Tufts COMP 135: Introduction to Machine Learning
https://www.cs.tufts.edu/comp/135/2019s/

Logistic Regression 2/2

Many slides attributable to: .
Erik Sudderth (UCI) Prof. Mike Hughes

Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)


https://www.cs.tufts.edu/comp/135/2019s/

Logistics

« HW3 due tonight
 Please annotate pages in Gradescope!
 Remember: Turn in on time!

 Project 1 out later tonight

* No recitation next week (President’s day)



Objectives Today:
Logistic Regression Unit 2/2

Concept Check-in “Quiz”

Logistic Regression: A Probabilistic Classifier
» Computing log loss and its gradient

 Training via gradient descent
» How to pick step size
« Advanced: Line search, Using 2" Derivatives
* How to scale to big data: stochastic gradient descent



Check-1n Q1:

When training Logistic Regression, we
minimize the log loss on the training set.

log_loss(y, 15) = —ylogp — (1 —y)log(l —p)

mm Z log_loss(yy, p(xy, w, b))

n_l

Can you provide 3 justifications for why this
log loss objective is sensible?

Why is an L2 penalty useful?



Check-1n Q2:

Consider the definition of the sigmoid function:

1 e*
o(2) = T+e? e +1

What could go wrong with this implementation?

def sigmoid(z):

np.exp(z) / (1 + np.exp(z))

How would we fix the issue?



Check-1n Q3

K-Nearest Neighbors looks like a pretty accurate

classifier...

n_neighbors=300 n_neighbors=100 n_neighbors=1

What are its primary drawbacks?

e 0.7
-0.6
-0.5
-0.4
-0.3
-0.2
- 0.1
-0.0

1.0
0.9
0.8

Predicted
proba of
positive
class



Check-1n Q4

Consider logistic regression classifier for 2D features
What is the value (approximately)
of w_1, w_2, and bias for each plot below?

Predicted
proba of
positive
class




Check-1n Q4

Consider logistic regression classifier for 2D features
What is the value (approximately)
of w_1, w_2, and bias for each plot below?

w G=050

Predicted
proba of
positive
class




What will we learn?

Supervised s B :
Learning , Data, Label Pairs :

__________________________________

N Performance
{CBn, yn}n@:l measure |

label

_______________________________________________________________________________

___________________________________________________________________________________

___________________________________



Task: Binary Classification

Supervised y is a binary variable
: (red or blue)
Learning
binary
classification 4
L O
2 O
O
® ® o
O ©
O
O




Example: Hotdog or Not

. -
- ...
e -
¥ 2 =
—— T e e >

. ~ i
o —-— > -
—— - -~

- ———

—a . ——— — e W

https://www.theverge.com/tldr/2017/5/14/15639784/hbo-
silicon-valley-not-hotdog-app-download



https://www.theverge.com/tldr/2017/5/14/15639784/hbo-silicon-valley-not-hotdog-app-download

Binary Prediction

Goal: Predict label (0 or 1) given features x

A
e Input: L£; = [mz’l;mi% oG f oo CUZF]

(13 2

features Entries can be real-valued, or
“covariates” other numeric types (e.g. integer,
“attributes” binary)

» Output: y; € {0,1}
“responses” or “labels”  Binary label (o or 1)

>>> yhat N = model.predict (x NF)
>>> yhat N[:5]
[OI OI ll OI l]



Probability Prediction

Goal: Predict probability of label given features

A
e Input: L£; = [:U’ilpngy oG f oo CU@F]

(13 2

features Entries can be real-valued, or
“covariates” other numeric types (e.g. integer,
“attributes” binary)

* Output: ﬁz £ p(Y; — 1‘27@) Value between 0 and 1

« crel s e.g. 0.001, 0.513, 0.98
‘probability 5 013, 0997
>>> yproba N2 = model.predict proba (x NF)

>>> yprobal N = model.predict proba (x NF) [:,1]
>>> yprobal N[:5]

[(0.143, 0.432, 0.523, 0.003, 0.994]



Logistic Regr: Predicted Probas

C=0.0001

o
% +;
iy
x ‘&
+
i
+ L
o

2 Function is
monotonically
increasing in one
direction

0
Decision

boundaries will be
linear




Computing gradients
for Logistic Regression (LR)



