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Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2019s/

Many slides attributable to:
Erik Sudderth (UCI)
Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

Prof. Mike Hughes

https://www.cs.tufts.edu/comp/135/2019s/


Logistics

• HW3 due tonight
• Please annotate pages in Gradescope!
• Remember: Turn in on time!

• Project 1 out later tonight

• No recitation next week (President’s day)
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Objectives Today:
Logistic Regression Unit 2/2

Concept Check-in “Quiz”

Logistic Regression: A Probabilistic Classifier
• Computing log loss and its gradient
• Training via gradient descent
• How to pick step size
• Advanced: Line search, Using 2nd Derivatives
• How to scale to big data: stochastic gradient descent
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Check-in Q1:
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When training Logistic Regression, we 
minimize the log loss on the training set.

Can you provide 3 justifications for why this 
log loss objective is sensible?

Why is an L2 penalty useful? 

min

w,b

NX

n=1

log loss(yn, p̂(xn, w, b))

log loss(y, p̂) = �y log p̂� (1� y) log(1� p̂)



Check-in Q2: 
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Consider the definition of the sigmoid function:

What could go wrong with this implementation?

How would we fix the issue?



Check-in Q3

K-Nearest Neighbors looks like a pretty accurate 
classifier…

What are its primary drawbacks?
6Mike Hughes - Tufts COMP 135 - Spring 2019

Predicted 
proba of 
positive 
class



Check-in Q4
Consider logistic regression classifier for 2D features
What is the value (approximately)
of w_1, w_2, and bias for each plot below?
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Predicted 
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class



Check-in Q4
Consider logistic regression classifier for 2D features
What is the value (approximately)
of w_1, w_2, and bias for each plot below?
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Predicted 
proba of 
positive 
class



What will we learn?
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Supervised
Learning

Unsupervised 
Learning

Reinforcement 
Learning

Data, Label Pairs
Performance

measureTask

data 
x

label
y

{xn, yn}Nn=1

Training

Prediction

Evaluation
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y

x2

x1

is a binary variable 
(red or blue)

Supervised
Learning

binary 
classification

Unsupervised 
Learning

Reinforcement 
Learning

Task: Binary Classification



Example: Hotdog or Not
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https://www.theverge.com/tldr/2017/5/14/15639784/hbo-
silicon-valley-not-hotdog-app-download

https://www.theverge.com/tldr/2017/5/14/15639784/hbo-silicon-valley-not-hotdog-app-download


>>> yhat_N = model.predict(x_NF)
>>> yhat_N[:5]
[0, 0, 1, 0, 1]

Binary Prediction
Goal: Predict label (0 or 1) given features x

• Input:

• Output:
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xi , [xi1, xi2, . . . xif . . . xiF ]
Entries can be real-valued, or 
other numeric types (e.g. integer, 
binary)

Binary label (0 or 1)

“features”
“covariates”
“attributes”

“responses” or “labels”
yi 2 {0, 1}



>>> yproba_N2 = model.predict_proba(x_NF)
>>> yproba1_N = model.predict_proba(x_NF)[:,1]
>>> yproba1_N[:5]
[0.143, 0.432, 0.523, 0.003, 0.994]

Probability Prediction
Goal: Predict probability of label given features

• Input:

• Output:
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xi , [xi1, xi2, . . . xif . . . xiF ]
Entries can be real-valued, or 
other numeric types (e.g. integer, 
binary)

“features”
“covariates”
“attributes”

“probability”
p̂i , p(Yi = 1|xi) Value between 0 and 1

e.g. 0.001, 0.513, 0.987



Logistic Regr: Predicted Probas
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Function is
monotonically 
increasing in one 
direction

Decision 
boundaries will be 
linear



Computing gradients
for Logistic Regression (LR)
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Simplified LR notation

• Feature vector with first entry constant

• Weight vector (first entry is the “bias”)

• “Score” value z (real number, -inf to +inf)
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w = [w0 w1 w2 . . . wF ]



Simplifying the log likelihood
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Gradient of the log likelihood

18Mike Hughes - Tufts COMP 135 - Spring 2019

J(zn(w)) = ynzn � log(1 + ezn)

d

dwf
J(zn(w)) =

d

dzn
J(zn) ·

d

dwf
z(w)J(zn(w)) = ynzn � log(1 + ezn)

d

dwf
J(zn(w)) =

d

dzn
J(zn) ·

d

dwf
z(w)

= (yn � �(zn))xnfSimplifying yields:

Log likelihood

Gradient w.r.t. weight on feature f



Gradient descent for LR
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Gradient descent for L2 penalized LR
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Start with !" = 0, step size ,
for iteration - = 0,… , (0 − 1)

!456 = !4 − s 78 !4

if  8 !456 − 8 !4 < :
break

return !;

min
!

−∑? log C D? E?;!) +
H
2 ! J

J



Will gradient descent always 
find same solution?
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Will gradient descent always 
find same solution?
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Yes, if loss looks like this Not if multiple local 
minima exist



Log loss is convex!
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Intuition: 1D gradient descent
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!(#)

#

!(#)

## #

Choosing good step size matters!



