 2019

If step size is way too large

Rule for picking step sizes

- Never try just one!
- Try several values (exponentially spaced) until
 - Find one clearly too small
 - Find one clearly too large (oscillation / divergence)
- Always make trace plots!
 - Show the loss, norm of gradient, and parameters
- Smarter choices for step size:
 - Decaying methods
 - Search methods
 - Adaptive methods

Decaying step sizes

• Decay over iterations

Searching for good step sizes

• Line Search

scipy.optimize.line_search