Simplified LR notation

 Feature vector with first entry constant
in = [1x4 Xp2 ... XpF]
» Weight vector (first entry is the “bias”)

w=|wy wi Ws...Wpg

e “Score” value z (real number, -inf to +inf)

z, = w' %,



Simplifying the log likelihood

J(z,) £ log p(Y, = yulzn)
= yn log 6(z,) + (1 — y,) log(1l — o(z,))

= Vn log G(zn) < 3 (1 - yn) log 6(—zn)

g 1
= y, log [+ % + (1 - y,)log [+ et

= VL = log(l + e"‘")



Gradient of the log likelihood

z, = w' %,

Log likelihood

J(z2n(w)) = YnZn — log(1 + e™)

Gradient w.r.t. weight on feature f

d d d
@J(zn(w)) = 757G d—WZ(w)

Simplifying yields: — (yn — O'(Zn)) ajnf



Gradient descent for LR



Gradient descent for L2 penalized LR

| A
min | —Y; log p(y; |x;;w) + = ||W||z

w

Start with w® = 0, step size s
for iterationt = 0,...,(T — 1)
witl = wt —sVL(wt)

if Lwttt)—Lwt) <6
break
return w!



Will gradient descent always
find same solution?

ocal minimum

Global minimum Global minimum
> >




Will gradient descent always
find same solution?

ocal minimum

Global minimum Global minimum
> >

Yes, if loss looks like this Not if multiple local
minima exist



Log loss 1s convex!

ocal minimum

Global minimum Global minimum
> >




Intuition: 1D gradient descent

Choosing good step size matters!

f(x) f(x)

x* x x® x
Too small: converge Too big: overshoot and
very slowly even diverge



Log likelihood vs iterations

-26000

—-28000 P

—30000

-32000

—34000+

—-36000

Log likelihood over all data points

= step size=1.0e-05

Bnis 10 20 30 40 50

# of iterations Figure Credit: Emily Fox (UW)

Maximizing likelihood: Higher is better!
(could multiply by -1 and minimize instead)



If step size is too small

Log likelihood over all data points

-26000

—-28000}
—30000}
—-32000¢
—34000+
—36000}

—38000
0

w— step size=1.0e-06 |-
= step size=1.0e-05

10 20 30 40 50
# of iterations Figure Credit: Emily Fox (UW)




If step size is large

-26000

—28000
-30000}
—32000}
-34000
-36000

Log likelihood over all data points

-38000
= step_size=1.0e-05
40000 ~ step size=1.5e-05
~42000,; 10 20 30 40 50

# of iterations Figure Credit: Emily Fox (UW)



If step size is too large

Log likelihood over all data points

-20000

—30000

—40000

=50000}

—60000

—70000}

—80000

WY

= step size=1.0e-05
= step Size=1.5e-05 |-
= step size=2.5e-05

10 20 30
# of iterations

40 50
Figure Credit: Emily Fox (UW)



If step size 1s way too large

Log likelihood over all data points

0

—50000¢

—100000¢

-150000

—200000¢

-250000

—300000 |

—-350000

AVAVAVAVAVAYA

step size=1.0e-06 |

step size=1.0e-05
step _size=1.5e-05

step size=2.5e-05 |,

step size=1.0e-04

0 10 20 30
# of iterations

40

50

Figure Credit: Emily Fox (UW)



Rule for picking step sizes

 Never try just one!

 Try several values (exponentially spaced) until

 Find one clearly too small
 Find one clearly too large (oscillation / divergence)

» Always make trace plots!
« Show the loss, norm of gradient, and parameters

« Smarter choices for step size:
» Decaying methods
* Search methods
e Second-order methods



Decaying step sizes

input: initial w € R

input: initial step size sg € Ry

while not converged: Linegr decay
0
W — w — ¢V L(w) 17
St < decaY(S(), t) Exponential decay
—kt
t<+—t+1 Sp€

Often helpful, but hard to get right!