Log likelihood vs iterations
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Maximizing likelihood: Higher is better!
(could multiply by -1 and minimize instead)

Figure Credit: Emily Fox (UW)



If step size is too small
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Figure Credit: Emily Fox (UW)



If step size is large
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Figure Credit: Emily Fox (UW)



If step size is too large
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Figure Credit: Emily Fox (UW)



If step size is way too large
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Figure Credit: Emily Fox (UW)



Rule for picking step sizes
• Never try just one!
• Try several values (exponentially spaced) until

• Find one clearly too small
• Find one clearly too large (oscillation / divergence)

• Always make trace plots!
• Show the loss, norm of gradient, and parameters

• Smarter choices for step size:
• Decaying methods
• Search methods
• Second-order methods
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Decaying step sizes
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input: initial w 2 R
input: initial step size s0 2 R+

while not converged:

w  w � strwL(w)
st  decay(s0, t)

t t+ 1

s0e
�kt

s0
kt

Linear decay

Exponential decay

Often helpful, but hard to get right!



Searching for good step size

Search for the best scalar s >= 0, such that:
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min
x

f(x)

�x = �r
x

f(x)

min
x

f(x)

�x = �r
x

f(x)

s

⇤ = argmin
s�0

f(x+ s�x)

min
x

f(x)

�x = �r
x

f(x)

Possible step lengths

Step 
Direction:

Goal:

Exact Line Search: Expensive but gold standard



Searching for good step size
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min
x

f(x)

�x = �r
x

f(x)

min
x

f(x)

�x = �r
x

f(x)

min
x

f(x)

�x = �r
x

f(x)

Possible step lengths

Step 
Direction:

Goal:

Backtracking Line Search: More Efficient!
s = 1

while reduced slope linear extrapolation

ˆ

f(x+ s�x) < f(x+ s�x) :

s 0.9 · s



Backtracking line search
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acceptable step sizes   | rejected step sizes

Linear extrapolation 
with reduced slope by factor alpha

s = 1

while reduced slope linear extrapolation

ˆ

f(x+ s�x) < f(x+ s�x) :

s 0.9 · s



Backtracking line search
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acceptable step sizes   | rejected step sizes

Linear extrapolation 
with reduced slope by factor alpha

In Python code: scipy.optimize.line_search



More resources on step sizes!

Online Textbook: Convex Optimization
http://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
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http://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf


Remember Newton’s Method
Goal: find zero crossing
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To optimize, we want to find zeros of first derivative!



Big Idea: 2nd deriv. can help!
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Use second-derivative to 
rescale step size!
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min
x

f(x)

�x = �r
x

f(x)

Will step directly to 
minimum 

if f is quadratic!

Step 
Direction:

Goal:

min
x

f(x)

�x = �r
x

f(x)

�x = �H(x)�1r
x

f(x)
In high dimensions, need the Hessian matrix 



• Provide loss and gradient functions
• Approximates the Hessian via recent history

of gradient steps

L-BFGS : Limited Memory Broyden–Fletcher–Goldfarb–Shanno (BFGS)

L-BFGS: the gold standard
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�x = �H(x)�1r
x

f(x)

In high dimensions, need the Hessian matrix
But this is quadratic in length of x , expensive

�x = �Ĥ(x)�1r
x

f(x)

Instead, use low-rank approximation

https://en.wikipedia.org/wiki/BFGS_method


Stochastic Gradient Descent
How can we go fast on big data?
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Stochastic Estimate 
of Loss Function
• Standard “full-dataset” objective

• Rewrite as “expected value” of empirical distrib.”
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L(w) = 1

N

NX

n=1

Ln(xn, yn, w)

L(w) = E
xi,yi⇠Unif({xn,yn}N

n=1)
[L

i

(x
i

, y

i

, w)]



Stochastic Estimate 
of Loss Function
• Standard “full-dataset” objective

• Rewrite as “expected value” of empirical distrib.”

• Use one Monte Carlo sample to approximate:
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L(w) = 1

N

NX

n=1

Ln(xn, yn, w)

L(w) = E
xi,yi⇠Unif({xn,yn}N

n=1)
[L

i

(x
i

, y

i

, w)]

L(w) ⇡ Li(xi, yi, w) xi, yi ⇠ Unif({xn, yn}Nn=1)



Stochastic Estimate of Gradient

Can use one Monte Carlo sample to approximate:
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rwL(w) ⇡ rwLi(xi, yi, w) xi, yi ⇠ Unif({xn, yn}Nn=1)



Intuition: Follow noisy but 
unbiased estimates of gradient
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Stochastic gradient descent

46Mike Hughes - Tufts COMP 135 - Spring 2019

input: initial w 2 R
input: step size s 2 R+

while not converged:

{xi, yi} ⇠ Unif({xn, yn}Nn=1)

w  w � srwL(xi, yi, w)

Shown here: one example at a time
Can also do: one minibatch at a time



Stochastic Gradient Descent
Benefits
• Faster (in terms of loss minimized per compute)
• More effective use of data

• Don’t wait to see all data before updating model

Limitations
• More parameters to tune (how many batches?)
• Descent is not guaranteed with every step
• Stopping conditions harder to evaluate

• Can use running average of loss
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