Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2019s/

Logistic Regression

o

Many slides attributable to: .
Erik Sudderth (UCI) Prof. Mike Hughes

Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

https://www.cs.tufts.edu/comp/135/2019s/

Logistics
e Waitlist: We have room, contact me ASAP

« HW3 due Wed

 Please annotate pages in Gradescope!
 Remember: Turn in on time!

 Recitation tonight (730-830pm, Room 111B)
» Practical binary classifiers in Python with sklearn
* Numerical issues and how to address them

Objectives:
Logistic Regression Unit

Refresher: “taste” of 3 Methods
 Logistic Regression, k-NN, Decision Trees

Logistic Regression: A Probabilistic Classifier

* 3 views on why we optimize log loss
« Upper bound error rate
« Minimize (cross) entropy
« Maximize (log) likelihood

« Computing gradients
* Training via gradient descent

What will we learn?

Supervised s B :
Learning , Data, Label Pairs :

N Performance
{CBn, yn}n@:l measure |

label

Task: Binary Classification

Supervised y is a binary variable
: (red or blue)
Learning
binary
classification 4
L O
2 O
O
® ® o
O ©
O
O

Example: Hotdog or Not

. -
- ...
e -
¥ 2 =
—— T e e >

. ~ i
o —-— > -
—— - -~

- ———

—a . ——— — e W

https://www.theverge.com/tldr/2017/5/14/15639784/hbo-
silicon-valley-not-hotdog-app-download

https://www.theverge.com/tldr/2017/5/14/15639784/hbo-silicon-valley-not-hotdog-app-download

Binary Prediction

Goal: Predict label (0 or 1) given features x

A
e Input: L£; = [mz’l;mi% oG f oo CUZF]

(13 2

features Entries can be real-valued, or
“covariates” other numeric types (e.g. integer,
“attributes” binary)

» Output: y; € {0,1}
“responses” or “labels” Binary label (0 or 1)

>>> yhat N = model.predict (x NF)
>>> yhat N[:5]
[OI OI ll OI l]

Probability Prediction

Goal: Predict probability of label given features

A
e Input: L£; = [:U’ilpngy oG f oo CU@F]

(13 2

features Entries can be real-valued, or
“covariates” other numeric types (e.g. integer,
“attributes” binary)

* Output: ﬁz £ p(Y; — 1‘27@) Value between 0 and 1

« crel s e.g. 0.001, 0.513, 0.98
‘probability 5 013, 0997
>>> yproba N2 = model.predict proba (x NF)

>>> yprobal N = model.predict proba (x NF) [:,1]
>>> yprobal N[:5]

[(0.143, 0.432, 0.523, 0.003, 0.994]

Decision Tree Classifier

Goal: Does patient have heart disease?
Ca 4 0.5

MaxHR|< 161.5 ChestRain:bc

No No

No Yes

Leaves make binary predictions! (but can be made probabilistic)

Decision Tree Classifier

Parameters:
- at each internal node: x variable id and threshold

- at each leaf: probability of positive y label

Prediction:
- identify rectangular region for input x
- predict: most common y value in region

- predict_proba: report fraction of each label in regtion

Training:
- minimize error on training set

- often, use greedy heuristics

Decision Tree: Predicted Probas

min_samples leaf=1000 min_samples leaf=100 min_samples_leaf=50

Pretty flexible!

Function is
piecewise constant
and axis-aligned

K nearest neighbor classifier

Parameters:
K : number of neighbors

Prediction:
- find K “nearest” training vectors to input x
- predict: vote most common y in neighborhood
- predict_proba: report fraction of labels

Training:
none needed (use training data as lookup table)

KNN: Predicted Probas

n_neighbors=300 n_neighbors=100 n_neighbors=10

2
+
. ;+";{+#+
+ A
x+*+ #+ % "
E '+ i +ﬂ'¢ﬁ|- +L*'
= : ¥ x +1% ++
0 X ‘”i-l- “f&"‘
x W '*W *
Ax FWLEL
"+
0 2
n_neighbors=3
g :
Very flexible!
Function is
piecewise constant
0

Logistic Regression classifier

Parameters:
weight vector W — [wl, w2,...Wf ... wF]
bias scalar b
Prediction: .
p(x;,w,b) = p(y; = 1]z;) = sigmoid (Z WL + b)
f=1
Training:

find weights and bias that minimize error

Logistic Sigmoid Function

Goal: Transform real values into probabilities

1=

£

2

o)

=

= moid 1
sigmoid(z) = T+ o

Logistic Regression: Training
Optimization Minimize total log loss on train set

mm Z log_loss(yy, p(xy, w, b))

Algorithm: Gradient descent
Today!