Searching for good step size

Goal:  min f(x)
X

Oep Azr = -V, f(z)

Direction:

Possible step lengths
Exact Line Search: Expensive but gold standard

Search for the best scalar s >= 0, such that:
>k

s* = arg m>1{)1 f(z + sAx)



Searching for good step size

Goal:  min f(x)
X

Step A T —= — v T f (CU) AV i e

Direction:

o
Possible step lengths

Backtracking Line Search: More Efficient!
s=1

while reduced slope linear extrapolation f(z 4+ sAxz) < f(x + sAx) :
s+ 09-s



Backtracking line search

, f(z + tAx)

Linear extrapolation
with reduced slope by factor alpha

f(z) + atVf(z)T Az

f(:r)_+ v f(z)T Az

f t
i =0 to
acceptable step sizes | rejected step sizes

Figure 9.1 Backtracking line search. The curve shows f, restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f, and the upper dashed line has a slope a factor of a smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 <
t < to.

s=1

while reduced slope linear extrapolation f(z + sAx) < f(x + sAx) :
$4<09-s



Backtracking line search

, flz + tAx)

Linear extrapolation
with reduced slope by factor alpha

f(z) + atVf(z)T Az

L f(z) + tV f(z)T Az
M i t
t=20 to
acceptable step sizes | rejected step sizes

Figure 9.1 Backtracking line search. The curve shows f, restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f, and the upper dashed line has a slope a factor of @ smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 <
t < to.

In Python code: scipy.optimize.line_search



More resources on step sizes!

Online Textbook: Convex Optimization
http://web.stanford.edu/~boyd/cvxbook/bv cvxbook.pdf

Stephen Boyd and
Lieven Vandenberghe

convex Convex Optimization
O DU m iZ at | on Stephen Boyd and Lieven Vandenberghe

Cambridge University Press



http://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

Remember Newton’s Method
Goal: find zero crossing

y
A

/ =  Funktion
N N S S A I Y N S S Y | naente

To optimize, we want to find zeros of first derivative!




Big Idea: 24 deriv. can help!

Xo

A comparison of gradient descent =
(green) and Newton's method (red) for
minimizing a function (with small step
sizes). Newton's method uses
curvature information (i.e. the second
derivative) to take a more direct route.



Use second-derivative to

rescale step size!

Goal:  min f(x)
X

Step f'(x,)
Direction: AT = »
ey

Az =—H(z) 'V, f(z)

In high dimensions, need the Hessian matrix

Ax

Will step directly to
minimum
if f is quadratic!



L-BFGS: the gold standard

scipy.optimize.fmin_|_bfgs_b

» Provide loss and gradient functions
« Approximates the Hessian via recent history
of gradient steps

Az — —-vx )  Aw=—H(@) V. ()

In high dimensions, need the Hessian matrix Instead, use low-rank approximation
But this is quadratic in length of x , expensive

L‘BFGS . Limited Memory Broyden—Fletcher—Goldfarb—Shanno (BFGS)



https://en.wikipedia.org/wiki/BFGS_method

Stochastic Gradient Descent
How can we go fast on big data?



Stochastic Estimate
of Loss Function

 Standard “full-dataset” objective

N
1
n=1
» Rewrite as “expected value” of empirical distrib.”

ﬁ(UJ) — Eazi,yiNUnif({a}n,yn}szl) [f”& (213‘7;, Yi, ’U})]



Stochastic Estimate
of Loss Function

 Standard “full-dataset” objective

N
1
n=1

» Rewrite as “expected value” of empirical distrib.”
L(w) = Exi,yiNUnif({xn,yn}ﬁle) Li(zs, yi, w)
* Use one Monte Carlo sample to approximate:
L(w) ~ Li(z;,y;, w) i,y ~ Unif({xn, yn }2,)



Stochastic Estimate of Gradient

Can use one Monte Carlo sample to approximate:

Vol(w) = Vo Lli(zi,yi,w)  ziy; ~ Unif({z,, yn )



Intuition: Follow noisy but
unbiased estimates of gradient

40 T T v T T r
10» \




Stochastic gradient descent

input: initial w € R

input: step size s € R,

while not converged:
{zi,yi} ~ Unif({zn, yn }ro1 )
w <4— w — sV, L(x;, Yy, w)

Shown here: one example at a time
Can also do: one minibatch at a time



Stochastic Gradient Descent

Benefits
 Faster (in terms of loss minimized per compute)

* More effective use of data
« Don’t wait to see all data before updating model

Limitations
* More parameters to tune (how many batches?)
» Descent is not guaranteed with every step

 Stopping conditions harder to evaluate
« Can use running average of loss