Avoid overtitting: Use L2 or L1 penalty on weights

Logistic Regr: Predicted Probas

C=0.0001

o
% +;
iy
x ‘&
+
i
+ L
o

Function is
monotonically
increasing in one
direction

Decision boundaries
will be linear

Summary of Methods

Function class | Knobs to tune Interpret?
flexibility

Logistic Linear L2/L1 penalty on weights Inspect
Regression weights
Decision Axis-aligned Max. depth Inspect
Tree Piecewise constant Min. leaf size tree
Classifier Goal criteria

K Nearest Piecewise constant Number of Neighbors Inspect
Neighbors Distance metric neighbors

Classifier How neighbors vote

Optimization Objective
Why minimize log loss?

An upper bound justification

Log loss upper bounds error rate

1 ity#y
0 ify=4g

error(y,y) = {
log_ loss(y,p) = —ylogp — (1 — y) log(1 — p)

0 m — error loss (aka 0-1 loss)
8 ‘ —— log loss
\ Plot assumes:

5 |
B - True label is 1
=2 4

- Threshold is 0.5
2 —
) e - Log base 2

0.0 0.2 0.4 0.6 0.8 1.0
probability

Optimization Objective
Why minimize log loss?

An information-theory justification

Entropy of Binary Random Var.

Goal: Entropy of a distribution captures the amount of uncertainty

entropy(X) = —p(X = 1)log, p(X = 1) — p(X = 0) log, p(X = 0)

1
Log base 2: Units are “bits”
Log base e: Units are “nats”

1 bit of information is always
0.5 needed to represent a binary
variable X

Entropy tells us how much of
this one bit is uncertain

0

0 0.5 1
PriX=1)

Entropy of Binary Random Var.

Goal: Entropy of a distribution captures the amount of uncertainty

entropy(X) = —p(X = 1)log, p(X = 1) — p(X = 0)log, p(X = 0)

Z p(X = z)logy p(X =

x€{0,1}

— _Exwp(X) [10g2 p(X — 33)]

E‘ 0.5
o
Entropy is the average number of
bits needed to encode an outcome
0 . Want: low entropy

0.5 .
PriX=1) (low cost storage and transmission!)

Cross Entropy

Goal: Measure cost of using estimated q to capture true distribution p

Entropy[p(X)] = -) p(X =z)logy p(X =)
x€{0,1}

Cross-Entropy[p(X), ¢(X)] = — > p(X =z)log, ¢(X =)
x€{0,1}

Info theory interpretation:
Average number of bits needed to encode
samples from a true distribution p(X)
with codes defined by a model q(X)

Goal: Want a model q that uses fewer bits! Lower entropy!

Log loss 1s cross entropy!

Let our “true” distribution p(Y) be empirical distribution of
labels in the training set

Let our “model” distribution q(Y) be the estimated probabilities
from logistic regression

Cross-Entropy[p(Y), q(Y)] = Eywp(Y) [—logq(Y =y)]

— AT Z —Yn lngn 1 - yn) log(l o pn)
Same as the “log loss”!
Info Theory Justification for log loss:

Want to set logistic regression weights to provide best encoding
of the training data’s label distribution

The log loss metric

Log loss (aka “binary cross entropy”)

from sklearn.metrics import log_loss

log_loss(y,p) = —ylogp — (1 — y) log(1 — p)

10 Log Loss when true label = 1

Lower is better!

81

6}

log loss

Al | Advantages:

* smooth

 easy to take
derivatives!

0.0 0.2 0.4 0.6 0.8 1.0
predicted probability

Optimization Objective
Why minimize log loss?
A probabilistic justification

Likelihood of labels under LR

We can write the probability for each outcome of Y as:

p(Y; =1
p(Y; =0

;) = sigmoid(w’ x; + b)
r;) = 1 — sigmoid(w” z; + b)

We can write the probability mass function of Y as:

p(Y; = yilxi) =

o(wlz; +b)]" [1 — o(wlz; +b)] 1—y;

Interpret: p(y | x) is the “likelihood” of label y given input features x
Goal: Fit model to make the training data as likely as possible

Maximizing likelihood

N
Hax H p(Yn — yn‘mna w
w,b e

Why might this be hard in practice?

Think about datasets with 1000s of examples N

Maximizing log likelihood
The logarithm (with any base) is a monotonic transform

a>b implies log(a)>log(b)

Thus, the following are equivalent problems

w*, b* —argmax Hp n = Yn|Tn,w,b)

w*,b" = argmax log
w,b

,’:]2

p(Yn — yn|xn7 w, b)
n=1

Log likelihood for LR

We can write the probability mass function of Y as:
i 1—y;
p(Y; = yilzi) = [o(wlz; + 0)]" [1 — o(whz; +b)] 7

Our training objective is to maximize log likelihood

w,b

- N
w*,b* = argmax | log H (Y, = yp|zn, w,b)
n=1

Pair Exercise: Simplify the training objective J(w,b)!

Can you recover a familiar form?

Minimize negative log likelihood

Two equivalent optimization problems:

w*, b* = argmax Zlogp = Yn|Tn,w,b)
N
b = — I Yo = yn ny 7b
w*, b =argmin - —» logp(Yn = ynwn, w,d)

Summary of
“Likelihood interpretation”

LR defines a probabilistic model for Y given x

* We want to maximize probability of training
data (the “likelihood”) under this model

« We can show that an another optimization
problem ("maximize log likelihood”) is easier
numerically but produces the same optimal
values for weights and bias

 Turns out, minimizing log loss is precisely the
same thing as minimizing negative log
likelihood

Computing gradients

Simplified LR notation

 Feature vector with first entry constant
in = [1x4 Xp2 ... XpF]
» Weight vector (first entry is the “bias”)

w=|wy wi Ws...Wpg

e “Score” value z (real number, -inf to +inf)

z, = w' %,

Simplifying the log likelihood

J(z,) £ log p(Y, = yulzn)
= yn log 6(z,) + (1 — y,) log(1l — o(z,))

= Vn log G(zn) < 3 (1 - yn) log 6(—zn)

g 1
= y, log [+ % + (1 - y,)log [+ et

= VL = log(l + e"‘")

Gradient of the log likelihood

z, = w' %,

Log likelihood

J(z2n(w)) = YnZn — log(1 + e™)

Gradient w.r.t. weight on feature f

d d d
@J(zn(w)) = 757G d—WZ(w)

Simplifying yields: — (yn — O'(Zn)) ajnf

Partner Activity

Try the notebook here:

https://github.com /tufts-ml-courses/compi135-19s-
assignments/blob/master/labs/LogisticRegressionDemo.ipynb

Goals: Build understanding
e What is the optimal w for the 1D example?

« What is the optimal w for the 2D example?
» Why is regularization important here?

https://github.com/tufts-ml-courses/comp135-19s-assignments/blob/master/labs/LogisticRegressionDemo.ipynb

STOP: End of class 2/11

Gradient descent for LR

Gradient descent for L2 penalized LR

| A
min (—); log p(y; [x;; w,wp) |+) ||W||%

o J(w, UJQ)

Start with w® = 0,wy = 0, step size s

fort = 0,..,(T—1)
witl = wt —svJ(wt,wf) — awt

witt = wi — s 7wt wf)

if Lwtthwi™) —Lwt,wi) <6
break

return w?, wg

Will gradient descent always
find same solution?

ocal minimum

Global minimum Global minimum
> >

Log loss 1s convex!

ocal minimum

Global minimum Global minimum
> >

Intuition: 1D minimization

f(x)

x * x
Too small: converge
very slowly

f(x)

Too big: overshoot and
even diverge

Log likelihood vs iterations

-26000

—-28000

—30000

-32000

—34000+

—-36000

Log likelihood over all data points

= step size=1.0e-05

—38000

0 10 20 30 40 50
of iterations

If step size is too small

Log likelihood over all data points

-26000

—-28000¢
—30000}
—-32000¢
—34000+
—36000¢

—38000
0

= step size=1.0e-05

w— step size=1.0e-06 |/

10 20 30 40
of iterations

50

If step size is large

-26000

—28000
-30000}
—32000}
-34000
-36000

Log likelihood over all data points

-38000
= step_size=1.0e-05
40000 ~ step size=1.5e-05
~42000,; 10 20 30 40 50

of iterations

If step size is too large

» —20000
—
&=
& —30000
s v aaunl
T
© —40000
©
¢ -50000|
o
L=
g —60000
% = step size=1.0e-05
= —70000} - step_size=1.5e-05 |
g w— step size=2.5e-05
- : :
800000 10 20 30 40 50

of iterations

If step size 1s way too large

Log likelihood over all data points

0

—50000¢

-100000¢}

-150000

—200000¢

-250000

—300000 |

—-350000

AVAVAVAVAVAYA

step size=1.0e-06 |

step size=1.0e-05
step _size=1.5e-05

step size=2.5e-05 |,

step size=1.0e-04

0 10 20 30
of iterations

40

50

Rule for picking step sizes

 Never try just one!

 Try several values (exponentially spaced) until

 Find one clearly too small
 Find one clearly too large (oscillation / divergence)

» Always make trace plots!
« Show the loss, norm of gradient, and parameters

« Smarter choices for step size:
» Decaying methods
« Search methods
« Adaptive methods

Decaying step sizes

* Decay over iterations

Searching for good step sizes

* Line Search
scipy.optimize.line_search

